
Design and Prototype of Singular Value
Decomposition Hardware in IEEE 802.11n MIMO

Standards for Software Defined Radio
Yue Wang, Kevin Cunningham, and Prawat Nagvajara

Electrical and Computer Engineering
Drexel University
Philadelphia, PA

yw73@drexel.edu, kac89@drexel.edu, nagvajara@ece.drexel.edu

Jeremy Johnson
Computer Science
Drexel University
Philadelphia, PA

jjohnson@cs.drexel.edu

Abstract—This paper presents a custom reconfigurable hard-
ware design based on Software Defined Radio (SDR) for Pre-
coding problems of the IEEE 802.11n standard. The pre-coding
technique of Multiple-Input-Multiple-Output and Orthogonal
Frequency Division Modulation (MIMO-OFDM) systems, such
as the IEEE 802 standards, requires to solve a sequence of
complex-valued Singular Value Decompositions (SVD) to achieve
maximum throughput and strong signal strength. The imple-
mentation of SVD developed for 2×2 matrix over complex
fixed-point integer and its 4×4 expansion achieves an optimum
pipeline rate which equaled the maximum hardware clock rate.
The proposed prototype architecture based Field-Programmable
Gate Array (FPGA) provides performance gains over standard
software libraries, such as the ZGESVD function of Linear
Algebra PACKage (LAPACK) library, when running on standard
processors.

Index Terms—FPGA, IEEE 802.11n, Jacobi Rotation, MIMO,
OFDM, Pipeline, SDR, SVD.

I. INTRODUCTION

A. Background

Software Defined Radio (SDR) requires the implementation
of flexible software to meet the requirements of computation-
ally intensive algorithms and power constrained performance.
To achieve such flexibility, special purpose hardware, such as
Field Programmable Gate Array (FPGA), is used. An example
of SDR hardware is the Wireless Open Access Research
Platform (WARP) from Rice University [17] in which utilizes
FPGA to program its radio transceiver in software.

Multiple Input Multiple Output (MIMO) is a smart antenna
technology that uses multiple transmit and receive antennas
to increases channel capacity by transmitting multiple data
streams over one frequency. The MIMO standards include
WLAN IEEE 802.11n, WiMAX IEEE 802.16-2004, WiMAX
IEEE 802.16e, 3GPP Release 7, 3GPP Release 8 (LTE)
standards [18]. Data shroughput will increase as the number of
data streams increases. With Spatial Multiplexing technique,
MIMO systems such as the IEEE 802.11n standard can

1This material is based on research partially sponsored by the IEEE Mini
Grant and the National Science Foundation under grant numbers 0854946 and
0923003.

increase the spatial data throughput of the channel. Using
Alamouti Space-Time code, MIMO system can also improves
signal quality by transmitting redundancy. Spatial multiplexing
is suitable for near-field communication and spatial diversity
for far-field communication. With higher spectral efficiency
and reduced fading, a MIMO system is able to increase link
range and data throughput of the communication without addi-
tional power and bandwidth [2, 18]. Figure 1 is an illustration
of 2× 2 MIMO system [18].

Figure 1. MIMO System [18]
Orthogonal Frequency Division Multiplexing (OFDM) is

a Frequency Division Multiplexing (FDM) scheme utilized
as a digital multi-carrier modulation method. Multi-carrier
modulation divides a broadband channel into narrowband sub-
channels. OFDM uses a large number of closely-spaced or-
thogonal narrowband sub-carriers instead of a single wideband
carrier to transport data. The data is divided into several par-
allel data streams or channels, one for each sub-carrier. In an
OFDM system, a single data-stream is transmitted over lower
data rate sub-carriers as a coded quantity at each frequency car-
rier in the same bandwidth. OFDM is very easy and efficient in
dealing with multi-path. OFDM is robust against narrowband
interference and frequency selective fading. Incorporated with
MIMO, OFDM is a promising technology for higher capacity
multi-hop networks [4, 18, 7].

Singular Value Decomposition (SVD) of the channel char-
acteristic matrix is used in pre-coding, equalization and beam-
forming for MIMO and OFDM communication systems (e.g.,
IEEE 802.11n) to efficiently arrange the setup of the data
streams. The SVD problems of MIMO and OFDM systems
such as the IEEE 802.11n standard are computationally in-



tensive and complex [4]. Custom hardware can be used to
improve the computation. The set of sub-carrier matrices of the
channel characteristic matrix is sent to the custom hardware
by software. The custom hardware returns the corresponding
stream of singular values (S or σ) and unitary matrices (U and
V) that represents the power and direction of the transmit sig-
nals per sub-carriers. SVD hardware provides the opportunity
for a significant performance gain over the traditional SVD
computed by software. A illustration is shown in Fig. 2.

Figure 2. SVD-based Pre-coding Scheme for 2× 2 MIMO Systems

B. The Requirements of IEEE 802.11n Standard for SVD

IEEE 802.11n is a improved standard over the 802.11a and
802.11g with increment of transmitting throughput. Compar-
ing with previous WLAN standards (802.11a and 802.11g),
one of the advantage of IEEE 802.11n standard is MIMO im-
plementation of wide bandwidth options (40 MHz comparing
with 20 MHz). For 2 transmit and 2 receive antennas to form
2 data streams (2×2 : 2 configuration), IEEE 802.11n can
transmit maximum 300 Mbit/s with 40 Mhz Channel [19]. To
accurately predict the strength and direction of the signal for
better signal quality and reception, SDR is required to solve
a sets 2×2 SVD problems provided by the sub-carriers of the
channel. With 4 transmit and 4 receive antennas to form 4 data
streams, IEEE 802.11n standard will be able to achieve 600
Mbit/s transmission with 40 MHz Channels and 64 Quadrature
Amplitude Modulation (QAM) modulation [19]. Similar to
2×2 : 2 configuration, 4×4 : 4 setup require SDR to solve a
set of 4×4 SVD problems.

The transmitter sends the Request-To-Send (RTS) packet
containing a training sequence from which the channel char-
acteristic matrices H can be measured at the receiver. The
receiver sends (feedback) the Clear-To-Send (CTS) packet
containing the SVD of H matrices. The computation time of
the IEEE 802.11n standard SVD problems is limited by the
Short Inter-Frame Spacing (SIFS), which is the time interval
between (RTS) data and CTS (acknowledgement). SIFS is
defined 10 us for a 2.4 GHz carrier frequency and 16 us for
a 5 GHz carrier frequency [19]. Since SVD computation can
start before as soon as the stream of H matrices are available,
the computation time for SVD can be estimated more than the
defined, hence, 20 us. The time constraint set a maximum data
processing time for the SVD computation per transmission.
The receiver is required to compute the SVD of the sub-carrier
H matrices conservatively within the time constraint.

C. SVD Hardware for MIMO-OFDM in SDR

SDR boards, such as WARP, use an FPGA [17] for recon-
figurable radio software. SVD hardware can utilize the unused

space of the FBGA. The architecture shown in Fig. 3 supports
SVD computation of both 2×2 and 4×4 matrices. The Main
Control Unit (MCU) streams the input data from memory
to the 2×2 SVD hardware, which returns a stream of the
singular values and corresponding unitary 2×2 matrices. When
solving 4×4 SVD problems, the MCU iterates a sequence of
predefined 2×2 blocks along the iteration and sweep data path
until the final result converges.

MCUMEMORY

4x4
SVD

Data In Data Out

Iteration and Sweep Data Path for 4x4 SVD

Data Path for 2x2 SVD

Figure 3. SVD Hardware in Software-Defined Radio Transceiver

II. SVD THEORY IN MIMO COMMUNICATION SYSTEMS

A. SVD-based MIMO Communication Systems

In SVD-based MIMO-OFDM communication systems, 2×2
(or 4×4) SVD of the sub-carriers of the channel characteristic
matrices H are periodically computed. A general channel
model of MIMO system can be expressed as,

r = Hs+ n, (1)

where s is the sent signal, r is the received signal, H is
the channel attenuation and n is the noise in the channel.
These signals are vectors whose components are the sent and
received modulation symbols, a component for each antenna.
These symbols are complex numbers when using modulation
modes such as QAM. H is a matrix whose elements are
complex numbers, attenuations of both magnitude and phase.
A time-invariant channel model is achieved by estimating H
periodically using a pre-defined training sequence transmitted
between the transmitter and the receiver. The received signal at
the receiver antenna is expressed in terms of the components
of H, e.g., in a 2 × 2 system, r1 = h11s1 + h12s2 + n1 and
r2 = h21s1 + h22s2 + n2. Separation of the components of s
into the corresponding components of r is done by pre-coding
and equalization techniques based on SVD.

For systems with Nt transmitter antennas and Nr receiver
antennas, the singular value decomposition of a matrix H
(Nr ×Nt) ∈ Cm×n is

H = UΣV H , (2)

where U ∈ Cm×m and V ∈ Cn×n are unitary (UHU = I
and V HV = I ). Σ ∈ Rm×n is the diagonal matrix with the
singular values of HHH, σi, arranged in decreasing order. Most
telecommunication literature uses the superscript H to denote



conjugate transpose of a matrix (Hermitian) even though H
also denotes the channel characteristic matrix.

SVD-based pre-coding techniques make use of the fact that
a column of V is an Eigenvector of HHH, which corresponds
to an Eigenmode of the communication channel. For instance,
singular value σi defines the quality of the ith Eigenmode.
The pre-coding technique transmits the matrix-vector product,
p = V · s, which is called preprocessing. From Eq. 1, the
received signal becomes

r = Hp+ n = HV s+ n (3)

The classical SVD-based equalization technique to separate
r into Eigenmodes is the multiplication of UH with r

y = UHr = Σ(s) + UHn. (4)

In other words,

yi = σisi + ni; i = 1, . . . , Nr, (5)

where si denotes the ith component of signal s. The multi-
plication of U and V (pre-coding and equalization) does not
change the bit-error rate (BER) calculation because they are
unitary. Therefore, the performance analysis is similar to the
parallel SISO communication systems. Figure 2 shows the
SVD-based pre-coding scheme. By periodically transmitting
training sequences, the system obtains the H matrices of the
sub-carriers and computes the singular values, U and V .
The receiver transmits back the V matrices and stores the
U matrices used for equalizing the pre-coded received signal
synchronized to the corresponding V .

Other SVD-based equalization techniques include zero-
forcing and Minimum-Mean Square Error (MMSE) equaliza-
tion [4].

B. SVD Algorithm

Previous SVD works has focused on general n×n matrices
using the Brent-Luk-Van Loan systolic array, where the matrix
size, n, tends to be a large number. None of the previous
proposed hardware has provided a pipelined architecture for
computing complex value 2×2 singular values and the unitary
matrices, U and V . The Golub-Kahan-Reinsch SVD algorithm
implemented in LINPACK/LAPACK and used in MATLAB,
is the most commonly used algorithm for the software com-
putation of SVD in a uniprocessor system [9]. The algorithm
first uses Householder bi-diagonalization to bi-diagonalize the
original matrix. The result is then iteratively diagonalized. The
time complexity of Golub-Kahan-Reinsch SVD algorithm is
O(mn2) [9].

The SVD algorithm used in the MIMO system is modified
from the two-sided Jacobi algorithm used by Hemkumar
[10, 11]. The algorithm developed from the cyclic Jacobin
algorithm originally proposed by Forsythe and Henrici in the
1960s [8]. Performing SVD computation with CORDIC (Coor-
dinate Rotation Digital Computer) was proposed by Cavallaro
and Luk [5]. In 1983, the BLV systolic array was proposed
for general n × n matrices with a time complexity of O(m

+ nlog(n)) and hardware complexity of O(n2) processors [3].
The two-sided Jacobi algorithm has also been used to solve
SVDs of a quaternion matrix [14]. Researchers have recently
been interested in solving SVD problems in MIMO and
OFDM systems [22, 4]. The algorithm used in this paper was
from Hemkumar [11].

Consider a 2 × 2 matrix A with complex elements in
rectangular representation for the sub-carriers of a 2×2 MIMO
system.

A =

[
(ar, ai) (br, bi)

(cr, ci) (dr, di)

]
(6)

Transform A into polar representation,

A =

[
AeiθaBeiθb

CeiθcDeiθd

]
(7)

Perform unitary R transformation to transform the elements
of the second row to real numbers,

[
eiθα 0

0 eiθβ

][
Aeiθa Beiθb

Ceiθc Deiθd

][
eiθγ 0

0 eiθδ

]

=

[
Aeiθa′ Beiθb′

C D

]
where θα = θβ = −θd + θc

2

θγ = −θδ =
θd − θc

2
.

(8)

Perform the two-sided Jacobi rotations, where c and s denote
cosine and sine, to annihilate A(2,1),[

cθφ −sθφ
sθφ cθφ

][
Aeiθa′ Beiθb′

C D

][
cθψ sθψ
−sθψ cθψ

]

=

[
W eiθw Xeiθx

0 Z

]
where θφ = 0, and θψ = tan−1(

C

D
)(−π ≤ θψ ≤ π).

(9)

Perform unitary R transformation again to transform the
elements of the first row of the above result to real values,[

eiθξ 0

0 eiθη

][
W eiθw Xeiθx

0 Z

][
eiθζ 0

0 eiθω

]

=

[
W X

0 Z

]
where

θξ = − (θx + θw)

2
, θω =

θw − θx
2

, θη = θζ =
θx + θw

2
.

(10)

Perform the two-sided Jacobi rotations on the above to



annihilate A(1, 2),[
cθλ −sθλ
sθλ cθλ

][
W X

0 Z

][
cθρ sθρ

−sθρ cθρ

]

=

[
P 0

0 Q

]
= Σ

where tan(θλ+θρ) = −(
X

Z −W
)

tan(θλ−θρ) = −(
X

Z +W
)

(11)

UH =

[
cλ −sλ

sλ cλ

][
eiθξ 0

0 eiθη

][
eiθα 0

0 eiθβ

]
(12)

V =

[
eiθγ 0

0 eiθδ

][
cψ sψ

−sψ cψ

][
eiθζ 0

0 eiθω

][
cρ sρ

−sρ cρ

]
(13)

In other words,

UHAV = Σ =

[
P 0

0 Q

]
(14)

For the singular value matrix, Σ, it is not guaranteed that P is
greater than Q. The normalized SVD (NSVD) algorithm used
by Brent et. al. can be used to exchange P and Q if needed [3].
Permutation matrices can also be used to permute P and Q.
The third technique to exchange P and Q is obtained by using
(θλ +

π
2 ) and (θρ +

π
2 ) instead of θλ and θρ in Eq. 11.

Figure 4. Iteration and Sweep Processes of 4× 4 SVD
As shown in Fig. 4, the SVD of a 4×4 complex matrix

can be divided into six back-to-back 2 × 2 SVDs. Each 2 ×
2 SVD is called one iteration. The purpose of each iteration
is to annihilate the off-diagonal elements A(i,j) and A(j, i).
After six iterations all the off-diagonal elements have been

annihilated once. With each iteration, however, the elements
in ith and jth columns and rows of A will be affected by the
transformation, namely, pre and post multiplication by 2 × 2
UH and V of (A(i,i), A(i,j), A(j,i), A(j,j)) sub-matrix. The six
2×2 SVDs constitute a single sweep. Multiple sweeps have to
be performed to converge to the diagonal matrix Σ. For 4× 4
SVD, 3 sweeps are sufficient enough for an accurate result for
MIMO system.

III. RECONFIGURABLE SVD PIPELINE HARDWARE FOR
IEEE 802.11N

This section presents the custom design SVD hardware for
IEEE 802.11n MIMO system of SDR prototyped on a FPGA.
The implementation of the two-sided Jacobi algorithm was
based on fixed-point signed fraction arithmetic (QN format).
Xilinx CORDIC V4.0 Coregen was used under Xilinx ISE
Project Navigator environment for the Givens Rotation and
conversion between polar and rectangular representation. Be-
cause of the well-defined dynamic range of the 1Q15 data for
the MIMO application, the use of fixed-point computations
is acceptable without a loss of accuracy or precision. The
CORDIC cores produce verified correct results with an im-
plementation efficient in both size and power. The translation
cores were used to convert rectangular to polar representation
whereas the rotation cores were used to convert polar to
rectangular representation.

Figure 5. The RTL Diagram of the 4× 4 SVD Pipeline Hardware



Fig. 5 shows a block diagram of the pipeline hardware
comprising rotation, translation and arctangent CORDIC cores
and, custom cores (+/- denotes add, subtract and multiplexer).
The diagram is the graphic representation VHDL code for the
mathematic algorithm listed in Sec II. The VHDL coding of
the SVD algorithm has used the IEEE 1164 standard logic,
arithmetic and unsigned number library. The top-row block
of the 2×2 is only compute Σ for the 2×2 MIMO systems.
The bottom two rows of the 2×2 block (pipelines) compute
UH and V respectively. The extension block is required to
compute for the 4×4 MIMO systems. Table I lists the

CORDIC cores Custom cores
Rotation Translation Arctan +/- shifter

Σ 20 8 3 15
U 6 0 0 2
V 12 6 0 4

Row 8 4 0 8
Col 12 12 0 8

Table I
SPACE UTILIZATION OF 4× 4 SVD PROCESSOR

space complexity for the proposed SVD hardware measured
by the number of cores used according to Fig. 5, where +/-
and shift denotes add/subtract and bit-shift to conform to the
1QN or 2QN format as magnitude or phase angle inputs to
CORDIC cores. The design included guard bits and rounding
bits as precision provisions. The prototype implemented on
Virtex 4 xc4vlx200 used approximately 40% of the slices.
The CORDIC stages and the R transformation resulted in a
173 clock cycle latency for 16-bit data synthesized on the
ML605 board and a 138 clock cycle latency for 12-bit data
synthesized on the XUP5 board according to simulation results
from Modelsim.

IV. VERIFICATION AND BENCHMARK RESULTS

One hundred sets of IEEE 802.11n channel matrices H were
provided by the SDR team of Drexel University. The data were
in double floating-point format. Each of the channel matrix
consisted of fifty-two 2× 2 decoupled blocks. The data were
converted into MQ(N-1) fixed-point signed fraction format.
The set of data were streamed to the SVD processor. A total
of 5200 2× 2 SVDs were verified. The same set of data were
also modified to be tested for solving the 4× 4 SVD.

The hardware model of the two-sided Jacobi algorithm
was first programmed in MATLAB m-code. This custom
m-coded SVD function was verified against the MATLAB
SVD function, [U , Σ, V ] = svd(H), for correctness. It was
verified that Σ was the same for both the m-code function and
MATLAB SVD function. Since the MATLAB SVD function
uses the Golub-Kahan-Reinsch SVD algorithm [9], U and V
were different from the hardware model. The correctness of U
and V was verified by comparing the original H and UΣV H .
The discrepancy was at most two percent.

There were also mismatches between the MATLAB hard-
ware model and the experimental data from Modelsim and the
FPGA board due to the fact that MATLAB data are double

precision floating-point and the experimental data were 2Q17
fixed-point. The maximum percentage difference was less than
two percent, more than sufficient for radio applications.

The SVD processor design was prototyped on the Digital
Reconfigurable Computing (DRC) board (RPU110-L200). The
software running on the host PC streamed the test data via the
Hyper Transport bus to the input FIFOs in the FPGA (Virtex
4). When the input FIFOs were full, the SVD core was enabled
to process the data in a stream fashion. The results (Σ, U and
V ) were streamed into the output FIFOs. The results were
written into DDRII DRAMs through a DDR2 controller, to
the CPU, and to an output file for verification. The artitecture
of the prototype is shown in Fig. 6.

FPGA (XC4VLX200)

REGISTERS

SVD PROCESSOR

64-bit FIFO

CPU

DDR2
RAM

LLRAM

DDR2
controller

64-bit FIFO 64-bit FIFO 64-bit FIFO 64-bit FIFO 64-bit FIFO

64-bit FIFO 64-bit FIFO

Digital Reconfigurable Computing Board

FPGA (XC4VLX200)

HyperTransport

Figure 6. The RTL Diagram of the 4× 4 SVD Pipeline Hardware

The performance, in terms of data rate, was compared to the
ZGESVD function of Linear Algebra PACKage (LAPACK).
The ZGESVD function is based on the Golub-Kahan-Reinsch
SVD algorithm. Intel’s Math Kernel Library (MKL) version
10.2.5.035 includes LAPACK 3.2. The ZGESVD function
processes double precision floating-point data.

The test data from above were used for benchmarking.
The benchmarking code was based on Intel’s MKL LAPACK
examples [6]. The input data required approximately 400 KB
cache. With -O3 gcc compiling switch, the computation time
of the code on Intel Duo T9300 CPU with clock frequency
2.50 GHz was 0.041832 s. Therefore the data rate was 12.43
MHz for a single core. With -fopenmp and -O3 option for
OpenMP C code, the data rate was 20.98 MHz. The average
data rate on a Intel Quad Q9300 CPU with clock frequency
2.50GHz was approximately 12 MHz. With OpenMP C code,
the data rate is projected to be 40 MHz.

Table II summarizes the data rate attained by software and
hardware. It also lists FPGA LUT (Lookup Table) slices for
DRC (Virtex 4), Virtex 5 and Virtex 6. For SVD hardware,
the frequencies were obtained from the Xilinx ISE synthesis
reports. The clock frequency from the post mapping report was
slightly different. The benchmark showed a six-fold speedup
for Virtex 6 over the OpenMP Quad core. The benchmark
results give a convincing argument for using SVD hardware
e.g., implemented on an FPGA, in a radio transceiver. In
the 802.11n Standard, the required data rate is less than 100
MHz for radio transceivers (see Section II-A). Since the SVD
hardware achieves rates greater than the required data rate, it



may be possible to reduce the space of the design by reusing
hardware and operating at a lower rate.

Platform Data Width Data Rate (Mhz) Slices
Intel Duo T9300 Double Float 12.43 N/A

Intel T9300 OpenMP Double Float 20.98 N/A
Intel Quad Q9300 Double Float 12 N/A

Intel Q9300 OpenMP Double Float 40 N/A
DRC Virtex 4 16 202.47 72669

Virtex 5 12 233.15 54072
Virtex 6 16 323.82 74925

Table II
HARDWARE COMPLEXITY

V. CONCLUSION

The custom designed SVD core described provides high-
throughput computation for complex 2 × 2 pre-coding and
equalization schemes from the IEEE 802.11n MIMO standard.
The MIMO standards that benefit from the core include
IEEE 802.16-2004, IEEE 802.16e, 3GPP release 7, and 3GPP
Release 8 (Long Term Evolution). The core attained an optimal
pipeline rate, that is, the hardware clock frequency was equal
to the data throughput rate. The core computes Σ, U, and
V, whereas, previously reported hardware only computes Σ,
which is not sufficient for MIMO and OFDM systems.

The developed pipeline SVD hardware attained a higher
data rate than the ZGESVD function from LAPACK. A
prototype was implemented on the Digital Reconfigurable
Computing RPU110-L200. The prototype consisted of 55
CORDIC cores. It achieved an optimum pipeline rate with 173
clock-cycle latency for 16-bit data design (1Q15 fixed-point
input format). When implemented on the xc6vlx240t FPGA,
the hardware attained six times the rate of ZGESVD running
on an Intel Quad Q9300 using OpenMP.

The SVD core is suitable for Software Defined Radio (SDR)
applications, whereas high performance CPUs, such as Intel
Quad Q9300, or GPUs are unlikely to meet the power and
space constraints.

REFERENCES

[1] A. Ahmedsaid, A. Amira, and A. Bouridane. Improved SVD systolic
array and implementation on FPGA. In Field-Programmable Technology
(FPT), 2003. Proceedings. 2003 IEEE International Conference on, pages
35 – 42, 15-17 2003.

[2] Emre Telat Ar and I. Emre Telatar. Capacity of multi-antenna gaussian
channels. European Transactions on Telecommunications, 10:585–595,
1999.

[3] R. P. Brent, F. T. Luk, and C. Van Loan. Computation of the singular
value decomposition using mesh-connected processors. Technical report,
Cornell University, Ithaca, NY, USA, 1983.

[4] H. Busche, A. Vanaev, and H. Rohling. SVD-based MIMO precoding and
equalization schemes for realistic channel knowledge: Design criteria and
performance evaluation. Wirel. Pers. Commun., 48(3):347–359, 2009.

[5] J. R. Cavallaro and F. T. Luk. CORDIC arithmetic for an SVD processor.
Journal of Parallel and Distributed Computing, 5(3):271 – 290, 1988.

[6] Intel Corporation. Intel(R) Math Kernel Library LAPACK Ex-
amples. http://software.intel.com/sites/products/documentation/hpc/mkl/
lapack/mkl_lapack_examples/index.htm, 2010.

[7] Mondin, M. Orthogonal Frequency Division Multiplexing Mod-
ulation: OFDM. 2008 http://www.infotech.polito.it/it/personale/scheda/
(nominativo)/marina.mondin

[8] G. E. Forsythe and P. Henrici. The cyclic Jacobi method for computing
the principal values of a complex matrix. Transactions of the American
Mathematical Society, 94(1):1–23, 1960.

[9] G. H. Golub and C. F. Van Loan. Matrix Computations (3rd ed.). Johns
Hopkins University Press, Baltimore, MD, USA, 1996.

[10] N.D. Hemkumar. A systolic VLSI architecture for complex SVD. Rice
University Master of Science Thesis, May 1991.

[11] N.D. Hemkumar and J.R. Cavallaro. A systolic VLSI architecture for
complex SVD. In Circuits and Systems, 1992. ISCAS ’92. Proceedings.,
1992 IEEE International Symposium on, volume 3, pages 1061 –1064
vol.3, 10-13 1992.

[12] S. Hsiao and J. M. Delosme. Parallel singular value decomposition
of complex matrices using multidimensional CORDIC algorithms. vol-
ume 44, pages 685 –697, mar 1996.

[13] Xilinx Inc. Cordic v4.0 datasheet. http://www.xilinx.com/support/
documentation/ip_documentation/cordic_ds249.pdf, 2009.

[14] N. Le Bihan and S. J. Sangwine. Jacobi method for quaternion matrix
singular value decomposition. Applied Mathematics and Computation,
187(2):1265 – 1271, 2007.

[15] M. E. Ma, W.and Kaye, D. M. Luke, and R. Doraiswami. An
FPGA-Based singular value decomposition processor. In Electrical and
Computer Engineering, 2006. CCECE ’06. Canadian Conference on,
pages 1047 –1050, may 2006.

[16] , Ove Edfors Magnus and et al. OFDM Channel Estimation By Singular
Value Decomposition. IEEE Trans. Commun. 1996. Vol.46 p931-939

[17] P. Murphy. Wireless open-access research platform. http://warp.rice.
edu/, 2010.

[18] Schindler. S. Introduction to MIMO systems - Application Note
1MA102. Technical report, Rohde and Schwarz, http://www.
rohde-schwarz.de/ps/rus/tools/show_8446_document/MIMO_Eng.pdf,
2006.

[19] IEEE 802.11n: STANDARD for Information Technology - Telecom-
munications and information exchange between systems - Local and
Metropolitan networks - Specific requirements - Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifica-
tions: Amendment 5: Enhancements for Higher Throughput, (October
2009)

[20] V. Strumpen, H. Hoffmann, and A. Agarwal. A stream algorithm for
the SVD. Technical report, Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, 2003.

[21] B. Yang and J. F. Böhme. Reducing the computations of the singular
value decomposition array given by Brent and Luk. SIAM J. Matrix Anal.
Appl., 12(4):713–725, 1991.

[22] C. Zhan, K. Jheng, Y. Chen, T Jheng, and A Wu. High-convergence-
speed low-computation-complexity SVD algorithm for MIMO-OFDM
systems. In VLSI Design, Automation and Test, 2009. VLSI-DAT ’09.
International Symposium on, pages 195 –198, 28-30 2009.


