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  Abstract- This paper presents a pipelined approach towards the 

implementation of the JPEG baseline encoder for grayscale 

image compression using HDL. The complete baseline encoder 

with DCT compressor model, quantization, and entropy encoding 

has been realized in HDL. The paper also delves into the 

implementation of the DWT core for a JPEG2000 image 

compression standard. A comprehensive testing and verification 

of the same in MATLAB environment is also briefly described. 
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I.    INTRODUCTION 

 

        Meteorological images obtained from satellite have high 

resolution and take up a lot of disk space and bandwidth. 

Therefore, it is imperative to use an image compression 

algorithm that would do away with these problems associated 

with the transmission of such images. However, it is highly 

recommended that the implemented compression algorithm is 

supported by widely available image decoders. This instigates 

the need for implementing an industry standard like JPEG 

(Joint Photographic Experts Group) or JPEG2000. Most of the 

currently available solutions are software based and they can 

be uncomfortably slow and consume more computing power. 
 

             
This calls for a dedicated hardware unit so that fast 

compression and transmission is possible. JPEG is a time 

tested and reliable standard for lossy image compression while 

JPEG2000 is a comparatively newer standard that supports 

lossless image compression. The hardware implementation of 

these two standards requires careful design strategy and 

compatibility with Field Programmable Gate Arrays (FPGA) 

for extensive testing and verification. 

    
 

II.   JPEG STANDARD 

 

In 1994, the Joint Photographic Experts Group (JPEG) 

committee finalized the JPEG standard for still image 

compression as ISO/IEC 10918-1. The main goal behind such 

standardization was to allow high quality data compression 

with a global compatibility. The JPEG standard provided 

much higher compression rates than its predecessors while 

maintaining a very good image quality. It is still the most 

widely used scheme used for still image compression. The  

 

main parts of JPEG compressor engine are the DCT block, the 

quantizer block and the encoder block. 

 

A.   DCT Engine 

The DCT engine is responsible for transforming the image 

data from time domain to spectral domain so that the inherent 

spatial redundancy could be reduced. JPEG is a lossy 

algorithm and typically achieves a compression ratio of 

around 10. The equations for calculating forward as well as 

the reverse DCT are as shown in equations (1) and (2). The 

hardware and software implementation of the same are 

explained in detail in the subsequent sections. 

 

   (1) 
 

  (2) 
 

B. Quantizer 
The next step in the JPEG compressor is the quantizer block, 

which performs an element-by-element division of 

coefficients with a standard matrix. There are different 

standards of quantization matrices available namely Q10, Q50, 

Q90 etc. We can choose any of these matrices depending on the 

demand of the application and in this paper we use Q50 matrix 

for quantization. High frequency coefficients in the lower right 

of the 8x8 DCT matrixes will be rounded to zero and this 

property of image is used in the compression of image by the 

encoder block.  

 

C.  Entropy Encoder 
    The 8x8 blocks of image data from the quantizer are given 

into the entropy encoder block. The main goal of entropy 

encoding is to reduce the statistical redundancy inherent in 

image data by encoding it with a suitable prefix-free code. The 

baseline encoder makes use of the standard Huffman code 

tables given in [7]. 



 
Fig.1. Entropy Encoder- overview 

 

III.   JPEG2000 STANDARD 
 

       JPEG2000 is a new standard put up by some major 

organizations like ISO, IEC, ITU etc. JPEG2000 makes use of 

Discrete Wavelet Transform (DWT) filling all the gaps made 

by the drawbacks of the JPEG standard, thus gaining wide 

spread acceptance. 

 

       The JPEG2000 compression includes the three main parts:  

Discrete Wavelet Transform (DWT), Quantization and 

Entropy encoding. DWT decomposes each component into a 

number of sub bands at various levels of resolution which can 

be independently quantized by the quantizer in case of lossy 

compression. This paper mainly focuses on the compression 

section of JPEG2000 and its hardware implementation. 

 

 
 

Fig.2. Overview of JPEG2000 
 

A. Discrete Wavelet Transform 

   The basic structure of the first stage is shown in the figure. 

 

 
 

Fig.3. Block diagram of filter analysis 

 

The relation equations are represented as follows: 
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where g[n] is a low-pass filter like scaling function, and h[n] is 

a high-pass filter like mother wavelet function. 

 

 
Fig.4. 2-D DWT 

 

Compared with 1-D DWT, the main difference is that the 2-D 

DWT decomposes the low frequency and high frequency 

component in two dimensions separately, and the two-stage 1-

D DWT decomposes twice in the same dimension. 

 

B. VLSI  Architecture for the Convolutional Approach 

       A semi-systolic architecture is used for the 

implementation of the convolution-based discrete wavelet 

transform. Although  the basic  principle  of  the  architecture  

can  be  applied to implement  any symmetric filter, we  use  

the  (9, 7) wavelet  filter here as an example. The (9, 7) filter 

has been recommended for implementation of DWT in the 

JPEG2000 standard for its lossy mode of image compression.   

The design for the implementation of the DWT using the filter 

bank was implemented in Verilog HDL and the results are 

analyzed using by synthesized using Xilinx ISE. The simulator 

used for Verilog HDL is ModelSim 6.2c. 

 

 
 

Fig.5. Semi Systolic architecture of DWT 

 

IV. SOFTWARE IMPLEMENTATION 

 

This section describes the software implementation of the 

DCT Engine of the JPEG standard and the DWT Engine 

of the JPEG2000 standard. 

 

 



A. DCT engine 
The captured image data, say of size 512x512, is split into 

sub-blocks of 8x8 and DCT is calculated as per the equation 

(4). 

                                 DCT = T*(image_data)*T
t
                    (4) 

 

where T is the standard transformation matrix and image data 

is the obtained by subtracting 128 from each pixel data [11]. 

The resulting 8x8 matrix has decimal as well as fractional 

parts. 

 

 
 

   DCT module is implemented using the above transformation 

matrix and is compared with the inbuilt MATLAB command 

dct2 () and upon comparison we obtained a tolerable error in 

the order of 10
-5

. The efficiency of algorithm is computed with 

Peak Signal to Noise Ratio (PSNR) value as per the given 

equations. 

 

                (5) 

                               (6) 
 

Images, which are usually of larger size, are subdivided into 

8x8 blocks and this must go as input to the DCT module. So 

there are 64 coefficients that are input to DCT module each 

coefficient taking one clock cycle. Testing is not easy by 

taking into consideration the various combinations of input. 

Hence, we use MATLAB to write the image data into a text 

file using commands like fopen() and fwrite().In Verilog test 

bench, we use $readmemb() function that reads an image and 

store it as a 2D vector. Finally, the quantization results in 

MATLAB are compared to the output waveform and hence 

design is verified. 

 
B. DWT engine 
      The main parts of software implementation include the 

implementation of JPEG2000 Discrete Wavelet Transform in 

MATLAB. The testing and simulation were performed on 

various test images and they were reconstructed for 

comparison purpose to determine the efficiency of the 

compression. Since the hardware implantation algorithm was 

based on sub band coding using the filter realizations, the 

same was again implemented in MATLAB for verifying the 

results. The MATLAB environmental provided a perfect 

platform for the software implementation by exactly realizing 

the filters so that there is a solid layout for the hardware 

implementation to start with. 

 

 
Fig.6. 512x512 image after both row wise and column wise filtering 

(Haar wavelet) 

 

 
Fig.7. Lena 512x512 image after both row-wise and column-wise 

filtering (Daubechies wavelet) 

 
V. HARDWARE IMPLEMENTATION 

 

     This section delves into the hardware implementation of 

the DCT Engine of the JPEG standard and the DWT Engine of 

the JPEG2000 standard. 

 

A. JPEG standard 
Most important part of JPEG compressor is the DCT engine. 

Direct implementation of DCT engine in hardware requires a 

large number of adders and multipliers. For the computation 

of DCT values, image data is represented in signed 2’s 

complement form in the range -128 to 127. Since images of 

larger size involve complex arithmetic for finding DCT, the 

images are sub-divided into blocks of 8x8. Complex 

computations are further reduced by decomposing the 8x8 

two-dimensional DCT into row wise DCT and then column 

wise DCT. 



 
 

  Fig.8. Iterative architecture of DCT, quantizer block  

 

The iterative architecture of the 2D DCT engine is as show in 

the above figure. In this paper, an iterative architecture is 

preferred over pipelined architecture for two-dimensional 

DCT so that the one-dimensional DCT module can be reused 

saving lot of power as well as area. The computations of DCT 

are done as in [10] but instead of using Distributed Arithmetic 

Multiply-and-Accumulate (MAC) operation, we are using 

Booth multipliers and adders.  

 

 
 

Fig.9. Pipelined architecture of DCT, quantizer block 

 

    In the DCT module, inputs are of 8 bits and hence the 

output after 7 additions can go to a maximum value of 15 bits. 

This approach takes 16 bits to represent it so that occurrence 

of overflow is avoided. We have to implement many additions 

and multiplications for computing forward DCT. Hence Booth 

multiplier is preferred as it gives better performance by 

reducing the number of multiplications from N to N/r where r 

is the radix of multiplication. Also, there is no need to find the 

two’s complement of the negative numbers. While multiplying 

two 16 bit numbers, the answer generally becomes double the 

number of bits and hence, here it becomes 32 bits. 

 

The transposer block accepts 32 bit image data as input from 

the DCT module that performs row-wise one-dimensional 

DCT and stores in an internal buffer. After receiving all the 

elements of the 8x8 matrix, this module transposes the matrix 

and gives as output i.e. it forwards the output row-wise which 

was written column-wise into the matrix. To achieve this 

functionality, we used eight shift registers which shift out the 

data into the memory as it is received from the input port. 

When the memory is full, the 32 bit data is then shifted out 

and is fed to the DCT block to perform one-dimensional DCT 

again to finally get a two-dimensional DCT matrix for further 

processing. We perform a bit reduction by ignoring LSB so as 

to avoid further increase in bits and ensuring that the error is 

minimal.  

 

The quantizer module quantizes the value i.e. performs an 

element by element division which is multiplication of inverse 

of the numbers. So a buffer stores the incoming values and 

transfers it to booth multiplier module which performs the 

actual quantization. Fractional part is approximated to nearest 

decimal place and this approximation is the only lossy part in 

JPEG. 

 

         We have implemented both iterative and pipelined 

architecture for DCT engine along with quantizer. A 

comparative study is done between the two architectures. We 

see that iterative architecture occupies much lesser area 

compared to the pipelined architecture. Synthesis is done in 

Virtex2P FPGA and selected device is 2vp30ff1152-6.   

 
TABLE I 

DCT ENGINE- TIMING SUMMARY 

Architectures Iterative 

Architecture 

Pipelined 

Architecture 

Maximum Frequency 66.146MHz 66.146MHz 

Minimum input arrival 

time before clock 

6.448ns 6.697ns 

Maximum output required 

time after clock 

4.658ns 4.631ns 

Maximum combinational 

path delay 

5.809ns 7.448ns 

 
TABLE II 

DCT ENGINE- DEVICE UTILIZATION SUMMARY 
Architectures Iterative Architecture Pipelined 

Architecture 

Number of Slices 6523 8701 

Number of Slice Flip 

Flops 

7572 10062 

Number of 4 input LUTs 8909 12375 

Number of IOs 20 20 

Number of bonded IOBs 20 20 

IOB Flip Flops 8 8 

Number of BRAMs 2 2 

Number of GCLKs 1 1 

 
B. JPEG2000 

 
The key difference between current JPEG  and JPEG2000 

standards start with  the adoption  of  discrete  wavelet  

transform (DWT)  instead  of  the  8x8 block based  discrete  

cosine  transform (DCT). DWT essentially analyzes a tile 

(image) component to decompose it into a number of sub-

bands at different levels of resolution.  Similar to what was 

done with DCT, the two-dimensional DWT is performed by 

applying the one-dimensional DWT row-wise and then 

column- wise in each component. In the first level of 

decomposition, four sub bands LL1, HL1, LH1, and HH1 are 

created.  

 

        For lossy compression using DWT,  the  default  wavelet  

filter  used  in  the  JPEG2000  standard  is  the Daubechies  

(9, 7)  biorthogonal  spline  filter.  By  (9, 7) we  indicate  that  

the analysis  filter  is  formed  by  a 9-tap  low-pass FIR filter  

and a 7-tap high-pass FIR  filter where both filters are 

symmetric. 
 



      For lossless compression, the default wavelet filter used in 

the JPEG2000 standard is the Le Gall (5, 3) spline filter. 

Although  this  is  the default  filter  for  lossless 

transformation,  it  can  be  applied for  lossy compression as 

well. 

 

The Implementation of DWT core of JPEG2000 was done by 

the filter realization of DWT (Daubechies filters). A 

comparative study of the two filters: 9/7 wavelet filter and 5/3 

wavelet filter was performed (see Table III and IV). The 5/3 

filter was found to be better in terms of hardware and image 

quality was found to be almost same in both the filters. The 

5/3 filter requires only less hardware as it has less number of 

coefficient and the coefficients are simple. 

 
TABLE III 

COMPARISON OF FILTER COEFFICIENTS 

 9/7 wavelet filter  
 5/3 wavelet 

filter  

n 
Low pass 

Filter  

High pass 

Filter  

 n  Low 

pass 

Filter  

High 

pass 

Filter  
0 0.602949 1.115087 

0 
6/8 1 

±1 0.266864 -0.591271 
±1 

2/8 -1/2 

±2 -0.078223 -0.057543 
     

±2 
-1/8 

 

±3 -0.016864 0.0912717 
 

  

±4 0.0267487 
 

 

  

 

 

TABLE IV 

COMPARISON OF SYNTHESIS REPORT OF FILTER BANKS S 

Category  9/7 filter  5/3 filter  

 Flip-Flops                                            90  36  

 Number of Slices:                        116    35   

 Number of 4 input LUTs:                  214   60   

 Number of IOs:                          178  66  

 Number of bonded IOBs:                  178    66   

  IOB Flip Flops:                    96  38  

 Number of MULT18X18SIOs:                   4   2   

 Number of GCLKs:                           1   1    

Minimum input arrival time before 

clock  

17.237ns  13.263ns  

 Maximum output required time 

after clock  

4.283ns  4.283ns  

 Maximum combinational path delay  12.954ns  8.80ns  

 

 

 

 
Fig.10. Synthesized 9/7 Filter -Bank basic module 

 

 

VII. ENTROPY ENCODER 

 

       In the JPEG baseline encoder, the main function of the 

entropy encoder is to code the quantized coefficients from the 

encoder model using variable length encoding.  The output of 

the DCT block is fed to the Entropy Encoder for source 

coding. The aim of source coding is to take the source data 

and make it smaller which is essential in a data compressor 

design. Entropy of a source is the measure of information or 

rather the randomness of information. At the ground level, 

source coding aims at reducing the data redundancy that is 

inherently present in the source, and then represent the source 

with lesser bits while maintaining the same information. 

Image compression makes extensive use of entropy encoding. 

 

  Our implementation tries to implement the entropy encoder 

in a pipelined manner where we have divided the entire 

entropy encoder engine into smaller independent blocks.  Such 

a pipelined architecture will consume input data at the same 

rate as the DCT Engine. The lack of design specific literature 

for the entropy encoder with respect to the JPEG standard led 

us to come up with this design. Our implementation of the 

entropy encoder is based on the design suggested in [8]. 

 

A. Overview 
     The entropy encoder process flow consists of 1) ZigZag 

Engine, 2) Run Length Encoder, 3) Category Selector, 4) Strip 

Logic, 5) Huffman Encoder, and 6) Packetizer. Except the run 

length encoder, all other modules are extensively redesigned 

to attain reduced complexity. The main aim behind this 

approach to the implementation of the entropy encoder is to 

achieve a linear pipe with a small clock period for each stage. 

 

B. ZigZag Engine 

Each block of data that is output by the quantization module 

from the encoder model needs to be reordered in a zigzag 

fashion before being forwarded to the entropy encoder.  This 

reordering is achieved using two 64x8 buffers that are 

organized in such a fashion that while one buffer is used to 

rearrange the incoming pixel values the already rearranged 

image data of previous image is shifted to the next block for 

run length encoding. This arrangement is shown in figure [11]. 

The reordering is done in a dynamic way, i.e. the system does 



not have to wait till all the 64 pixel values are obtained. The 

selection of buffers is done using a 2x1 MUX. 

 

 
Fig.11. Block level diagram for the ZigZag Engine 

      

C. Run Length Encoder 
          The zero-run length coder module performs the function 

of producing the run length count of null values and generates 

other status symbols.  The coefficient count is maintained 

using a counter which is incremented every time a valid input 

is given. The very first pixel data of an image would be its DC 

component which is recognized when the counter is first 

incremented. The rest 63 coefficients are AC coefficients. The 

various stages of the zero run length coder are shown in figure 

[12]. 

  

         The control logic block is primarily responsible for two 

things: differentiating between DC and AC coefficients and 

maintaining the run length counter. The control logic is also 

responsible for generating signals that indicate conditions such 

as the occurrence of 16 consecutive zeros, end-of-block, and 

whether the output data value represents a DC or an AC 

coefficient. 

 

 
 

Fig.12. Run Length Encoder 

 

D. Category Selector 
This stage of the JPEG process is implemented using our 

original design. Category selection is defined in the JPEG 

compression standard [7]. It is important to note that for the 

sake of simplicity, we have considered only up to category 7 

which holds good for most of the practical applications. 

 

A straightforward implementation of category selection would 

require storing the ranges in memory and comparing the input 

data with those pre-stored values which requires complex 

address decoding and control logic. However, the table 

memory can be avoided and the entire category selection can 

be achieved with a simple combinational circuit. This circuit 

operates like an encoder that converts the given coefficient 

into the corresponding category in a single clock cycle. The 

circuit is given in figure [13]. 

 

 
 

Fig.13. Category Selector  

 

E. Strip Logic 
    The strip logic shown in Fig. is a slightly modified version 

of that presented in [7] and consists of five stages instead of 

four. The two main aims of this stage are to discard the zero-

valued coefficients, as well as the redundant ZRL symbols 

occurring before an EOB symbol. Each stage has three 

registers to hold the coefficient, run length count and category 

fields corresponding to a data element output by the category 

selection unit and a set of 1-bit registers to hold the 

corresponding status. The status bits are decoded and used to 

strip the zero-valued coefficients and also to strip off the ZRL 

symbols that precede an EOB symbol. It should be noted that 

there could be a maximum of three ZRL symbols preceding an 

EOB symbol. The strip logic acts as a five-stage buffer 

through which the compressed data elements, after the 

removal of zero coefficients travel, before being forwarded to 

the Huffman encoder. The valid bit signal is set to high 

whenever valid data is being output by the strip logic for 

Huffman encoding. It must be noted that the ZRL bit needs to 

be reset whenever a ZRL symbol has been deleted from the 

data stream. 

 



 
 

Fig.14. Strip Logic 

 

F. Huffman Encoder 
The Huffman encoder module that we have implemented 

is a heavily modified version of the design suggested in [7].  It 

consists of Huffman code tables stored in random access 

memory modules and logic for replacing the category, run 

length count pairs with the corresponding Huffman codes.  

The table is accessed by using the {runlen, cat} pair for 

addressing.  The input data passes through each of the two 

stages, and depending on the address, the corresponding 

Huffman code and the code length are output.  The hardware 

organization is shown in figure [15]. 

 

G. Packetizer 
        The Data Packer unit shown in Figure [16] is a heavily 

modified version of the one suggested in [7].  It is used to 

convert variable length compressed data into fixed length 

compressed data stream.  The logic consists of registers A and 

B, two left-shift units, a masking logic unit, two ORing logic 

units, and control logic, which includes the two registers 

LENGTH and ENDP. 

 
Fig.15. Huffman Encoder 

 

 
Figure.16. Packetizer 

 

VI. CONCLUSION 

 

In this paper we have described the implementation of a 

fully pipelined architecture for JPEG baseline image 

compression standard. The architectures for the various stages 

are based on efficient and high performance designs suited for 

VLSI implementation. The implementation was tested for 

functional correctness using Verilog with Mentor Graphics 

ModelSim 6.5 SE and Xilinx ISE 10.1. There were several 

reasons for our choice of implementing the compression 

algorithms like JPEG and JPEG2000.  Firstly, we wanted to 

work on the implementation of compute intensive algorithms 

in hardware using HDLs. Secondly, the JPEG and JPEG2000 

compression standard was a good candidate as it does not 

specify any particular architecture for its implementation and 

in this way permits the implementers to try various 

innovations. Our project provided us the opportunity to 

experiment with various design trade-offs on numerous 

occasions. Also, during our implementation we found that we 

needed to try different innovations to suit our requirements. 

Our architecture has been completely synthesized and work 

for its actual verification in a practical setup is in progress. 
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