
Comparative Study and Implementation of JPEG and

JPEG2000 Standards for Satellite Meteorological

Imaging Controller using HDL

Vineeth Mohan, Ajay Mohanan, Paul Leons, Rizwin Shooja

Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O, Kollam-690525, Kerala, India

vineethmohan@ieee.org, ajay-m@ieee.org, paulleons@ieee.org, rizwin@ieee.org

 Abstract- This paper presents a pipelined approach towards the

implementation of the JPEG baseline encoder for grayscale

image compression using HDL. The complete baseline encoder

with DCT compressor model, quantization, and entropy encoding

has been realized in HDL. The paper also delves into the

implementation of the DWT core for a JPEG2000 image

compression standard. A comprehensive testing and verification

of the same in MATLAB environment is also briefly described.

Keywords: JPEG; JPEG2000; HDL; DWT; Image compression.

I. INTRODUCTION

 Meteorological images obtained from satellite have high

resolution and take up a lot of disk space and bandwidth.

Therefore, it is imperative to use an image compression

algorithm that would do away with these problems associated

with the transmission of such images. However, it is highly

recommended that the implemented compression algorithm is

supported by widely available image decoders. This instigates

the need for implementing an industry standard like JPEG

(Joint Photographic Experts Group) or JPEG2000. Most of the

currently available solutions are software based and they can

be uncomfortably slow and consume more computing power.

This calls for a dedicated hardware unit so that fast

compression and transmission is possible. JPEG is a time

tested and reliable standard for lossy image compression while

JPEG2000 is a comparatively newer standard that supports

lossless image compression. The hardware implementation of

these two standards requires careful design strategy and

compatibility with Field Programmable Gate Arrays (FPGA)

for extensive testing and verification.

II. JPEG STANDARD

In 1994, the Joint Photographic Experts Group (JPEG)

committee finalized the JPEG standard for still image

compression as ISO/IEC 10918-1. The main goal behind such

standardization was to allow high quality data compression

with a global compatibility. The JPEG standard provided

much higher compression rates than its predecessors while

maintaining a very good image quality. It is still the most

widely used scheme used for still image compression. The

main parts of JPEG compressor engine are the DCT block, the

quantizer block and the encoder block.

A. DCT Engine

The DCT engine is responsible for transforming the image

data from time domain to spectral domain so that the inherent

spatial redundancy could be reduced. JPEG is a lossy

algorithm and typically achieves a compression ratio of

around 10. The equations for calculating forward as well as

the reverse DCT are as shown in equations (1) and (2). The

hardware and software implementation of the same are

explained in detail in the subsequent sections.

 (1)

 (2)

B. Quantizer
The next step in the JPEG compressor is the quantizer block,

which performs an element-by-element division of

coefficients with a standard matrix. There are different

standards of quantization matrices available namely Q10, Q50,

Q90 etc. We can choose any of these matrices depending on the

demand of the application and in this paper we use Q50 matrix

for quantization. High frequency coefficients in the lower right

of the 8x8 DCT matrixes will be rounded to zero and this

property of image is used in the compression of image by the

encoder block.

C. Entropy Encoder
 The 8x8 blocks of image data from the quantizer are given

into the entropy encoder block. The main goal of entropy

encoding is to reduce the statistical redundancy inherent in

image data by encoding it with a suitable prefix-free code. The

baseline encoder makes use of the standard Huffman code

tables given in [7].

Fig.1. Entropy Encoder- overview

III. JPEG2000 STANDARD

 JPEG2000 is a new standard put up by some major

organizations like ISO, IEC, ITU etc. JPEG2000 makes use of

Discrete Wavelet Transform (DWT) filling all the gaps made

by the drawbacks of the JPEG standard, thus gaining wide

spread acceptance.

 The JPEG2000 compression includes the three main parts:

Discrete Wavelet Transform (DWT), Quantization and

Entropy encoding. DWT decomposes each component into a

number of sub bands at various levels of resolution which can

be independently quantized by the quantizer in case of lossy

compression. This paper mainly focuses on the compression

section of JPEG2000 and its hardware implementation.

Fig.2. Overview of JPEG2000

A. Discrete Wavelet Transform

 The basic structure of the first stage is shown in the figure.

Fig.3. Block diagram of filter analysis

The relation equations are represented as follows:

[] [] []

[] [] []

1

1,

0

1

1,

0

2

2

K

L

k

K

H

k

x n x n k g k

x n x n k h k

−

=

−

=

= −

= −

∑

∑
 (3)

where g[n] is a low-pass filter like scaling function, and h[n] is

a high-pass filter like mother wavelet function.

Fig.4. 2-D DWT

Compared with 1-D DWT, the main difference is that the 2-D

DWT decomposes the low frequency and high frequency

component in two dimensions separately, and the two-stage 1-

D DWT decomposes twice in the same dimension.

B. VLSI Architecture for the Convolutional Approach

 A semi-systolic architecture is used for the

implementation of the convolution-based discrete wavelet

transform. Although the basic principle of the architecture

can be applied to implement any symmetric filter, we use

the (9, 7) wavelet filter here as an example. The (9, 7) filter

has been recommended for implementation of DWT in the

JPEG2000 standard for its lossy mode of image compression.

The design for the implementation of the DWT using the filter

bank was implemented in Verilog HDL and the results are

analyzed using by synthesized using Xilinx ISE. The simulator

used for Verilog HDL is ModelSim 6.2c.

Fig.5. Semi Systolic architecture of DWT

IV. SOFTWARE IMPLEMENTATION

This section describes the software implementation of the

DCT Engine of the JPEG standard and the DWT Engine

of the JPEG2000 standard.

A. DCT engine
The captured image data, say of size 512x512, is split into

sub-blocks of 8x8 and DCT is calculated as per the equation

(4).

 DCT = T*(image_data)*T
t
 (4)

where T is the standard transformation matrix and image data

is the obtained by subtracting 128 from each pixel data [11].

The resulting 8x8 matrix has decimal as well as fractional

parts.

 DCT module is implemented using the above transformation

matrix and is compared with the inbuilt MATLAB command

dct2 () and upon comparison we obtained a tolerable error in

the order of 10
-5

. The efficiency of algorithm is computed with

Peak Signal to Noise Ratio (PSNR) value as per the given

equations.

 (5)

 (6)

Images, which are usually of larger size, are subdivided into

8x8 blocks and this must go as input to the DCT module. So

there are 64 coefficients that are input to DCT module each

coefficient taking one clock cycle. Testing is not easy by

taking into consideration the various combinations of input.

Hence, we use MATLAB to write the image data into a text

file using commands like fopen() and fwrite().In Verilog test

bench, we use $readmemb() function that reads an image and

store it as a 2D vector. Finally, the quantization results in

MATLAB are compared to the output waveform and hence

design is verified.

B. DWT engine
 The main parts of software implementation include the

implementation of JPEG2000 Discrete Wavelet Transform in

MATLAB. The testing and simulation were performed on

various test images and they were reconstructed for

comparison purpose to determine the efficiency of the

compression. Since the hardware implantation algorithm was

based on sub band coding using the filter realizations, the

same was again implemented in MATLAB for verifying the

results. The MATLAB environmental provided a perfect

platform for the software implementation by exactly realizing

the filters so that there is a solid layout for the hardware

implementation to start with.

Fig.6. 512x512 image after both row wise and column wise filtering

(Haar wavelet)

Fig.7. Lena 512x512 image after both row-wise and column-wise

filtering (Daubechies wavelet)

V. HARDWARE IMPLEMENTATION

 This section delves into the hardware implementation of

the DCT Engine of the JPEG standard and the DWT Engine of

the JPEG2000 standard.

A. JPEG standard
Most important part of JPEG compressor is the DCT engine.

Direct implementation of DCT engine in hardware requires a

large number of adders and multipliers. For the computation

of DCT values, image data is represented in signed 2’s

complement form in the range -128 to 127. Since images of

larger size involve complex arithmetic for finding DCT, the

images are sub-divided into blocks of 8x8. Complex

computations are further reduced by decomposing the 8x8

two-dimensional DCT into row wise DCT and then column

wise DCT.

 Fig.8. Iterative architecture of DCT, quantizer block

The iterative architecture of the 2D DCT engine is as show in

the above figure. In this paper, an iterative architecture is

preferred over pipelined architecture for two-dimensional

DCT so that the one-dimensional DCT module can be reused

saving lot of power as well as area. The computations of DCT

are done as in [10] but instead of using Distributed Arithmetic

Multiply-and-Accumulate (MAC) operation, we are using

Booth multipliers and adders.

Fig.9. Pipelined architecture of DCT, quantizer block

 In the DCT module, inputs are of 8 bits and hence the

output after 7 additions can go to a maximum value of 15 bits.

This approach takes 16 bits to represent it so that occurrence

of overflow is avoided. We have to implement many additions

and multiplications for computing forward DCT. Hence Booth

multiplier is preferred as it gives better performance by

reducing the number of multiplications from N to N/r where r

is the radix of multiplication. Also, there is no need to find the

two’s complement of the negative numbers. While multiplying

two 16 bit numbers, the answer generally becomes double the

number of bits and hence, here it becomes 32 bits.

The transposer block accepts 32 bit image data as input from

the DCT module that performs row-wise one-dimensional

DCT and stores in an internal buffer. After receiving all the

elements of the 8x8 matrix, this module transposes the matrix

and gives as output i.e. it forwards the output row-wise which

was written column-wise into the matrix. To achieve this

functionality, we used eight shift registers which shift out the

data into the memory as it is received from the input port.

When the memory is full, the 32 bit data is then shifted out

and is fed to the DCT block to perform one-dimensional DCT

again to finally get a two-dimensional DCT matrix for further

processing. We perform a bit reduction by ignoring LSB so as

to avoid further increase in bits and ensuring that the error is

minimal.

The quantizer module quantizes the value i.e. performs an

element by element division which is multiplication of inverse

of the numbers. So a buffer stores the incoming values and

transfers it to booth multiplier module which performs the

actual quantization. Fractional part is approximated to nearest

decimal place and this approximation is the only lossy part in

JPEG.

 We have implemented both iterative and pipelined

architecture for DCT engine along with quantizer. A

comparative study is done between the two architectures. We

see that iterative architecture occupies much lesser area

compared to the pipelined architecture. Synthesis is done in

Virtex2P FPGA and selected device is 2vp30ff1152-6.

TABLE I

DCT ENGINE- TIMING SUMMARY

Architectures Iterative

Architecture

Pipelined

Architecture

Maximum Frequency 66.146MHz 66.146MHz

Minimum input arrival

time before clock

6.448ns 6.697ns

Maximum output required

time after clock

4.658ns 4.631ns

Maximum combinational

path delay

5.809ns 7.448ns

TABLE II

DCT ENGINE- DEVICE UTILIZATION SUMMARY
Architectures Iterative Architecture Pipelined

Architecture

Number of Slices 6523 8701

Number of Slice Flip

Flops

7572 10062

Number of 4 input LUTs 8909 12375

Number of IOs 20 20

Number of bonded IOBs 20 20

IOB Flip Flops 8 8

Number of BRAMs 2 2

Number of GCLKs 1 1

B. JPEG2000

The key difference between current JPEG and JPEG2000

standards start with the adoption of discrete wavelet

transform (DWT) instead of the 8x8 block based discrete

cosine transform (DCT). DWT essentially analyzes a tile

(image) component to decompose it into a number of sub-

bands at different levels of resolution. Similar to what was

done with DCT, the two-dimensional DWT is performed by

applying the one-dimensional DWT row-wise and then

column- wise in each component. In the first level of

decomposition, four sub bands LL1, HL1, LH1, and HH1 are

created.

 For lossy compression using DWT, the default wavelet

filter used in the JPEG2000 standard is the Daubechies

(9, 7) biorthogonal spline filter. By (9, 7) we indicate that

the analysis filter is formed by a 9-tap low-pass FIR filter

and a 7-tap high-pass FIR filter where both filters are

symmetric.

 For lossless compression, the default wavelet filter used in

the JPEG2000 standard is the Le Gall (5, 3) spline filter.

Although this is the default filter for lossless

transformation, it can be applied for lossy compression as

well.

The Implementation of DWT core of JPEG2000 was done by

the filter realization of DWT (Daubechies filters). A

comparative study of the two filters: 9/7 wavelet filter and 5/3

wavelet filter was performed (see Table III and IV). The 5/3

filter was found to be better in terms of hardware and image

quality was found to be almost same in both the filters. The

5/3 filter requires only less hardware as it has less number of

coefficient and the coefficients are simple.

TABLE III

COMPARISON OF FILTER COEFFICIENTS

 9/7 wavelet filter
 5/3 wavelet

filter

n
Low pass

Filter

High pass

Filter

 n Low

pass

Filter

High

pass

Filter
0 0.602949 1.115087

0
6/8 1

±1 0.266864 -0.591271
±1

2/8 -1/2

±2 -0.078223 -0.057543

±2
-1/8

±3 -0.016864 0.0912717

±4 0.0267487

TABLE IV

COMPARISON OF SYNTHESIS REPORT OF FILTER BANKS S

Category 9/7 filter 5/3 filter

 Flip-Flops 90 36

 Number of Slices: 116 35

 Number of 4 input LUTs: 214 60

 Number of IOs: 178 66

 Number of bonded IOBs: 178 66

 IOB Flip Flops: 96 38

 Number of MULT18X18SIOs: 4 2

 Number of GCLKs: 1 1

Minimum input arrival time before

clock

17.237ns 13.263ns

 Maximum output required time

after clock

4.283ns 4.283ns

 Maximum combinational path delay 12.954ns 8.80ns

Fig.10. Synthesized 9/7 Filter -Bank basic module

VII. ENTROPY ENCODER

 In the JPEG baseline encoder, the main function of the

entropy encoder is to code the quantized coefficients from the

encoder model using variable length encoding. The output of

the DCT block is fed to the Entropy Encoder for source

coding. The aim of source coding is to take the source data

and make it smaller which is essential in a data compressor

design. Entropy of a source is the measure of information or

rather the randomness of information. At the ground level,

source coding aims at reducing the data redundancy that is

inherently present in the source, and then represent the source

with lesser bits while maintaining the same information.

Image compression makes extensive use of entropy encoding.

 Our implementation tries to implement the entropy encoder

in a pipelined manner where we have divided the entire

entropy encoder engine into smaller independent blocks. Such

a pipelined architecture will consume input data at the same

rate as the DCT Engine. The lack of design specific literature

for the entropy encoder with respect to the JPEG standard led

us to come up with this design. Our implementation of the

entropy encoder is based on the design suggested in [8].

A. Overview
 The entropy encoder process flow consists of 1) ZigZag

Engine, 2) Run Length Encoder, 3) Category Selector, 4) Strip

Logic, 5) Huffman Encoder, and 6) Packetizer. Except the run

length encoder, all other modules are extensively redesigned

to attain reduced complexity. The main aim behind this

approach to the implementation of the entropy encoder is to

achieve a linear pipe with a small clock period for each stage.

B. ZigZag Engine

Each block of data that is output by the quantization module

from the encoder model needs to be reordered in a zigzag

fashion before being forwarded to the entropy encoder. This

reordering is achieved using two 64x8 buffers that are

organized in such a fashion that while one buffer is used to

rearrange the incoming pixel values the already rearranged

image data of previous image is shifted to the next block for

run length encoding. This arrangement is shown in figure [11].

The reordering is done in a dynamic way, i.e. the system does

not have to wait till all the 64 pixel values are obtained. The

selection of buffers is done using a 2x1 MUX.

Fig.11. Block level diagram for the ZigZag Engine

C. Run Length Encoder
 The zero-run length coder module performs the function

of producing the run length count of null values and generates

other status symbols. The coefficient count is maintained

using a counter which is incremented every time a valid input

is given. The very first pixel data of an image would be its DC

component which is recognized when the counter is first

incremented. The rest 63 coefficients are AC coefficients. The

various stages of the zero run length coder are shown in figure

[12].

 The control logic block is primarily responsible for two

things: differentiating between DC and AC coefficients and

maintaining the run length counter. The control logic is also

responsible for generating signals that indicate conditions such

as the occurrence of 16 consecutive zeros, end-of-block, and

whether the output data value represents a DC or an AC

coefficient.

Fig.12. Run Length Encoder

D. Category Selector
This stage of the JPEG process is implemented using our

original design. Category selection is defined in the JPEG

compression standard [7]. It is important to note that for the

sake of simplicity, we have considered only up to category 7

which holds good for most of the practical applications.

A straightforward implementation of category selection would

require storing the ranges in memory and comparing the input

data with those pre-stored values which requires complex

address decoding and control logic. However, the table

memory can be avoided and the entire category selection can

be achieved with a simple combinational circuit. This circuit

operates like an encoder that converts the given coefficient

into the corresponding category in a single clock cycle. The

circuit is given in figure [13].

Fig.13. Category Selector

E. Strip Logic
 The strip logic shown in Fig. is a slightly modified version

of that presented in [7] and consists of five stages instead of

four. The two main aims of this stage are to discard the zero-

valued coefficients, as well as the redundant ZRL symbols

occurring before an EOB symbol. Each stage has three

registers to hold the coefficient, run length count and category

fields corresponding to a data element output by the category

selection unit and a set of 1-bit registers to hold the

corresponding status. The status bits are decoded and used to

strip the zero-valued coefficients and also to strip off the ZRL

symbols that precede an EOB symbol. It should be noted that

there could be a maximum of three ZRL symbols preceding an

EOB symbol. The strip logic acts as a five-stage buffer

through which the compressed data elements, after the

removal of zero coefficients travel, before being forwarded to

the Huffman encoder. The valid bit signal is set to high

whenever valid data is being output by the strip logic for

Huffman encoding. It must be noted that the ZRL bit needs to

be reset whenever a ZRL symbol has been deleted from the

data stream.

Fig.14. Strip Logic

F. Huffman Encoder
The Huffman encoder module that we have implemented

is a heavily modified version of the design suggested in [7]. It

consists of Huffman code tables stored in random access

memory modules and logic for replacing the category, run

length count pairs with the corresponding Huffman codes.

The table is accessed by using the {runlen, cat} pair for

addressing. The input data passes through each of the two

stages, and depending on the address, the corresponding

Huffman code and the code length are output. The hardware

organization is shown in figure [15].

G. Packetizer
 The Data Packer unit shown in Figure [16] is a heavily

modified version of the one suggested in [7]. It is used to

convert variable length compressed data into fixed length

compressed data stream. The logic consists of registers A and

B, two left-shift units, a masking logic unit, two ORing logic

units, and control logic, which includes the two registers

LENGTH and ENDP.

Fig.15. Huffman Encoder

Figure.16. Packetizer

VI. CONCLUSION

In this paper we have described the implementation of a

fully pipelined architecture for JPEG baseline image

compression standard. The architectures for the various stages

are based on efficient and high performance designs suited for

VLSI implementation. The implementation was tested for

functional correctness using Verilog with Mentor Graphics

ModelSim 6.5 SE and Xilinx ISE 10.1. There were several

reasons for our choice of implementing the compression

algorithms like JPEG and JPEG2000. Firstly, we wanted to

work on the implementation of compute intensive algorithms

in hardware using HDLs. Secondly, the JPEG and JPEG2000

compression standard was a good candidate as it does not

specify any particular architecture for its implementation and

in this way permits the implementers to try various

innovations. Our project provided us the opportunity to

experiment with various design trade-offs on numerous

occasions. Also, during our implementation we found that we

needed to try different innovations to suit our requirements.

Our architecture has been completely synthesized and work

for its actual verification in a practical setup is in progress.

ACKNOWLEDGMENT

 We gratefully acknowledge the Almighty GOD who gave

us strength and health to successfully complete this venture.

The authors wish to thank Amrita Vishwa Vidyapeetham,

particularly the HUT Labs for kind support and guidance. We

would also like to thank VLSI lab for access to their research

facilities.

REFERENCES

 [2] Gautam and Bhawna, “Image compression using discrete cosine

transform and discrete wavelet transform,” in National Institute of

Technology, Rourkela, 2010.

[3] K. K. M. Vijay Kumar Sharma1 and U. C, “An efficient distributed

arithmetic based vlsi architecture for dct,” in National Institute of

Technology, Rourkela, 2010.

[4] R. K. Megalingam, V. Krishnan, V. Sarma, M. M, and R. Srikumar,

 “Hardware implementation of low power, high speed dct/idct based

 digital image watermarking,” in Proceedings of the IEEE, Vol. 83, No.

 2, 1995.

[5] T. Acharya and P.-S. Tsai, JPEG 2000 Standard for Image

Compression: Concepts, Algorithms and VLSI Architectures. John

Wiley, 2005.

[6] D. A. Huffman, “A Method for the Construction of Minimum-

Redundancy Codes,” in Proceedings of the IRE, Vol. 40, No. 9, 1952,

pp. 1098–1101.

[7] JPEG-Committee, “Information Technology - Digital Compression And

 Coding Of Continuous-Tone Still Images - Requirements And

Guidelines,” in Recommendation T.81, 1995.

[8] M. Kovac and N. Ranganathan, “JAGUAR: A Fully Pipelined VLSI

 Architecture for JPEG Image Compression Standard,” in Proceedings of

the IEEE, Vol. 83, No. 2, 1995.

[9] A. G. Claude Berrou and P. Thitimajshima, “Near Shannon limit

 error-correcting coding and decoding: Turbo codes,” in Proceedings of

the 1993 International Conference on Communications, 1993, pp. 1064

1070.

[10] Vijay Kumar Sharma, K. K. Mahapatra and Umesh C. Pati, “An

Efficient Distributed Arithmetic based VLSI Architecture for DCT” at

the Computing, Communication and Applications (ICCCA), 2012

International Conference.
[11] Image Compression and Discrete Cosine Transform by Ken Cabeen and

Peter Gent, Math 45, College of Redwood.

