
With Applications~to Electrical Networks

i(x)

1
-2'

I
I

This practical guide to optimization,
or nonlinear programming, provides
33 BASIC computer programs that
illustrate the theory and application
of methods that automatically adjust
design variables. These powerful
procedures are available to everyone
who uses a personal computer to
design or create models in engineer
ing and the sciences. The material
emphasizes the interaction between
the user and computer by offering
hands-on experience with the math
ematics and the computational pro
cedures of optimization. It shows
how to produce useful answers
quickly, while developing a feel for
fundamental concepts in matrix al
gebra, calculus, and nonlinear pro
gramming.

Optimization Using Personal Com
puters reviews the broad range of
essential topics of matrix algebra
with concrete examples and illus
trations, avoiding mathematical
abstraction wherever possible.
Chapter 1 shows that optimization is
intuitively appealing as a geometric
interpretation of descent on mathe
matical surfaces in three dimensions
by repetitive computational proce
dures. Chapter 2 provides a concise
review of matrix computations re
quired for optimization. Chapter 3
applies these methods to linear and
nonlinear functions of many vari
ables. The three most effective opti
mization methods are developed,
illustrated, and compared in chapters
4 and 5, inclUding nonlinear con
straints on the variables. Chapter 6
combines all the best features of the
preceding optimization topics with a
generally applicable means to com
pute exact derivatives of responses
for networks and their analogues.

This unique book will be of interest to
upper-level undergraduates and
graduate stUdents, scientists and
engineers who use personal com
puters. These machines have the
speed, memor}! and precision to ad
just automatically several dozen vari
ables in complex design problems.

(continued on back flap)

, -----------------

Optimization Using
.Personal Computers

~L-- _

OPTIMIZATION USING PERSONAL COMPUTERS
by

ThDmas R. Cuthbert,)r.

NOTE TO READERS: This card may be used tD Drder a 5 ' 14 inch double-sided,
double-density floppy disk for the IBM-PC® and compat ible computers. The disk
contains programs and data listed in OptimizatiDn Using Personal Computers,
Wiley, 1986. This cDnvenience copy can save the computer user many hours Df
typing while avoiding inevitable errors.

The disk contains all 33 IBM® BASICA programs in Appendix C as well as 11
others throughDut the text. Also, a subdirectory of the disk cDntains 53 data files that
relate to many examples in the text. All files are in ASCII format; there are 152,298
bytes in program files and 7029 bytes in data files.

An introductDry file, README-DOC, is included tD be printed to the screen from
drive A by the DOS command <TYPE A:README. DOC> or to the printer by
adding ">PRN". The README. DOC file contains one page of tips and text
references fDr the user. It also contains a two-page index Df all prDgram and dala
files by text page number Df first usage. Each entry includes the text title, file name,
and remarks.

Please send me __ floppy disk(sl containing programs and data listed in OPTIMI
ZATION USING PERSONAL COMPUTERS for the tBM-PC® and compat ible com
puters at $30 each.

Cuthbert/OPTIMIZATION Computer Disk
ISBN: 0-471-85949-4

() Payment enclosed
() Visa () MasterCard .) American Express

Card Number Expiration Date _

NAME (plEASE PRINT) _

AFFILIATION _

ADDRESS '--- _

C1TYISTATE ZIP CODE _

SIGNATURE: _

I
,

---------------- ._--------.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 22n NEW YORK, N. Y.

POSTAGE WILL BE PAID BY ADDRESSEE

Attn: Veronica Quercia
John Wiley & Sons, Inc.
605 Third Avenue
New York, NY 10157-0228

I., ,1111." 1"II .1.1 ,I. "III. ""1.1,, 1,11,,1, .1,,11

----- - ---------

OPTIMIZATION USING
PERSONAL COMPUTERS
With Applications
to Electrical Networks

THOMAS R. CUTHBERT, JR.

Director, Digital Signal Processing
Collins Transmission Systems Division
Rockwell International Corporation
Dallas, Texas

A Wiley-Interscience Publication

JOHN WILEY & SONS

New York Chichester Brisbane Toronto Singapore

87BASIC is a trademark of MicroWay, Inc.
IBM. IBM Personal Computer, and PC-DOS are trademarks of

International Business Machines Corporation.
Microsoft BASIC and MS·DOS are trademarks of

Microsoft Corporation.
PLOTCALL is a trademark of Golden Software.
Sidekick and SuperKey are trademarks of

Borland International

Copyright © 1987 by John Wiley & Sons. Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work
beyond that permitted by Section 107 or 108 of the
1976 United States Copyright Act without the permission
of the copyright owner is unlawful. Requests for
permission or further information should be addressed to
the Permissions Department, John Wiley & Sons, Inc.

Library oj Congress Cataloging-in-Publication Data:

Cuthbert. Thomas R. (Thomas Remy), 1928
Optimization using personal computers.

"A Wiley-Interscience publication."
Includes index.
1. Mathematical optimization-Data processing.

2. BASIC (Computer program language) 3. Electric
networks. I. Ti tIe.

QA402.5.C88 1986
ISBN 0-471-81863-1

519.7'6 86-13319

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

To Emestine,

jor her understanding,

patience, and encouragement

Preface

Optimization is the adjustment of design variables to improve a result, an
indispensable step in engineering and mathematical modeling. This book
explains practical optimization, using personal computers interactively for
learning and application. It was written for practicing engineers and scientists
and for university students with at least senior class standing in mathematics,
engineering, and other sciences. Anyone who has access to a BASIC-language
computer and has been introduced to calculus and matrix algebra is prepared
to master the fundamentals of practical optimization using this book.

Optimization, formally known as nonlinear programming, is the minimiza
tion of a scalar function that is nonlinearly related to a set of real variables,
possibly constrained. Whether optimizing electrical circuit responses, structur
al design parameters, a system model, or curve fitting, there are usually free
variables to choose so that an overall measure of goodness can be improved.
The process of defining the objective function, selecting the variables and
values, and considering their relationships often makes critical trade-offs and
limitations evident. In many cases the process leads to a standard mathemati
cal form so that a digital computer can adjust many variables automatically.

Early personal computers provided accessibility, responsiveness, autonomy,
fixed cost. Recent models added large memory, high precision, and impressive
speed, especially those with 16- or 32-bit microprocessors, numerical coproces
sors, and software compilers. Although any computer can facilitate learning
about iterative processes like optimization, recent personal computer models
allow the addition of number-intensive optimization to their growing list of
practical applications.

The first goal of this book is to explain the mathematical basis of optimiza
tion, using iterative algorithms on a personal computer to obtain key insights

. and to learn by performing the computations. The second goal is to acquaint
the reader with the more successful gradient optimization techniques, espe
cially Gauss-Newton and quasi-Newton methods with nonlinear constraints.
The third goal is to help the reader develop the ability to read and compre-

vii

------ -------------

viii Preface

hend the essential content of the vast amount of optimization literature. Many
important topics in calculus and matrix algebra will be reinforced in that
preparation. The last goal is to present programs and examples that illustrate
the ease of obtaining exact gradients (first partial derivatives) for response
functions of linear electrical networks and their analogues in the physical
sciences.

Optimization is introduced in Chapter One by using fundamental mathe
matics and pictures of functions of one and two variables. Fortunately, these
pictures apply to functions of many variables without loss of generality; the
technique is employed throughout this book wherever possible. A general
statement of the problem and some typical fields of application are provided.
Issues involved in iterative process are discussed, such as number representa
tion, numerical stability, illconditioning, and termination. Chapter One also
includes comments conceming choices of programming languages and sup
porting software tools and gives some reassuring data concerning the speed of
numerical operations using personal computers.

Chapters Two and Three furnish the essential background in linear and
nonlinear matrix algebra for optimization. The approach is in agreement with
Strang (l976:ix): linear algebra has a simplicity that is too valuable to be
sacrificed to abstractness. Chapter Two reviews the elementary operations in
matrix algebra, algorithms that are included in a general-purpose BASIC
program called MATRIX for conveniently performing vector and matrix
operations. The coverage of general matrix algebra topics is quite complete:
notation, matrix addition, multiplication, inverse, elementary transformations,
identities and inequalities, norms arid condition numbers are defined and
illustrated pictorially and by numerical examples. Matrix roles in space
include linear independence, rank, basis, null space, and linear transforma
tions, including rotation and Householder methods. Orthogonality and the
Gram-Schmidt decomposition are described for later applications. The real
matrix eigenproblem is defined and its significance is reviewed. The Gerchgorin
theorem, diagonalization, and similarity are discussed and illustrated by
example. Concepts concerning vector spaces are developed for hyperplanes
and half-spaces, normals, projection, and the generalized (pseudo) inverse.
Additions to program MATRIX are provided so that all the functions dis
cussed may be evaluated numerically as well.

Chapter Three introduces linear and nonlinear functions of many variables.
It begins with the LV and LDLT factorization methods for solving square
linear systems of full rank. Overdetermined systems that may be rank deficient
are solved by singular value decomposition and generalized inverse using
BASIC programs that are furnished. The mathematical and geometric proper
ties of quadratic functions are described, including quadratic forms and exact
linear (line) searches. Directional derivatives, conjugacy, and the conjugate
gradient method for solution of linear systems are defined. Taylor series for
many variables and the related Newton iteration based on the Jacobian matrix
are reviewed, including applications for vector functions of vectors. Chapter

Preface ix

Three concludes with an overview of nonlinear constraints based on the
implicit function theorem, Lagrange multipliers, and Kuhn-Tucker constraint
qualifications.

Chapter Four describes the mathematics and algorithms for discrete
Newton optimization and Gauss-Newton optimization. Both methods depend
on first partial derivatives of the objective function being available, and
BASIC programs NEWTON and LEASTP are furnished with numerical
examples. Program NEWTON employs forward finite differences of the gradi
ent vector to approximate the second partial derivatives in the Hessian matrix.
Gauss-Newton program LEASTP is based on least-pth objective functions,
the mathematical structure of which allows approximation of the Hessian
matrix. The trust radius and Levenberg-Marquardt methods for limited line
searches are developed in detail. Weighted least-pth objective functions are
defined, and the concepts in numerical integration (quadrature) are developed
as a strategy for accurate estimation of integral objective functions by discrete
sampling.

Chapter Five covers quasi-Newton methods, using an iterative updating
method to form successive approximations to the Hessian matrix of second
partial derivatives while preserving a key Newton property. Program QNEWT
is also based on availability of exact first partial derivatives. However, it is
demonstrated that the BFGS search method from the Broyden family is
sufficiently robust (hardy) to withstand errors in first derivatives obtained by
forward differences, so much so that this quasi-Newton implementation is
competitive with the best nongradient optimization algorithms available. Three
kinds of line search are developed mathematically and compared numerically.
The theory of projection methods for linear constraints is developed and
applied in program QNEWT to furnish lower and upper bounds on problem
variables. General nonlinear constraints are included in program QNEWT by
one of the most successful penalty function methods due to Powell. The
method and the algorithm are fully explained and illustrated by several
examples. The theoretical considerations and limitations of most other meth
ods for general nonlinear constraints are presented for completeness.

Chapter Six combines the most effective optimization method (Gauss
Newton) with projected bounds on variables and nonlinear penalty constraints
on a least-pth objective function to optimize ladder networks, using program
TWEAKNET. Fundamentals of electrical networks oscillating in the sinusoidal
steady state are reviewed briefly, starting from the differential equations of an
RLC circuit and the related exponential particular solution. The resulting
complex frequency (Laplace) variable and its role in the impedance concept is
reviewed so that readers having different backgrounds can appreciate the
commonality of this subject with many other analogous physical systems.
Network analysis methods for real steady-state frequency include an efficient
algorithm for ladder networks and the more general nodal admittance analysis
method for any network. The implementation for ladder networks in
TWEAKNET includes approximate derivatives for dissipative networks and

x Preface

exact derivatives for lossless (inductor and capacitor) networks. The program
utilizes optimization algorithms that were previously explained, and several
numerical examples make clear the power and flexibility of nonlinear pro
gramming applications to electrical networks and analogous linear systems.
Two methods for obtaining exact partial derivatives of any electrical network
are explained, one based on Tellegen's theorem and adjoint networks and the
other based on direct differentiation of the system matrix. Finally, the funda
mental bilinear nature of sinusoidal responses of electrical networks is de
scribed in order to identify the best choice for network optimization. The
underlying concept of sensitivity is defined in the context of robust response
functions.

The text is augmented by six major programs and more than two dozen
smaller ones, which may be merged into the larger programs to provide
optional features. All programs are listed in Microsoft BASIC and may be
converted to other BASICs and FORTRAN without serious difficulty. A
floppy disk is available from the publisher with all the ASCII source code and
data files included for convenience. A tenfold increase in computing speed is
available by compiling the programs into machine code, which is desirable for
optimization that involves more than five to ten variables. Compilers that link
to the 8087 math coprocessor chip are necessary for very large problems to
avoid overflow and to gain additional speed and precision. Programmed
applications in this book demonstrate that current personal computers are
adequate, so the reader is assured that future computers will allow even greater
utilization of these algorithms and techniques.

This textbook is suitable for a one-semester course at the senior or graduate
level, based on Chapters One through Five. The electrical network applica
tions in Chapter Six might be included by limited presentation of material in
Chapters Three and Five. The text has been used with excellent acceptance for
a 32-hour industrial seminar for practicing engineers and scientists who desire
an overview of the subjects. Its use in a university graduate course has also
been arranged. Access to a BASIC-language computer is highly desirable and
usually convenient at the present stage of the personal computer revolution.
Closed-circuit network television or visible classroom monitors for the com
puter screen are optional but effective teaching aids that have been employed
in the use of this material in industrial and university classrooms. Approxi
mately 250 references are cited throughout the text for further study and
additional algorithms.

I have been an avid student and user of nonlinear programming during the
several decades that this subject has received the concentrated attention of
researchers. My optimization programs have been applied in industry to
obtain innovative results that are simply not available by closed-form analysis.
I wisb to express my sincere appreciation to my colleagues at Collins Radio
Company, Texas Instruments, and Rockwell International who have made this
possible. That certainly includes the outstanding librarians who have made
new information readily available throughout those years.

Pre/ace xi

I especially thank Dr. J. W. Cuthbert, Phil R. Getfe, John C. Johnson, and
Karl R. Varian for their thorough reviews and comments on the manuscript.
To Mr. Arthur A. Collins, whose support of my work in this field helped make
optimization one of my professional trademarks, I extend my deepest grati·
tude.

THOMAS R. CUTHBERT, JR.

Plano. Texas
September 1986

-------- - - - _.- -- ---

Contents

1. Introduction

1.1. Scalar Functions of a Vector, 1
1.1.1. Surfaces Over Two Dimensions, 2
1.1.2. Quadratic Approximations to Peaks, 5

1.2. Types of Optimization Problems, 9
1.2.1. General Problem Statement, 9
1.2.2. Objective Functions, 10
1.2.3. Some Fields of Application, 13

1.3. Iterative Processes, 14
1.3.1. Iteration and Convergence, 14
1.3.2. Numbers and Stability, 20
1.3.3. Illconditioned Linear Systems, 23
1.3.4. Termination and Comparison of Algorithms, 27

1.4. Choices and Form, 30
1.4.1. Languages and Features, 30
1.4.2. Personal Computers, 32
1.4.3. Point of View, 35
Problems, 36

2. Matrix Algebra and Algorithms

2.1. Definitions and Operations, 41
2.1.1. Vector and Matrix Notation, 41
2.1.2. Utility Program MATRIX, 44
2.1.3. Simple Vector and Matrix Operations, 47
2.1.4. Inverse of a Square Matrix, 51
2.1.5. Vector and Matrix Norms and

Condition Number, 56

1

40

xiii

--------- -- - - -

xiv Contents

2.2. Relationships in Vector Space, 60
2.2.1. The Matrix Role in Vector Space, 61
2.2.2. Orthogonal Relationships, 64
2.2.3. The Matrix Eigenproblem, 69
2.2.4. Special Matrix Transformations, 80
Problems, 93

3. Functions of Many Variables

3.1. Systems of Linear Equations, 97
3.1.1. Square Linear Systems of Full Rank, 97
3.1.2. Overdetermined Linear Systems of Full Rank, 107
3.1.3. Rank-Deficient Linear Systems, 114

3.2. Nonlinear Functions, 123
3.2.1. Quadratic and Line Functions, 124
3.2.2. General Nonlinear Functions, 140

3.3. Constraints, 146
3.3.1. Implicit Function Theorem, 146
3.3.2. Equality Constraints by Lagrange Multipliers, 150
3.3.3. Constraint Qualifications-The Kuhn-Tucker

Conditions, 153
Problems, 157

4. Newton Methods

4.1. Obtaining and Using the Hessian Matrix, 163
4.1.1. Finite Differences for Second Derivatives, 164
4.1.2. Forcing Positive-Definite Factorization, 166
4.1.3. Computing Quadratic Forms and Solutions, 168

4.2. Trust Neighborhoods, 170
4.2.1. Trust Radius, 170
4.2.2. Levenberg-Marquardt Methods, 173

4.3. Program NEWTON, 179
4.3.1. The Algorithm and Its Implementation, 179
4.3.2. Some p:amples Using Program NEWTON, 183
4.3.3. Simple Lower and Upper Bounds

on Variables, .187
4.4. Gauss-Newton Methods, 191

4.4.1. Nonlinear Least-pth Objective and
Gradient Functions, 191

4.4.2. Positive-Definite Hessian Approximation, 195
4.4.3. Weighted Least Squares and the Least-pth

Method, 197

96

163

-- -- ----------

Contents

4.4.4. Numerical Integration As a Sampling Strategy, 199
4.4.5. Controlling the Levenberg-Marquardt

Parameter, 204
4.5. Program LEASTP, 209

4.5.1. The Algorithm and Its Implementation, 209
4.5.2. Some Examples Using Program LEASTP, 214
4.5.3. Approaches to Minimax Optimization, 222
Problems, 227

5. Quasi-Newton Methods and Constraints

5.1. Updating Approximations to the Hessian, 233
5.1.1. General Seeant Methods, 234
5.1.2. Families of Quasi-Newton Matrix Updates, 238
5.1.3. Invariance of Newton-like Methods to

Linear Scaling, 242
5.2. Line Searches, 247

5.2.1. The Cutback Line Search, 248
5.2.2. Quadratic Interpolation Without Derivatives, 249
5.2.3. Cubic Interpolation Using Derivatives, 256

5.3. Program QNEWT, 259
5.3.1. The Algorithm and Its Implementation, 260
5.3.2. Some Examples Using Program QNEWT, 262
5.3.3. Optimization Without Explicit Derivatives, 268

5.4. Constrained Optimization, 270
5.4.1. Linear Constraints by Projection, 272
5.4.2. Program BOXMIN for Lower and

Upper Bounds, 285
5.4.3. Nonlinear Constraints by Penalty Functions, 291
5.4.4. Program MULTPEN for Nonlinear Constraints, 300
5.4.5. Other Methods for Nonlinear Constraints, 306
Problems, 310

6. Network Optimization

6.1. Network Analysis in the Sinusoidal Steady State, 316
6.1.1. From Differential Equations to the

Frequency Domain, 316
6.1.2. Related Technical Disciplines, 319
6.1.3. Network Analysis, 320

6.2. Constrained Optimization of Networks, 326
6.2.1. Program TWEAKNET Objectives

and Structure, 327

X\·

233

315

xvi Contents

6.2.2. Ladder Network Analysis, 330
6.2.3. First Partial Derivatives, 340
6.2.4. Summary of Program TWEAKNET

with Examples, 345
6.3. Exact Partial Derivatives for Linear Systems, 359

6.3.1. Tellegen's Theorem, 360
6.3.2. Derivatives for Lossless Reciprocal Networks, 361
6.3.3. Derivatives for Any Network Using

Adjoint Networks, 366
6.3.4. Derivatives Obtained by the Nodal

Admittance Matrix, 370
6.4. Robust Response Functions, 372

6.4.1. Bilinear Functions and Forms, 373
6.4.2. The Bilinear Property of Linear Networks, 376
6.4.3. Sensitivity of Network Response Functions, 378
Problems, 382

Appendix A. Test Matrices

Appendix B. Test Problems

Appendix C. Program Listings

References

Index

387

389

391

452

465

Optimization Using
Personal Computers

Chapter One _

Introduction

This book describes the most effective methods of numerical optimization and
their mathematical basis. It is expected that these techniques will be accom
plished on IBM PC personal computers or comparable computers that run
programs compatible with Microsoft BASIC. This chapter presents an over
view of optimization and the unique approach made possible by modem
personal computers.

Optimization is the' adjustment of variables to obtain the best result in some
process. This definition is stated much more clearly below, but it is true that
everyone is optimizing something all th'e time. This book deals with optimiza
tion of those systems that can be described either by equations or more likely
by mathematical algorithms that simulate some process. The field of electrical
network design is one of many such applications. For example, an electrical
network composed of inductors, capacitors, and resistors may be excited by a
sinusoidal alternating current source, and the voltage at some point in that
network will be a function of the source frequency and the values of the
network elements. An objective function might be the required voltage behav
ior versus frequency. The optimization problem in that case is to adjust those
network elements (the variables) to improve the fit of the calculated voltage
versus-frequency curve to the required voltage-versus-frequency curve over the
frequency range of interest.

This chapter includes an overview of scalar functions of a vector (set) of
variables, suggests some typical optimization problems from a number of
technical fields, describes the nature of these iterative processes on computing
machines, and justifies the choice of program language, computers, and
tutorial approach that will be used to make these topics easier to understand.

1.1. Scalar Functions of a Vector

The scalar functions to be optimized by adjustment of the variables are
described in greater mathematical detail in Sections 3.2 and 3.3. However, it is

2 Introduction

important to see various geometrical representations that describe optimiza
tion before plunging into matrix algebra.

1.1.1. Surfaces Over Two Dimensions. Consider the isometric representation
of a function of two variables shown in Figure 1.1.1. The corresponding plot
of its contours or level curves is shown in Figure 1.1.2. The equation for this
function due to Himmelblau (1972) is

F(x, y) ~ _(x 2 + Y _ 11)2 _ (x + y2 _ 7)2. (1.1.1)

I
x =-5
y=-5

Figure 1.1.1. A surface over two-dimensional space. The base is 150 units below the highest
peaks.

Figure 1.1.2.

Scalar Functions of a Vector 3

y=o -

,= -5-·~1~~~!~~~~-~~'I~~~~~~-~~~~~I
){=-5 x=O x=5

Contours of the surface depicted in Figure 1.1.1.

The function values are plotted below the x-y plane, in this case 2-space,
where the variables are the coordinates in that space. In the general case, there
will be n such variables in n space. The four peaks in Figure 1.1.1 each touch
the x-y plane (F = 0), and the flat base represents a function value of
F = -150. "As a rule, a theorem which can be proved for functions of two
variables can be extended to functions of more than two variables without any
essential change in argument," according to Courant (1936).

Now the optintization problem can be stated quite easily: Given some
location on the surface in Figure 1.1.1, how can x and y be adjusted to find
values corresponding to a maximum (or a minimum) of the function? This is
the same task confronting the blind climber on a mountainside: What se
quence of coordinate adjustments will carry the climber to a peak? The peak
obtained depends on where the climber starts.

One can anticipate the use of slopes in various directions, especially that
direction having the steepest slope (known as the gradient at that point). In

4 Introduction

Figures 1.1.1 and 1.1.2 there are seven points in the x-y space where the
slopes in both the x and y directions are zero, yet three of those points are not
at peaks. These three places are called saddle points for obvious reasons.

It is also assumed that there is at least one peak. Consider computation of
compounding principal; if the x axis is the interest percentage, the' y axis is
the number of compounding periods, and the function surface is the principal
for that interest rate and time, it is clear that the function grows without
bound, so there is no peak at all.

Only static or parameter optimization will be discussed in this book and
thus time is not involved. The surface in Figure 1.1.1 does not fluctuate in
time, the variables all have the same status, and the solution is a set of
numerical values, not a set of functions. Incidentally, the methods discussed
could be extended to dynamic or time-dependent optimization including
control functions (the optimal path problem). There would be additional
mathematical principles involved, and the solution would be a set of functions
of time.

Constraints on the variables, such as required relationships on and among
them, are considered. For example, the variables might have upper and lower
bounds, or they might be related by equalities or inequalities that could be
linear or nonlinear functions. A constrained optimization problem of the latter
type would be the maximization of (1.1.1) such that

(x - 3)' + (y - 2)' - 1 ~ O. (1.1.2)

This means that the solution must be the maximum point on the surface below
the circle in the x-y plane with unit radius and centered on x ~ 3, y ~ 2.
Incidentally, a constraint such as (1.1.2), applied to an otherwise unbounded
problem, would result in a unique, bounded solution.

Functions of two or more variables may be implicit because of an extensive
algorithm involved in their computation. Therefore, explicit equations such as
(1.1.1) are usually not available in practical problems such as a network
voltage evaluation. These algorithms suggest another interpretation of optimi
zation from the days when computer punch cards were in vogue. Then values
for the specified' variables were selected, and the formatted punched cards
were submitted for computer execution. When the result was available, it was
judged for acceptability, if not optimality. The usual case was a cycle of
resubmittals to improve the result in some measurable way. Even though the
result was obtained by some complicated sequence of computations instead of
one or more explicit equations, that process is optimization in the sense of the
illustration in Figure 1.1.1 for two variables.

In most practical cases, it will be assumed that the variables are continuous,
real numbers (not integers) and that the functions involved are single-valued
and usually smooth. These requirements will be refined in some detail later.

Scalar Functions of a Vector 5

1.1.2. Quadratic Approximations to Peaks. The function described by (1.1.1)
and shown in Figures 1.1.1 and 1.1.2 is of degree 4 in each variable. The four
pairs of coordinates where the function has a maximum are given in Table
1.1.1. At each of these points, a necessary condition for a maximum or a
minimum is that the /irst derivatives equal zero. Simple calculus yields these
expressions from (1.1.1):

aF
ax

aF
ay

-4x(x' + Y - 11) - 2(x + y' - 7),

-2(x' + Y - 11) - 4y(x + y' - 7).

(1.1.3)

(Ll.4)

Substitution of each of the four pairs of values in Tables 1.1.1 will verify that
these derivatives are zero at those points in 2-space. The program in Table
1.1.2 computes the function, its derivatives, and several other quantities of
interest for any x-y pair.

The peak nearest the viewer in Figure 1.1.1 is located at the x-y values in
the third column of Table 1.1.1. Running the program in Table 1.1.2 produces
the results shown in Table 1.1.3.

Since this function will be used to illustrate a number of concepts, the
program in Table 1.1.2 computes several other quantities, in particular the
second derivatives:

-12x' - 4y + 42,

-4x - 12y' + 26,

(Ll.5)

(1.1.6)

a'F a'F
-- ~ -- ~ -4(x + y).
axay ayax

(1.1.7)

A matrix composed of these second derivatives is calIed the Hessian, and it is
involved in many calculations explained later. Results from the program in
Table 1.1.2 are usefulIy interpreted by comparison with the x-y points in
Figure 1.1.2.

Table 1.1.1. The Four Maxima of tbe Function in Equation (1.1.1)

x
y

OOסס.3

OOסס.2

3.5844
-1.8481

-3.7793
-3.2832

-2.8051
3.1313

6 Introduction

Table 1.1.2. A Program to Evaluate (Ll.l), Its Derivatives, and an Approximation

10 REM EVALUATE (1~1.1), DERIVS, & A QUAD FIT.
20 CLS
30 PRINT "INPUT X~V=";=INPUT X~V

40 Tl=X*X+V-ll
50 Pl=X+V*V-7
60 F=-T1*TI-P1*P1
70 Gl=-4*X*Tl-2*Pl
80 62=-2*Tl-4*V*Pl
90 Hl=-12*X*X-4*V+42
100 H2=-4*X-12*V*V+26
110 H3=-4* <X+Y)
120 D=Hl*H2-H3*H3
130 PRINT "X,Y="; X;V
140 PRINT "EXACT F="; F
150 PRINT "1ST DERIVS WRT X,Y ="; 61;62
160 PRINT "2ND DERIVS WRT X,Y ="; H1;H2
170 PRINT "2ND DERIV CROSS TERM =": H3
180 PRINT "DET OF 2ND OERIV MATRIX ="; D
190 Fl=-58.13*X*X-346~63*X+28.25*X*Y-182.95*Y-44.12*Y*Y-955.34
200 PRINT "APPROX F = "; Fl
210 PRINT "ERROR=F-Fl ::::": F-Fl
220 PRINT
230 GOTO 30
240 END

The principle on which most efficient optullizers are based is that there
exists a neighborhood of a maximum or minimum, where it is adequate to
approximate the general function by one that is quadratic. For example, the
peak at x = - 3.7793 and y = - 3.2832, which is nearest the reader in Figure
1.1.1, can be approximated by

Fl(x, y) = ax 2 + bx + cxy + dy + ey2 + k, (1.1 .8)

where the constants are given in Table 1.1.4. The function is considered
quadratic in variables x and y because the maximum degree is two (including
the cross product involving xy). This is clearly not the case in (1.1.1), the
function that is being approximated.

Table 1.1.3. Analysis of Equation (1.1.1) and an Approximation
at (- 3.7793, - 3.2832)

INPUT X,Y~? -3~7793,-3.2e32

X,Y=-3.7793 -3.2832
EXACT F=-1.91657BE-OB.
1ST DERIVS WRT X,V --1.604432£-03 1.53765£-03
2ND DERIVS WRT X,Y =-116~2645 -88.23562
2ND DERIV CROSS TERM = 28.25
DET OF 2ND DERIv MATRIX = 94bO.b09
APPROX F = 7.56836E-03
ERRDR~F-Fl =-7.5bB379E-03

Scalar Functions of a Vector 7

Table 1.1.4. Constants for the Quadratic Approximation Given
in Eqnation (1.1.8)

a ~ -58.13
b - - 346.63

c - 28.25
d ~ -182.95

e~ -44.12
k - -955.34

The program in Table 1.1.2 also computes (1.1.8), and the results in Table
1.1.3 confirm that it is an excellent approximation at the peak. In fact, it is a
good approximation in some small neighborhood of the peak, say within a
radius of 0.3 units; the reader is urged to run the program using several trial
values. The quadratic approximation in (1.1.8) is shown in the oblique
illustration in Figure 1.1.3, comparable with Figure 1.1.1 for the original
function. It appears that such an approximation of the other peaks in Figure
1.1.1 would be valid, but in smaller neighborhoods. The validity of this
approximation is discussed in Chapter Three in connection with Taylor series
for functions of many variables.

The important conclusions concerning quadratic approximations are
(1) some informal scheme will be required to approach maxima or minima,

"V
I

x =-5
y =-5

Figure 1.1.3. A quadratic surface approximating a peak in Figure 1.1.1. ,

8 Introduction

(2) a quadratic function will be the basis for optImIzation strategy near
maxima and minima, and (3) the quadratic function makes the important
connection between optimization theory and the solution of systems of linear
equations. This last point is made clear by applying the necessary condition
for a maximum or minimum to the quadratic approximation in (1.1.8); its
derivatives are

an
ax = 2ax + b + ey,

an
-- = ex + d + 2ey.ay

(1.1.9)

(1.1.10)

The derivatives are equal to zero at the peak located at approximately
x = - 3.7793 and y = - 3.2832. More important, equating the derivatives to
.zero produces a set of linear equations, and this is the connection between

I
)(=-4

I
)(=-6
y = -5

Figure 1.1.4. Effects of poor choice of scale on the x axis compared to Figure 1.1.3.

Types of Optimization Problems 9

optimization (and its quadratic behavior near peaks) and solution of systems
of linear equations. This theme will be developed time and again as the
methods for nonlinear optimization are explored in this book.

One last consideration in solving practic3.J. problems is the choice of scales
for the variables. For example, Figure 1.1.3 is plotted over 10 units in x and y.
Changing the scale for x to range over just four units produces the stretched
surface shown in Figure 1.1.4; it is the same function. Finding peaks or solving
the corresponding system of linear equations for severely stretched surfaces
can be difficult. Mathematical description of these effects and how to deal with
them are prime topics in subsequent chapters, since locally poor scaling is
inevitable in practical optimization problems, especially in dimensions greater
than 2.

1.2. Types of Optimization Problems

Not much was known about optimization before 1940. For one thing, com
puters are necessary since applications require extensive numerical computa
tion. However, there were some very early theoretical contributions; for
example, in 1847 Cauchy described the method of steepest ascent (up a
mountain) in connection with a system of equations (derivatives equated to
zero). The field began to flourish in the 1940s and 1950s with linear program
ming-the case where all variables are involved linearly in both the main
objective function and constraints. Successful algorithms for nonlinear uncon
strained problems began with Davidon (1959). There has been steady progress
since then, although optimization problems involving nonlinear constraints are
often difficult to solve. The next section includes a more formal statement of
optimization, consideration of some important objective functions, and men
tion of many fields where optimization is employed to great advantage,
including the role of mathematical models.

1.2.1. General Problem Statement. The most comprehensive statement of
the optimization problem considered in this book is to minimize or maximize
some scalar function of a vector

(1.2.1)

subject to sets of constraints, expressed here as vector functions of a vector:

h(x) = 0,

c(x) ;;, 0,

h a set E containing q functions,

c a set 1 containing m - q functions.

(1.2.2)

(1.2.3)

The notation introduced here covers the case where there are n variables, not

10 Introduction

just the two previously cal1ed x and y. In practice, n can be as high as 50 or
more. The variables will henceforth be defined as a column vector, that is, the
set

(1.2.4)

The superscript T transposes the row vector into a column vector. There are q
equality constraint functions in (1.2.2); a typical one might be that previously
given in (1.1.2). For example, when q ~ 3, there would be h1(x), h2(x), and
h 3(x). There are m - q inequality constraints in the vector c shown in (1.2.3),
interpreted like the functions in h.

All the variables and functions involved are continuous and smooth; that is,
a certain number of derivatives exist and are continuous. This eliminates
problems that have only integer variables or those with objective functions,
F(x), that jump from one value to another as the variables are changed. Linear
programming allows only functions F, h, and c that relate the variables in a
linear way (first degree). There is also a classic subproblem known as quadratic
programming, where F(x) is a quadratic function, as was (1.1.8), and the
constraint functions are linear. That case is analyzed in Section 5.4.1. This
book emphasizes unconstrained nonlinear programming (optimization), with
subsequent inclusion of linear constraints (especially upper and!or lower
bounds on variables) and general nonlinear constraints.

1.2.2. Objective Functions. So far optimization has been presented as maxi
mizing a function, simply because it is easier to display surfaces with peaks as
in Figure 1.1.1. Actual1y, there is a trivial difference mathematically between
maximization and minimization of a function: Maximizing F(x) is equivalent
to minimizing - F(x). In terms of Figure 1.1.1, plotting - F(x) simply turns
the surface upside down. Objective functions will be discussed in terms of
minimizing some F(x), especial1y the case where F(x) can only be positive,
thus the lowest possible minimum is zero.

A search scheme (iterative process) to find x such that F(x) ~ 0 is called a
one-point iteration function by Traub (1964). In many practical situations the
optimization problem belongs to Traub's classification of multipoint iteration
functions that are distinguished by also having an independent sample vari
able, say t. Thus, the problem is to attempt to obtain F(x, t) ~ O. One way to
view this abstraction is the curve-fitting problem: consider Figure 1.2.1, which
portrays a given data set that is to be approximated by some fitting function of
five variables. To be specific, Sargeson provided data to be fit by the following
function from Lootsma (1972:185):

J(x, t) ~ x, +x2exp(-x,t) + x 3exp(-x,t). (1.2.5)

The data were provided in a table of 33 discrete data pairs, (t i , d i) evenly
spaced along the t axis as plotted by the dots in Figure 1.2.1. Objective

Types of Optimization Problems 11

1.1 ---. ,.-------.-.....,---------y- ,- ~

I." "-
"-

.9 "-

. 8 f "- ~ f(x, t) before optimizationr,

"-
. 7 ~

~ (ti, di)
~

~

~ .6

•0.. .5 f(x', t) after optimization>
0
a:s .4
0
0
~

.3

,2

.1

0.0'tl
"'~ ~ '0'" CO'"

",,,, ~ ~ '0'" CO'"
",,,,,,, ",'" 'I!~ ,,'" CO'"

,,~ ,,~, , , , , 'V 'V 'V OJ OJ

Independ~nt variable t --

Figure 1.2.1. Sargeson's exponential fitting problem given 33 data samples and five variable
parameters.

functions provide a measure of success for optimization. An important mea
sure is the unconstrained least squares function used in this example:

"'F(x, t) = L r/,
;=1

. where there are m samples over the t space, and

r, = f(x, t,) - d,.

(1.2.6)

(1.2.7)

The errors at each sample point, r, in (1.2.7), are called residuals and are
shown in Figure 1.2.1. Squaring each residual in (1.2.6) does away with the
issue of sign.

The fitting function f(x, t) and values in the initial variables vector x are
usually determined by some means peculiar to each problem. Practically, this
must be a guess suitably close to a useful solution, as is the case shown in
Figure 1.2.1. Denoting that initial choice as x(°l, the iterative search algorithm
LEASTP from Chapter Four was employed for adjusting the set of five
variables. Set number 9, x(9), produced negligible improvement to a local
minimum. Table 1.2.1 summarizes these results.

12 Introduction

Table 1.2.1.' Initial and Final Values of Variables and Objective Fnnction
in the Sargeson Exponential Fitting Problem

Variable Before After %Change

Xl 0.5000 0.3754 -24.92
x, 1.5000 1.9358 29.05
X 3 OOסס.1- -1.4647 -46.47
x. 0.0100 0.01287 28.70
x, 0.0200 0.02212 10.60
F(x, I) 0.879EO 0.546E- 4" -99.994

U E - 4 denotes a factor of 0.0001.

A more general approach is to construct the objective function of residuals
as in (1.2.6), but with the exponent 2 replaced by p, an even integer. This is
known as least-pth minimization, which is described in Chapter Four, includ
ing the ordinary case of p ~ 2. Large values of p emphasize the residuals that
represent the greater errors. This tends to equalize the errors but only as much
as the mathematical model wiU tolerate. Also, values of p in excess of about
20 will cause numerical overflow in typical computers.

A measure of the error indicated in Figure 1.2.1 could very well be the area
between the initial and desired curves. This suggests that principles of numeri
cal integration might be relevant in the construction of an objective function.
Indeed, Gaussian quadrature is one method of numerical integration that
involves systematic selection of points I; in the sample space as well as unique
weighting factors for each sampled residual. Several variations of these meth
ods are discussed in Section 4.4.4.

In some cases it is necessary to minimize the maximum residual in the
sample space. One statement of this minimax objective is

Min Max (r,) 2

x i
fori~ltom. (1.2.8)

In terms of Figure 1.2.1, adjustments to the variables are made only after
scanning aU the discrete points in the sample space (over I) to find the
maximum residual. This sequence of adjustments usuaUy results in different
sample points being selected as optimization proceeds; therefore, the objective
function is not continuous. An effective approach for dealing with these
minimax problems was suggested by Vlach (1983); add an additional variable,
X n + 1• and

Minimize xn + 1

such that X,+l - (r,)' ;,: 0, for all i.

(1.2.9)

(1.2.10)

Types of Optimization Problems 13

The iteration is started by selecting the largest residual; thereafter, the process
is continuous.

Quite often, the least-squares solution is "close" to the minimax solution,
and only a small additional effort is required to find it. However tempting it
may be to use the absolute value of the residual, it is wise to avoid it because
of its discontinuous effect on derivatives. Thus, these illustrations employ sums
of squared residuals, which are smooth functions.

/.2.3. Some Fields of Applica/ion. The three classical fields of optimization,
approximation, and boundary value problems for differential equations are
closely related. Optimization per se is required in many problems that occur in
the statistical and engineering sciences. Most statistical problems are essen
tially solutions to suitably formulated optimization problems. Resource alloca
tion, economic portfolio selection, curve and surface filting as illustrated
previously, linear and nonlinear regression, signal processing algorithms, and
solutions to systems of nonlinear equations are well-known applications of
nonlinear optimization.

According to Dixon (1972b), the use of nonlinear optimization techniques
is spreading to many areas of new application, as diverse as pharmacy,
building construction, aerospace and ship design, diet control, nuclear power,
and control of many production facilities. Fletcher (1980) provides a simple
illustration of what is involved in the optimal design of a chemical distillation
column to maximize output and minimize waste and cost. Bracken (1968)
describes many of these applications and adds weapons assignment and bid
evaluation. Nash (1979) describes optimal operation of a public lottery. Many
more applications can be found in the proceedings of a conference on
Optimization in Action, Dixon (1977), and scattered throughout the technical
literature in great numbers. According to Rheinboldt (1974), "there is a
growing trend toward consideration of specific classes of problems and the
design of methods particularly suited for them."

All applications of optimization involve a model, which is essentially an
objective function with suitable constraints, as in (1.2.1) through (1.2.3). These
mathematical models are often used to study real-world systems, such as the
human chest structure, including the lungs. In that case, pertinent mathemati
cal expressions for the various mass, friction, and spring functions require that
certain coefficients must be determined so that the model" fits" one human as
opposed to another. In situations of this sort, physical experiments have been
devised (an air-tight phone booth) to measure the physical system response
(air volume, pressure, and breathing rate). Then the coefficients are determined
in the mathematical model by optimization. In this case these coefficients often
indicate the condition of the patient.

Bracken (1968) describes a rather elaborate model for the total cost of
developing, building, and launching a three-stage launch vehicle used in space
exploration. This is the only means for evaluating the results of alternative
choices, since real~world experimentation is expensive, dangerous, and some-

14 Introduction

times impossible. Models are not formulated as ends in themselves; rather
they serve as means to evaluate free parameters that" fit" the system or to find
those parameters that produce an optimum measure of "goodness," for
example, minimum cost.

1.3. Iterative Processes

Nonlinear optimization is an iterative process to improve some result. An
iterative process is an application of a formula in a repetitive way (an
algorithm) to generate a sequence of numbers from a starting initial value. The
wisdom of relying on iterative processes for design as opposed to analytical,
closed-form solutions is somewhat controversial. Acton (1970) went so far as
to state that" minimum-seeking methods are often used when a modicum of
thought would disclose more appropriate techniques. They are the first refuge
of the computational scoundrel, and one feels at times that the world would be
a better place if they were quietly abandoned.... The unpleasant fact that the
approach can well require 10 to 100 times as much computation as methods
more specific to the problem is ignored-for who can tell what is being done
by the computer?" Well, the owner/operator of a personal computer should
certainly have a more balanced outlook, especially if he or she is aware of
what Forsythe (1970) called "Pitfalls in computation, or why a math book
isn't enough." This section discusses some of those issues.

1.3.1. Iteration and Convel'1Jence. Most optimization algorithms can be de
scribed by the simple iterative process il\ustrated in Figure 1.3.1. The initial
estimate of the set of independent variables is x (0) and the corresponding
scalar function val-;'e is F(O). The ancillary calculations noted in Figure 1.3.1
might include derivatives or other quantities that would support search or
termination decisions.

The counter K is commonly referred to as the iteration number, that is, the
number of times the process has been repeated in going around the outer loop
shown in Figure 1.3.1. As in BASIC, FORTRAN, and many other program
ming languages, the statement K = K + 1 indicates a replacement operation;
in this case the counter K is incremented by unity. The strategic part of the
algorithm occurs in computing the next estimate, X(k). However chosen, it may
not be satisfactory; for example, the corresponding function value F(k) may
have increased when a minimum is desired. Other reasons for rejection include
violation of certain constraints on the variables. In these events there may be a
sequence of estimates for X(k) by some scheme, until a satisfactory estimate is
obtained.

The decision to stop the algorithm, often called termination, can be
surprisingly complicated and will be discussed further in Section 1.3.4. Some
how, if there is lack of progress or change in x and F, or the derivatives of F
are approximately zero, or an upper limit in the number of iterations is

No

START

Compute
F(o) &

ancillary

k=O

k = k + 1

Compute
x(l<), F(kl, &
ancillary

Note:
F(k) = F(x(k))

Ves

STOP

Figure 1.3.1. A typical iterative process for optimization or solution of nonlinear equations.

15

16 Introduction

reached, these all may contribute to the decision to terminate the iterative
process.

A graphical interpretation of a typical iterative process in one variable can
be obtained by considering the classical fixed-point problem according to
Traub (1964): Find the solution of

F(x) = x (1.3.1)

by the so-called repeated substitution iteration

X1k+l) = F(X 1k». (1.3.2)

If x ~ a satisfies (1.3.1), then a is called a fixed point of F. Before showing the
graphical solution of fixed-point problems, it is useful to relate them to
minimization problems. Suppose that it is necessary to compute a zero of the
function f(x), or equivalently, a root of the equation f(x) = O. Then the fixed
point of the iteration function

F(x) = x - f(x) g(x) (1.3.3)

coincides with the solution of f(a) ~ 0 if g(a) is finite and nonzero. Two
examples will illustrate these and other concepts.

Example 1.3.1. Suppose that a root of f(x) ~ 0 is required, where

f(x)=x'-1. (1.3.4)

One such root is obviously x ~ +1. Referring to the iteration function in
(1.3.3), choose g(x) ~ 1/(2x), which meets the requirements placed on (1.3.3)
and happens to be the Newton-Raphson iteration described in Section 5.1.1.
Substitution of these choices for f and g into (1.3.3) yields an iteration
function for this case that is

x' + 1
F(x) =~. (1.3.5)

This iteration function can be solved by the algorithm charted in Figure 1.3.1;
the BASIC instructions and results are given in Table 1.3.1 as illustrated
graphically in Figure 1.3.2. Most fixed-point problems are easily visualized
because the y ~ x line, a component of (1.3.3), always divides the first
quadrant.

Example 1.3.2. A second example of repeated substitution concerns finding a
root of

f(x) = (x - I)'. (1.3.6)

A root of multiplicity 2 is x ~ + 1. The Newton formula requires that
g(x) ~ O.5/(x - 1), which is the reciprocal of the first derivative of f(x). This
choice for g(x) is satisfactory in the limit x ~ 1 by I'Hospital's rule from
calculus. Substitution of these new choices for f and g into (1.3.3) yield the
iteration function

x + 1
F(x) ~ -2-' (1.3.7)

Table 1.3.1. BASIC Program and Output to Find a Zero
of fIx) = x' - I Using the Fixed-Point Iteration
Fnnction F(x) = (x' + 1)/2x

F
1.25
1.025
1.00030487804878
1.000000046461147
1.000000000000001
1

X
2
1.25
1.025
1.00030487804878
1.000000046461147
1.000000000000001

to REM - FOR f=(XlX-I)
20 DEFDBL X,F
30 X=2
40 F=(X*X+l)/2/X
SO K=O
60 PRINT" K" TABUS) "X" TAB (35) "F"
70 PRINT K TAB(5) X TAB(25) F
80 K=K+l
90 X=F
100 F=(X*X+l)/2/X
110 PRINT K TAB(S) X TAB(2S) F
120 IF K=5 THEN STOP
130 GOTO 80
140 END
Ok
RUN

K
o
1
2
3
4
5

,5

2.•

1.5

2. 5 ,.,.--,,~~,""",~~~.-~~~,---.-~~---.~~~-,-T"~~~"
\ /
i /
\ / /'1 = x

\ /// ~Start I

\ / +--- Trajectory

\\,. / / / / / ./........-......... .-".. /

-"-F'('x) = x2 + 1
••./"-" 2x

\. ---r----_cc..-""·..L-
.,........ / / -_.-..-- -----._- _.---

/ 7"\..";:ed point
/

/
/

/
/

/
/

/
/

/

•. •~"-..~~-,,,:-~~~----,t~-~~~<,,:--c~-~-c~t-~----i,,:-"-~~--;.~
~ ,. v ~ ~ 0"

x-
Figure 1.3.2. Repeated substitution of x in F(x) = (x 2 + 1)/2x, beginning with x = 2 and
approaching the fixed point. x = 1.

17

18 Introduction

Table 1.3.2. BASIC Program and Output to Find a Zero
of fix) = (x _ I)'

F
1.5
1.25
1.125
1.0625
1.03125
1.015625
1.0078125
1.00390625
1.001953125
1. 0009765625
1. 00048828125
1.000244140625
1.0001220703125
1.00006103515625
1.000030517578125
1.000015258789063
1.000007629394531
1.000003814697266
1.000001907348633

X
2
1.5
1.25
1.125
1.0625
1.03125
1.015625
1.0078125
1.00390625
1.001953125
1.0009765625
1.00048828125
1.000244140625
1.0001220703125
1.00006103515625
1.000030517578125
1.000015258789063
1.000007629394531
1.000003814697266

10 REM - FOR f=(X-ll-2
20 DEFDBL X,. F
30 Xz:=2
40 Fz:=(X+1>/2
50 K=O
60 PRINT" K" TAB(15) "X" TAB(35) "F"
70 PRINT K TAB (51 X TAB(25l F
80 K=K+l
90 X=F
100 F=(X+l)/2
110 PRINT K TAB(5) X TAB(25) F
120 IF K=18 THEN STOP
130 GOTO 80
140 END
Ok
RUN

K
o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Again, the general algorithm in Figure 1.3.1 applies, and the BASIC instruc
tions and results are shown in Table 1.3.2 as illustrated graphically in Figure
1.3.3. The trajectory or path of the repeated substitution generally appears to
the right of the fixed point (as illustrated), or to the left, or encircles the fixed
point. Furthermore, the trajectory may converge (as illustrated) or diverge.
The reader is referred to Maron (1982:32) for illustration of all possible cases
and to Traub (1964) for an exhaustive theoretical analysis.

Comparison of the data in Tables 1.3.1 and 1.3.2 shows a much slower
convergence in the latter. To discuss rates of convergence, define the error in x
at any iteration number k as

(1.3.8)

where x * is the fixed-point or optimal solution. Then convergence is said to be

Iterative Processes 19

/
/y::x

/
/

1.5

1
Ii:
0 1."0

n
0
0
~

.5

Figure 1.3.3. Repeated substitution of x in F(x) = (x + 1)/2, beginning with x = 2 and
approaching the fixed point, x = 1.

linear if

(1.3.9)

for C1 ~ 0, and superlinear for C1 = O. The arrow means "approaches."
Convergence is said to be quadratic if

(1.3.10)

The data in Table 1.3.1 show that convergence is quadratic, satisfying (1.3.10)
with c, '" 0.5. Roughly speaking, quadratic convergence means that the num
ber of correct significant figures in X(k) doubles for each iteration. On the
other hand, the data in Table 1.3.2 indicates linear convergence with c, '" 0.5.

This behavior of the repeated substitution algorithm can be predicted.
Consider a Taylor series expansion of the iteration function about X(kJ ~ x*:

F"(x*)(h(k»'
F(X(kJ) = F(x*) + F'(x*)h(k) + 2 + (1.3.11)

20 Introduction

The error h(k) is that defined in (1.3.8), and F' and F" are the first and
second derivatives of F with respect to x, respectively. But the definition of
the repeated substitution iteration in (1.3.2) enables restatement of (1.3.11) as

Therefore, for very small errors, h(kJ,

h(k+l) = F'(x*)h(k) if F'(x*) '" 0,

F"(x*)(h(k»)2
h(k+l) ~ if F'(x*) ~ O.

2

(1.3.12)

(1.3.13)

(1.3.14)

Considering the definitions of linear and quadratic convergence in (1.3.9) and
(1.3.10), it can be concluded that the repeated substitution algorithm con
verges linearly if 0 < 1F'(x*)1 < 1 and quadratically if F'(x*) ~ 0, but it
diverges if 1F'(x*)1 > 1. These conclusions explain the results in both Exam
ples 1.3.1 and 1.3.2. The interested reader is again referred to Traub (1964).

1.3.2. Numbers and Stability. Computations in optimization algorithms are
accomplished using floating-point numbers, namely, those in the form x = ab',
where a is the mantissa, b is the base, and e the exponent. Though actual
computing takes place in binary (base 2) arithmetic, the personal computer
user's perception is that BASIC computes floating-point numbers in base 10
arithmetic. For these purposes it is quite adequate to note that IBM-PC
BASIC provides six decimal digits of precision in the mantissa for single
precision and 17 digits for double precision. Numbers can be represented in
the range from 2.9E - 39 to 1.7E + 38. However, the optional 8087 math
coprocessor integrated-circuit chip extends the number range from approxi
mately 4.19E - 307 to 1.67E + 308. Furthermore, it has an internal format that
extends the range from approximately 3.4E - 4932 to 1.2E + 4932. This data
suggests that the user should simply be aware of some computational pitfalls
that will be discussed. No exhaustive error analysis is required here; the
interested reader is referred to Forsythe (1977) and Wilkinson (1963).

The troublesome phenomenon is simply that any digital computer provides
only a finite set of points on the continuous real-number line. Values between
these points are represented at an adjacent point; thus, there are rounding
errors. These errors occur only in the mantissa and may accumulate to
significant proportions during extended algorithms such as complicated itera
tive calculations. The computer user seldom observes the intermediate prob
lems as they occur. When numbers on the real-number line exceed the largest
numbers represented in the machine, then overflow occurs, usually as a result
of multiplication. Sintilariy, multiplication of two nonzero numbers may have
a nonzero product that falls between the two machine representable numbers

Iterative Processes 21

adjacent to zero. This is called underflow, and the better software simply
equates the result to zero without an error message.

Example 1.3.3. Forsythe (1970) discusses an example of roundoff errors by
Stegun and Abramowitz. One of the most common functions is eX. An obvious
(but dangerous) way to compute it is by its universally convergent infinite
series

x 2 x 3

-+-+
21 3!

(1.3.15)

The program in Table 1.3.3 computes this power series in single-precision
arithmetic. As noted, only six decimal digits are accurate, even though seven
digits are stored and printed. Also, Table 1.3.3 contains the result of comput
ing e- 8, the correct value being 3.3546262E - 4 or 0.00033546262. The EXP
function in IBM-PC BASIC gives the answer correctly to six significant
figures, as expected. However, the power series method has only one correct
significant figure!

This roundoff· problem can be observed by removing "REM ." from lines
50 and 100 so that the Nth degree terms of (1.3.15) and the partial sum
accumulated to that point are printed. This result is shown in Table 1.3.4.
There is a lot of cancellation (subtraction) in forming the sum because of the
alternating signs of the terms. Only six digits are accurate when using single

Table 1.3.3. BASIC Program to Compute eX by a Power Series with Optional Printing
of Intermediate Terms and Sums

IP REM - COMPUTE EXPONENTIAL BASE E BY POWER SERIES
20 DEFSNG A.F.X
30 DEFINT I.N
40 PRINT "INPUT X= "; = INPUT X
50 REM - PRINT" N" TAB(7) .. X....N/F .. TAB(30} "SUf1"
60 A=l
70 FOR N=l TO 33
eo GOSUB 160
90 A=A+XN/F
100 REM - PRINT N TA9IS} X....N/F TAB(28) A
110 NEXT N
120 PRINT .. X.e.... X = ";X.A
130 PRINT .. e X TO 6 FIG: ";EXP<X};" ;:. ERROR "; (A-EXPlX»/EXP(X}UOO
140 PRINT
ISO GOTD 40
160 REM - COMPUTE F=N!
170 F"1
180 IF N=O OR N=1 THEN RETURN
190 FOR 1-=2 TO N
200 F-F.!
210 NEXT I
220 RETURN
230 END
Ok
RUN
INPUT Xr? -B
X.e....X a -8 3. 86S668E-04
eX TO 6 FIG: 3.354427E-04 ;:. ERROR E IS. 23987

22 Introduction

precision. However, the first significant digit in the answer occurs in the fourth
decimal place. This me",ns that the 9th term, - 369.8681, contributes to the
answer only by its last (lmd inaccurate!) digit. There are nine such terms that
exceed 100, and the six accurate digits of each are lost.

Note that 33 terms other than unity have been computed; to go further
than this results in overflows. However, 33 terms are adequate for x = - 8,
since it can be seen in Table 1.3.4 that the sum has stabilized in the fourth
significant digit. Any remaining contribution from the remaining terms (num
ber 34 onward) is called truncation error.

Another approach for the problem in this example is to change the
single-precision declaration in line 20, Table 1.3.3, to double precision
(DEFDBL). This gives an answer with at least three significant figures and
perhaps more if more than 33 terms could be accumulated without overflow.

Table 1.3.4. Intermediate Results for Each Term and the Partial
Sum for the e - 8 Power Series in Single Precision

INPUT X:? -8
N X....N/F SUM
1 -B -7
2 32 25
3 -B5. 33334 -60. 33334
4 170.6667 110.3333
5 -273.0667 -162.7333
6 364. 0889 201 .. 3556
7 -416.1016 -214.746
8 416.1016 201.3556
9 -369.B6Bl -16B.5125
10 295.B945 127.3B2
11 -215.196 -B7.B139B
12 143.464 55.65
13 -BB.2B552 -32.63553
14 50.44888 17.81335
15 -26.90607 -9.09272
16 13.45303 4.360314
17 -6.330B39 -1.970526
18 2.813706 .8431804
19 -1.184718 -.341538
20 .4738874 .1323494
21 - .. 1805285 -4. 817912E-02
22 6.564673E-02 1. 746761E-02
23 -2.28336SE-02 -5.366035£-03
24 7.61121'5£-03 2. 24518E-03
25 -2.435589E-03 -1.904089E-04
26 7.49412E-04 5. 590031E-04
27 -2.22048E-04 3. 369551E-04
28 6.344228E-05 4.003974E-04
29 -1.750132E-05 3. 82896E-04
30 4.667018E-06 3. 875631E-04
31 -1.204392E-06 3. 863587E-04
32 3.01098E-07 3.866598E-04
33 -7.299345E-08 3. 865868E-04

X,e·X = -8 3. 865868E-04
e X TO 6 FIG= 3. 354627E-04 % ERROR = 15.239S7

Iterative Processes 23

All three floating-point variables, A, F, and X, must contain more significant
digits, not just the partial sum A.

There is another important lesson besides understanding roundoff error:
Sometimes the problem can be formulated so as to avoid cancellation. In this
case, simply compute e + 8 and take the reciprocal. The power series calculation
implied in Table 1.3.3 gives e 8 = 2980.958. The reciprocal is 3.3546263E-4,
which happens to be the correct value of e- 8 to eight significant figures. So
one recurring theme in the methods that follow is that problems should be
formulated to avoid numerical difficulties in the first place! Incidentally, there
are much better ways to compute the function eX than by power series. See
Morris (1983).

According to Klema (1980), an algorithm is numerically stable if it does
not introduce any more sensitivity to perturbation than is already inherent in
the problem. Stability also ensures that the computed solution is "near" the
solution of a problem slightly perturbed by floating-point arithmetic. An
unstable algorithm can produce poor solutions even to a well-conditioned
problem, as the preceding example showed. The next section deals with a
problem inherent in optimization algorithms.

1.3.3. II/conditioned Linear Systems. Linear systems of equations are of
special interest in nonlinear optimization. Recall that a peak in the surface of
Figure 1.1.1 was approximated by a quadratic mathematical model, the
surface of which was shown in Figure 1.1.3. Approximated or not, the
necessary condition for an extremum in a function is that the first derivatives
must all vanish. For the quadratic function, it was shown in (1.1.9) and
(1.1.10) that these derivatives, equated to zero, are in fact a set of linear
equations. Thus, the central role of quadratic approximations in locating
maxima and minima is synonymous with the solution of systems of linear
equations.

Unfortunately, because linear systems are often badly conditioned, methods
for solving them must account for that fact. "Until the late 1950's most
computer experts inclined to paranoia in their assessments of the damage done
to numerical computations by rounding errors. To justify their paranoia, they
could cite published error analyses like the one from which a famous scientist
concluded that matrices as large as 40 X 40 were almost certainly impossible
to invert numerically in the face of roundoff. However, by the mid-1960s
matrices as large as 100 X 100 were being inverted routinely, and nowadays
equations with hundreds of thousands of unknowns are being solved during
geodetic calculations worldwide. How can we reconcile these accomplishments
with the fact that the famous scientist's mathematical analysis was quite
correct? We understand better now than then why different formulas to
calculate the same result might differ utterly in their degradation by rounding
errors" -Hewlett-Packard (1982).

24 Introduction

The symptoms of illconditioned linear systems and their corresponding
quadratic functions are evident in the mild distortion seen by comparison of
Figures 1.1.3 and 1.1.4; these showed the effects of changing the x-axis scale.
Consider the contour plots in Figures 1.3.4 and 1.3.5, which differ in scale the
same way. These contours are families of ellipses; the two figures obviously
differ in their eccentricities. Although the ratio of major to minor axes is about
3 : 1 in Figure 1.3.5, ratios of 100 to 1000 or more are not uncommon in
practice. Clearly, this eccentricity could create all kinds of havoc with al
gorithms that explore the surface of such shapes using preconceived finite
steps. The point is that the corresponding system of linear equations is also
illconditioned. This discussion and the following example serve to emphasize

Figure 1.3.4. Contours of the quadratic peak. shown in the surface plot of Figure 1.1.3. The
coordinates have been shifted to center these contours.

Iterative Proces:..es 25

Figure 1.3.5. Contours of the illconditioned quadratic peak corresponding to Figure 1.1.4. The
coordinates have been shifted to center these contours.

that the roundoff errors previously introduced can severely aggrevate the
solution of illconditioned optimization problems.

Example 1.3.4. Consider the two linear equations treated by Forsythe (1970):

0.000100x + 1.00y ~ 1.00,

1.00x + 1.00y = 2.00.

(1.3.16)

(1.3.17)

The Gauss-Jordan elimination method (Cuthbert, 1983:9), solves this system
by a series of equivalence operations that make the coefficient of y in (1.3.16)

26 Introduction

and the coefficient of x in (1.3.17) equal to zero and the other coefficients of x
and y equal to unity.

In this case (1.3.16) is multiplied by 10,000; that result is also subtracted
from (1.3.17). However, suppose that only three significant figures, correctly
rounded, can be employed. In (1.3.17), the coefficient of x becomes zero, but
the coefficient of y is 1.00 - 10,000 ~ - 9,999.0, which rounds to -10,000.
The same effect occurs for the right-hand side of (1.3.17), so that it now is

-10,oooy ~ -10,000. (1.3.18)

The next Gauss-Jordan step requires that the coefficients of (1.3.18) be
divided by -10,000 to obtain a unity coefficient of y. Furthermore, the
revised (1.3.18) (multiplied by -10,000) is then subtracted from the revised
(1.3.16) in order to cancel the coefficient of y. This yields a new but
supposedly equivalent system

LOx + O.Oy = 0.0,

O.Ox + LOy ~ 1.0.

(1.3.19)

(1.3.20)

The solution computed using three significant figures is thus (x, y) = (0.0,1.0).
That hardly satisfies the original (1.3.17).

The correct solution using nine significant figures throughout is (x, y) ~
(1.00010001,0.999899990). Even this solution obtained with much greater
precision satisfies the right-hand sides of the original equations to only four
significant figures (rounded). The reader is urged to perform the steps for this
more accurate solution. The potential difficulties with rounding errors in an
illconditioned calculation are thus experienced.

There are at least two ways to view the size of errors in solutions to
problems discussed to this point. The direct or forward error approach asks the
intuitive question, "How wrong is the computed solution for this problem?"
This is the way that the results of the preceding example were viewed. There is
a better way that is much more amenable to analysis. The backward or inverse
error analysis technique asks, "How little change in the data (coefficients in
linear systems of equations) would be necessary to make the computed
solution be the exact solution to that slightly changed problem?" Backward
error analysis has led to discovery of new and improved numerical procedures
that are not obvious. Such analysis has made it possible to distinguish linear
systems and related algorithms that are sensitive to rounding errors from those
that are not. An excellent example of the remarkable results attributable to
backward error analysis as applied to the solution of linear systems of

Iterative Processes 27

equations is given by Noble (1969:270). These topics are treated quantitatively
in Chapter Two.

1.3.4. Termination and Comparison oj Algorithms. Referring to the flow
chart in Figure 1.3.1 for a typical iterative process. one of the most confound
ing problems is when to stop or terminate the search procedure. This section
discusses that problem and one that is even more subjective. namely, how to
compare different algorithms applied to similar or identical problems.

Human ability to perceive trends and patterns far exceeds that of machines
in most cases. For many purposes it is desirable to produce a nearly foolproof
computer program, but an unwillingness to depend on human judgment
should not force computer users to accept stupid decisions from the machine.
No set of termination tests is suitable for all optimization problems. This issue
is especially relevant for personal computer users, since they can see what is
going on if the program is constructed to keep them properly informed and if
they are sufficiently knowledgeable.

As Murray (1972:107) remarked, there are two kinds of algorithmic failures.
The first is a miserable failure, which is discovered when an exasperated
computer finally prints out a message of defeat. The second failure occurs
when a trusting user mistakenly thinks that he and the computer have found
the correct answer. Nash (1979:78) took an opposing view, that one of the
most annoying aspects of perfecting numerical computation is that the fool
hardy often get the right answer! Unfortunately, you may not get the right
answer if the algorithm is stopped too soon; or the algorithm may never
converge-not even to a wrong answer.

Again consider the surface in Figure 1.1.1 and a minimum-seeking al
gorithm. Even more specifically. suppose that a skier is descending by some
strategy in the Swiss Alps. Since the function value will be his altitude, that
could be a criterion for believing that a minimum has been reached. When the
function fails to decrease adequately from iteration (search direction) to
iteration, then it may be time to stop. On the other hand, if his speed is still
high. the skier may be on a plateau and some of the variables (direction
coordinate values) may be changing significantly, even if altitude isn't. Another
explanation for this symptom is that the search direction may have been
chosen to be nearly parallel to the contour lines (see Figure 1.1.2). However,
the skier may not depend solely on changes in the variables from iteration to
iteration. Consider that the skier may have gone over a cliff. In that case. there
is little progress in the change of variables, but the altitude will decrease
rapidly! Yet another criterion may be elements of the gradient, that is, the
slope in each of the coordinate directions, say north and east. Near-zero
gradient is a necessary condition for a minimum. Finally, the skier may have
spent more time than allowed and thus stop because an allowable number of
iterations (or minutes) has been reached.

The preceding ideas for stopping algorithms, such as that in Figure 1.3.1,
can be described precisely. Let e be some small number, for example

28 Introduction

e = 0.0001. Assuming minimization, the change in function value for termina
tion after the k th iteration can be expressed by

F(k-l) _ F(k) < e, (1.3.21)

where F(k) = F(X(k»). Relative changes in the function value would require
division of the difference in (1.3.21) by F(k-l), which might approach zero in
some cases, so relative function error is not recommended. The minimum
function value is seldom known, and even if it is known it may not be
attainable.

Because of roundoff errors and problem illconditioning, computers may fail
to find the "exact" solutions to even simple problems. Computable criteria are
not equivalent to exact mathematical properties, so convergence of the func
tion value may not imply convergence of the variables. Gill (1981) has given a
very flexible termination criterion for the variables; for the jth variable it is

Ixy) - xY-l)1
1 + IxY 1)1

< e. (1.3.22)

This criterion is similar to relative error when the magnitude of x j is large and
is similar to absolute error when x j is small. Suppose that e ~ 0.001. Then for
very small xl' the denominator in (1.3.22) is unity so that the changes between
iterations for x j must not occur in the first three decimal places. When
Ix) = 1, the effect is simply to double e. When xj is very large, then the
changes between iterations must both occur in the first three significant figures.
Regrettably, most convergence tests on the variables are sensitive to scaling.
Even if scaling is good at the start of the iterations, there is no assurance that
it will remain that way, especially at a well-defined solution.

Good termination criteria require that the results pass the test in (1.3.22)
for the objective function and for each variable. Many optimization algorithms
allow different tolerances to be set for the function value and for each variable.
The test for convergence of each component of the gradient (the slope in each
coordinate direction) is discouraged since it is even more subject to roundoff
"noise" than the other quantities. Another serious difficulty in that case is to
decide what value is suitably near zero. Therefore, any tests on the gradient
are usually made with a more forgiving tolerance value.

Instead of testing each component of the variable vector x as in (1.3.22), it
is possible to test just the "length" or norm of x instead; see Gill (1981:306).
Three such vector norms are described in Chapter Two. Others have suggested
that termination should occur only when the computation has run the changes
in quantities off the end of the computer word length, as in Table 1.3.1. That
strategy often causes unnecessarily long execution time and the results may
never converge because of roundoff noise. P. R. Geffe suggested that when two

. successive Newton iterates differ by half the machine precision, exactly two

Iterative Processe:~ 29

more iterations should be performed and the algorithm stopped. Engineers are
often content with solution precision of about three significant figures, com
parable to that attainable in the world of physical components. However, it is
usually wise to compute to much higher precision than finally required, in
order to detect blunders or other significant phenomena.

Personal computer users can observe the progress of iterative algorithms, so
there is little reason to impose a fixed lintit on the maximum number of
iterations or elapsed time. However, it is undesirable to interrupt the algorithm
without a planned ending, since certain data need to be summarized and the
last vector of variables should be stored, perhaps on a permanent medium. For
that purpose some machine-dependent scheme may be used, such as having
the program check a special key that the user may press to cause an orderly
terntination of the program. A good procedure is to run algorithms with loose
convergence requirements before imposing more stringent requirements and
restarting at the previous terntination point.

Finally, the reader certainly would like to select from this book or any other
only those algorithms that are reliable or robust. Reliability may be indicated
by the ability to solve a wide range of problems with little expectation of
failure. A robust algorithm is hardy and efficiently utilizes all the information
available for rapid convergence to a solution within a certain precision. Simple
optimization algorithms are appealing, even if less efficient. However, usually
in practice the much more complex and time-consuming computation occurs
in evaluating the particular function being sampled, not in pursuing the
optimization strategy that requires yet more such function evaluations. So it
has become commonplace to measure optintization algorithms by the number
of function evaluations required. For those algorithms that require gradient
information, the calculation of derivatives sometimes requires as much work as
for the function. Indeed, when the gradient is calculated by finite differences
(small perturbations) the work required is increased by the factor n, where
there are n variables in the problem! However, it is shown in Chapter Six that
exact derivatives may be computed for many important problems with little
additional work.

One measure of robustness is the convergence rate, previously discussed.
This may be exantined from data such as Tables 1.3.1 and 1.3.2 or by plotting
the logarithms of function values versus iteration number. Comparison of
algorithms is further complicated by their evaluation on different computers
using programs written in different languages by a variety of programmers. As
discussed in the next section, there has been some attempt to establish a
standard timing unit (for a fixed amount of computational work) on various
machines, but even those results vary. There are many well-known test
problems; some sources are discussed in Appendix B. There is a strong
tendency to use these problems to evaluate various changes in strategy, large
and small. As unsatisfactory as this state of affairs remains, the effort to select
superior methods where they can be identified is extremely important. As
Nash (1979) remarked, "The real advantage of caution in computation is not,

30 Introduction

in my opinion, that one gets better answers but that the answers obtained are
known not to be unnecessarily in error."

1.4, Choices and Form.

There are hundreds of books on optimization, but few are suitable for using
personal computers to learn, reinforce, and then apply practical optimization
techniques. The following sections explain the choices made for programming
language, computers, and style in presenting this fascinating subject.

1.4.1. Languages and Features. The clear choice for programming language
for this book is Microsoft BASIC, the standard for the IBM PC and compati
ble computers. It is furnished with almost every make imd model personal
computer in dialects that are trivially different. Its most common form is
interpreted, as opposed to compiled, so programs can be run, modified, and
rerun with an absolute minimum of effort. Nearly everyone having anything to
do with computing can use it, notwithstanding its lack of sophistication and
structure. The IBM (Microsoft) BASIC compiler is readily available and easy
to use so that an order of magnitude increase in speed is available if required.
Additional supportive opinion is available in Norton (1984:122, 123, 207).
Equally important, compiled BASIC can be linked with the powerful
Intel 8087 math coprocessor integrated-circuit chip, which costs about $100
and simply plugs into the PC computer, to provide numerical precision
surpassing that available on many larger computers. This section will describe
why and how Microsoft BASIC is implemented in this book.

In an interesting article on programming languages, Tesler (1984) said:
"The great diversity· of programming languages makes it impossible to rank
them on a single scale. There is no best programming language any more than
there is a best natural language." He also quoted Emperor Charles V: "I speak
Spanish to God, Italian to women, French to men, and German to my horse."
There is nothing to be gained by yet another debate on programming lan
guages, but a few differences between BASIC and FORTRAN are worth
mentioning. The author has more than two decades experience with
FORTRAN, and there are valid reasons for its use for optimization programs,
especially for its modularity. If one were to collect a number of standard
routines (modules) for application to an ongoing series of unique problems,
then FORTRAN would be the reasonable choice. Readers interested in this
approach as a final outcome will benefit from reading Gill (1979a). However,
FORTRAN is a compiled language, and the process of compiling and linking
new modules is annoying, particularly when most failures occur with input
and output formatting statements and other undistinguished pitfalls. Micro
soft FORTRAN version 3.3 runs well on the IBM PC, meets and exceeds the
FORTRAN 66 and 77 standards, and links to the 8087 coprocessor. The main

Choices and Form 31

point is that nearly anyone fluent in FORTRAN can easily translate from
BASIC. The interested reader is referred to Wolf (1985).

Unlike FORTRAN, coding errors in BASIC can be repaired and tested
almost as fast as one recognizes the problem. Program statements can be
added to BASIC to display additional information at will, and the TRACE
feature simplifies debugging. Any of several "cross-reference" software utility
programs that tabulate program variable names versus line number occur
rences are useful when working with BASIC programs. The listings in Appen
dix C for the major programs are followed by a list of variable names used;
readers adding to the program or planned subroutines should be careful not to
reuse variable names recklessly.

Names for variables in all BASIC programs in this book conform to the
simple Dartmouth BASIC standard: They begin with any capital letter A
through Z and are optionally followed by only one more digit from the
numbers 0 through 9. The FORTRAN convention that integer variable names
start with I, J, K, L, M, or N has been followed in these BASIC programs. To
emphasize this practice, the BASIC type statements DEFINT, DEFSNG, and
DEFDBL are used, sometimes. redundantly. The lack of double precision on
many computers that are not IBM compatible is not a fatal defect for
purposes of learning the material in this book; however, some results may
suffer from illconditioning. Similarly, a BASIC compiler is not mandatory, but
the use of interpreted BASIC will limit most practical optimization algorithms
to just a few variables or will cause them to run for many hours before
solutions are obtained.

Many features available in the IBM-PC version of Microsoft BASIC have
been avoided (e.g., the ELSE clause in IF statements). Simple screen menus
have been employed where required instead of function keys, and no screen
graphics have been used. Although PC-DOS (disk operating system) com
mands have been included in some programs to store and retrieve data,
alternative means have been provided for extended data entry, mainly by
using DATA and READ statements. Therefore, there should be little difficulty
in adapting these programs to any conventional personal computer, even if it
is not I.BM PC compatible. Readers using computers that are not IBM PC
compatible may find one appendix in the IBM BASIC manual especially
useful; it describes the major differences between IBM and other versions of
Microsoft BASIC. As mentioned, many of the incompatible features have been
avoided, as well as several incompatibilities that exist between interpreted and
compiled Microsoft BASIC.

A number of short programs are contained in tables in the main body of
the text, but the larger and more important programs are listed in Appendix
C. The pertinent sections of the text give explanations and test results to allow
verification of programs entered manually. The index provides the page
numbers where the references to each of the larger programs occur. Remarks
(REM) have been used extensively to explain the use of variables or as titles
for program sections. Any of these programs will run on a computer with

32 Introduction

fewer than 64 kilobytes of random-access memory (RAM), and considerable
storage space can be saved by omitting the remarks embedded in the code. It
has been assumed that the reader can perform the simple and conventional
operations on his or her computer, especially relating to BASIC. For example,
the program in Table 1.1.2 must be terminated using the (Ctrl)(Break) keys,
and it is assumed that the user will realize that.

Several miscellaneous comments are provided to assist readers. BASIC
programs in this book were written and run using IBM interpreted BASICA
version A2.1O, and many were compiled using IBM compiled BASIC version
1.00 and MicroWay 87BASIC versions 2.08 and 3.04. Interpreted BASIC was
usually run without the /D switch option, which activates double-precision
trancendental and trigonometric functions. Additional program segments are
used throughout this book to be MERGE'd with major programs to add
certain features. Users should be sure to merge the suggested program seg
ments in the order stated. Numerous smail data sets are required, especially
vectors and matrices. Users of hard disks may wish to archive most of these on
floppy disks, because the minimum file length on hard disks is usually about 4
kilobytes. These data sets may be created and modified without leaving
program execution by using utility program Sidekick, which temporarily
interrupts the ongoing program. There are many occasions when users will
restart a program and type in the same data again. Utility programs, such as
SuperKey, that assign macro files to specified keys to remember all the
keystrokes required are great savers of time. The "cut-and-paste" feature also
simplifies saving results from the computer screen for later reentry or storage.
Many of the isometric and contour graphs in this book were plotted on a
matrix printer, using program Plotcall by Golden Software.

1.4.2. Personal Computers. Performance data on personal computers are
often obsolete long before they can be published, but they will also be
conservative for future equipment. Therefore, enough performance informa
tion is given to make the case for running optimization algorithms on IBM PC
and compatible computers. This book and the included programs were written
on an IBM PC-XT. (The XT designation originally was for the PC witli a hard
disk as well as a floppy disk drive.) It has an Intel 8088 microprocessor using a
clock rate of 4.77 MHz. This is mentioned because higher clock speeds, other
current microprocessors (Intel 8086, 80 X 86 series, and Motorola 68000 series)
and software improvements are known to provide execution speeds many
times faster than the PC-XT. Some IBM-PC data show that a compiler and
8087 math coprocessor chip provide the speed and accuracy necessary for
practical optimization.

These data were obtained by averaging the times for 5,000 to 20,000 loops
that included the indicated arithmetic operations. The data in Table 104.1
compare interpreted and compiled IBM (Microsoft) BASIC with and without
an 8087 numeric coprocessor chip. The coprocessor works only with a mod
ified BASIC compiler or some other compiled languages. These data show that

Cho;ce.~ and Form 33

Table 1.4.1. Millisecondsu for Mathematical Operations by IBM
Interpreted BASICA and IBM Compiled BASIC With / Without 8087 Coprocessor'

Elementary Functions

SPADD DPADD SPMULT DPMULT SPSQR DPSQR

BASICA 3.65 4.80 3.90 5.65 9.25 96.60'
Compiled 0.40 0.50 0.55 1.15 1.15 3.70
With 8087 0.15 0.20 0.20 0.20 0.15 0.20

Trigonometric Functions

SP SIN DPSIN SPTAN DPTAN SPATN DPATN

BASICA 17.40 39.80' 45.20 98.8a'" 10.40 30.80'
Compiled 3.40 12.80 7.20 27.00 4.00 16.00
With 8087 0.80 1.00 0.80 0.80 0.60 0.60

Exponential Functions

SPEXP DPEXP SPLn DPLn SPY'X DPY'X

BASICA 8.60 47.60' 9.60 62.80' 17.20 115.80'
Compiled 3.80 11.40 4.20 12.40 8.80 26.60
With 8087 0.60 0.60 0.40 0.60 0.80 0.80

uLoop overhead (nonmathematical operations) are included.
hSp = single precision, DP = double precision.
'"BASICA switch/D set to obtain double precision.

the trigonometric functions are the slowest, and compiled BASIC is much
faster than interpreted BASICA. Without the 8087, all double-precision calcu
lations are slower than single precision, since they generally require about
twice the work.

The Intel 8087 coprocessor greatly improves performance. It requires no
more time to obtain double precision than single precision; in fact, it provides
more precision than double precision by computing in 80-bit words. All
elementary functions are computed at about the same speed (including sub
traction and division, which are not shown). According to Fried (1984:204),
the 8087 time for addition using Microsoft compiled BASIC is 0.134 millisec
onds, which is close to the data in Table 1.4.1. All nonelementary functions
are substantially faster than those without the coprocessor.

P. R. Geffe (private communication) has furnished a simple program that
loops through 100,000 calculations of addition, subtraction, multiplication,
division, and square roots. Some test results are shown in Table 1.4.2. In
addition, it has been established that the IBM PC-AT computer is three times
faster than the IBM PC computer, except when the math coprocessor is

34 Introduction

Table 1.4.2. Seconds for 100,000 Add, Subtract, Multiply, Divide,
and Square Root Operations on IBM and HP Desktop Computers

IBM PC (8088 and Microsoft interpreted BASlCA)
IBM PC (8088 and Microsoft compiled BAS1CA)
IBM PC (8088 & 8087 & Microway/IBM compiled BASlCA)
IBM PC (8088 & 8087 & Microsoft compiled FORTRAN v.3.2)
Hewlett-Packard 9845 (HP BASIC)
Hewlett-Packard 9816 (HP BASIC)
Hewlett-Packard 9000 (HP BASIC)

2075
302
138

87
740
300

24

utilized. For several technical reasons, the math coprocessor in the PC-AT
does not increase speed very much, but it does provide increased precision, as
previously described.

As previously mentioned, the 8087 coprocessor must be linked to the
compiled BASIC in a special way. Several companies provide this capability,
including Microway, Inc., which makes a software connection between the
8087 coprocessor and the IBM BASIC compiler. Although there are many
different factors to be considered, the data in Table 1.4.2 show that the 8087
implementation compares favorably with the professional scientific computers
from Hewlett-Packard, the HP-9000 being the newest of the models listed.
Fried (1984) has provided many details concerning implementation of the
8087 coprocessor that are beyond the scope of this book. He mentions a PC
user who discovered that his CRAY supercomputer executed one of his
applications only 180 times faster than his PC with the 8087 installed. But
since the CRAY was serving 100 users, the turn-around time for results was
only twice as fast as that on the Pc. This and other considerations led Fried to
recommend the use of desktop computers to solve problems that involve up to
100 million floating-point operations, which includes all optimization applica
tions contemplated in this book.

Finally, Fried (1984) noted that one matrix inversion algorithm now
available on the PC executes at one-tenth the speed of an IBM 360 mainframe
computer. Colville (1968) provided a FORTRAN program that inverts a
40 X 40 matrix of floating-point numbers 10 times. This was intended to
provide a timing standard for the various kinds of computers on which testing
of optimization algorithms would be accomplished. Although the data that
have been published cannot be reproduced exactly, the resuIts are useful as an
indicator of scientific computing speed. Himmelblau (1972:368) notes that one
of the faster mainframe computers, a CDC-6600, required 22 sec to invert the
40 X 40 test matrix 10 times in single precision. The Microsoft FORTRAN
compiler version 3.2 required 510 sec (23 times as long) using the 8087
coprocessor working in excess of double precision. The conclusion that justifies
the advocacy of this book is that number-intensive iterative processes are
certainly feasible using mathematical coprocessors such as the Intel 8087, are

Choices and Form 35

often feasible using only compiled languages, but may easily be studied and
appreciated using only interpreted languages.

1.4.3. Point of View. Of the hundreds of books on optimization, very few
exemplify the relationship between personal computer users and the study and
application of optimization. This is a pragmatic book that concentrates more
on understanding than on rigor for its own sake. However, optimization is a
pervasively mathematical subject involving matrix algebra and calculus, even
though it is an intuitively appealing process. It can be understood by state
ment of requirements, behavior, techniques, and reduction to practice. For
tunately, visualization of the two-variable case generalizes to any number of
variables. The linkage that this book provides the reader for that generaliza
tion is matrix algebra notation; it is not only unavoidable, but concise and
attractive. Years of practice have convinced the author that experiencing
computation occurring under the user's immediate control is an excellent
learning medium that develops key insights. That is not to underestimate the
theoretical preparation that must precede this experience. This book should
motivate the reader to review and gain beller theoretical underpinnings in the
many fascinating topics from matrix algebra and calculus. This section fur
nishes some comments that differentiate this approach to optimization from
the more conventional treatment.

Chapters Two and Three cover the numerous topics .from matrix algebra
that will be required throughout the remainder of the book. A program that
performs the elementary matrix operations will be used to verify many
important relationships. The major programs will be named. The one intro
duced in Chapter Two is called MATRIX. MATRIX eliminates one im
mediate obstacle for those studying matrix algebra, namely, the tedium of the
extensive computations involved. For example, it is possible to observe conver
gence of a matrix process without even lifting a pencil by using the MATRIX
program. The reasons for convergence will be described notationally so that it
becomes apparent to the reader, but no proof of convergence or its rate will be
offered. As Acton (1970) observed, "It is commonplace that numerical
processes that are efficient usually cannot be proven to converge, while those
amenable to proof are inefficient."

The reader may be aware of several sources for matrix software packages
wrillen in assembly language and callable from BASIC and other languages.
Such a package is available from Microway, Inc., for example. These software
utilities simplify and accelerate matrix algebra computations, but lack stan
dardization and are thus avoided in this book. Also, as Acton (1970: 329)
noted, there are many instances where matrix notation, although very useful
for derivations and proofs, can lead to very inefficient computation. Neverthe
less, there is still an important trade-off to be made between a user's effort and
time and that of a machine, so matrix algebra packages should be considered
for any final implementation of optimization algorithms.

36 Introduction

There are three important precautions worth mentioning in connection with
optimization. First, partial derivatives of functions, implicit or explicit, need to
be calculated for use in many algorithms. Mistakes made in programming
those calculations are commonplace and disastrous, so almost every author
emphasizes checking those calculations very carefully. In cases where these
derivatives are programmed from explicit equations, it is strongly recom
mended that the initial results be confirmed by finite differences (perturba
tions). Second, the next likely difficulty to be encountered by the new
optimization user is a bad choice of scales for the problem variables. If some
variables have dimensions in inches so that a change of an inch or so makes a
reasonable change in the outcome, then the scale is suitable. Expressing that
same variable in a scale of miles would be totally disastrous, of course.
Usually, different scales will be required for different variables. Third, many of
the programs in this book employ double-precision calculations. They are
often not necessary, and readers should not be too apprehensive if the
computer used does not allow double precision. Readers should then expect
some cases where single precision in BASIC is simply not adequate, and the
symptoms often include sluggish convergence. The inner product of vectors is
especially susceptible to cancellation because it is a sum of products. It is
noted in passing, however, that Example 1.3.3 in this chapter requires that
almost all variables (not just the accumulated result) be expressed in double
precision in order to avoid excessive roundoff error.

Finally, the topics in this book employ a remarkably complete complement
of the important facets of matrix algebra and a considerable number of
concepts from the calculus. This is viewed as a significant reward for studying
optimization. Beyond that, the role of the personal computer in the process of
learning and application is vital. Personal computers are accessible, respon
sive, autonomous, and (usually) already paid for. These attributes, especially
the last one, allow this book to differ in important ways from other means to
discover and apply optimization.

Problems

1.1. Sketch the contours of constant function value of

F(x) = 2x l + X,

for F ~ 0, 4, 8, and 12. Does this function have a finite minimum or
maximum? Apply the constraint function

hex) = (Xl - 3)' + (x, - 2)' - 1.

Sketch this constraint locus, and find Xl and x, at the maximum of
F(x) subject to hex) = 0, if it exists.

Problems 37

1.2. Find the set of linear equations associated with the quadratic function

F(x) = 5.5x~ + 2x l x, + 7x? - 94x l - 67x, + 500.

What are the values of the first partial derivatives of F with respect to
Xl and X, at the point Xl = 3 and X, ~ 7? At what values of Xl and X 2
will F(x). have a minimum or maximum? What will be the values of the
first derivatives at that point?

1.3. Evaluate equation (1.1.1) and its derivatives at the following points
using the program in Table 1.1.2.

x 0.08668
Y 2.88430

3.38520
0.07358

-3.07300
-0.08135

Locate these points on the representations of the surface in Figures
1.1.1 and 1.1.2. Any point x ~ a such that the first derivatives of F(x)
vanish is called a stationary point of F. The three points given here are
saddle points since they are neither local maxima or minima. What
property of functions of a single variable distinguish a stationary point?
How do stationary points of functions of a single variable differ from
saddle points?

1.4. Rewrite the following constrained nonlinear programming problem in
matrix notation as given in Section 1.2.1:

Minimize
such that

4xi + 3x, - 5xi + x.
Xl = 3xi,
x3 - x4 :s: 0,
Xi> 0 for i ~ 1 to 4.

1.5. Check the first partial derivatives of equation (1.1.1) that are calculated
in the program given in Table 1.1.2 by perturbing each variable in turn.
First derivatives may be approximated by

F(1.000lx l , x,) - F(x l , x,)

O.OOOlx l

ax,
F(x l ,1.0001x2) - F(x l , x,)

0.000lx 2

Perform similar operations using the first derivatives to approximate

38 Introduction

the second derivatives. Note the accuracy of the approximation and the
substantial possibility of roundoff error (cancellation).

1.6. An important problem in financial analysis is the calculation of rate of
interest in compounding problems. The function involved is

1-{I+i)-"
f{i) = PV+ PMT . + FV{1 + i)-" = 0,,

where PV is the present value, PMT is the payment amount for each
of the n periods, i is the interest rate per period, and FV is the future
value. In terms of the fixed-point iteration function (1.3.3), an al
gorithm to solve for the implicit variable i is Newton's method, where
g(x) in (1.3.3) is IIf'(x), and f'(x) is the derivative of f with respect
to x. Alter the program in Table 1.3.2 to use the iteration function

f{ '(kl)
i(k+l) = i(k) - --,-'=0,

f'{ j(kl)

in line 100. Find j when n = 60 months, PMT ~ $100 per month,
PV ~ $10,000 initial balance, and FV = $23,200 is the desired balance
5 years hence. Begin the iteration with i = 0.00833 (10% per year).

1.7. As in Problem 1.6, use Newton's method to find a zero of the function

f{x) ~ x'{x - I)',

starting from x = 1.05. Modify the program in Table 1.3.2 to perform
and print the iterations. What is the rate of convergence?

1.8. Sketch the following functions from Wright (1976):
(a) y = (x - 2)'(x + I)' for -1.7 S x S 2.7,
(b) y = (eX - 2)'(e X+ I)' for 0.2 s x s 15,
(c) y = (x' - 2)'(x' + I)' for -1.7 s x s 1.7.
Discuss the effects of scaling by transformation of variables (e.g.,
replace x with eX or with Xl in case a).

1.9. Approximate the function in Problem 1.8(a) in the neighborhood of
x = 0.5 using the first three terms of the Taylor series expansion about
x = a:

y{x) = y(a) + y'(a) (x - a) + 0.5Y"(a)(x - a)' +

Tabulate the percentage error in this approximation over 0.0 S x s 1.0
in steps of 0.1.

Problem., 39

LI0. From Maron (1982), use repeated substitution to find the fixed
points of

y(x) = !:e~x

to four significant figures. Sketch the iterative process. The search for
one of the fixed points will always diverge.

L11. Show that the partial derivative with respect to any Xl of the least
squares objective function in (L2.6) is

Also, write the partial derivative of (L2.5) with respect to all Xj' j ~ 1
to 5.

Suppose that the fitting function similar to (L2.5) were linear instead
of nonlinear. Then show why, in principle, a linear fitting function for
minimum squared error could be found by solving one set of linear
equations.

L12. Run the following program due to Forsythe (1977) on your personal
computer to determine the smallest floating-point number it can repre
sent (in error at most by a factor of 2). This quantity is called the
machine precision em' Also, try this in double precision if available.

10 REM FORSYTHE (1977) P.14 EPSILON TEST
20 E ~ 1

30 E = .5*E
40 EI ~ E + 1
50 IF El > 1 THEN GOTO 30
60 PRINT "APPROXIMATE MACHINE PRECISION ~ ";E

70 END

LB. Using the quadratic surface of (LL8), compute the constants of
Table LL4 for an approximation of surface (1.1.1) at point X ~ 3
and y = 4.

Chapter Two _

Matrix Algebra and Algorithms

Vectors and matrices are the essential data structure for numerical applica
tions such as optimization. The previous examples have treated the vector x as
a set of independent variables or parameters subject 10 choice according to
some objective. It is an easy and (one hopes) familiar step to extend that
concept further to the matrix as a two-dimensional table of dependent or fixed
coefficients. As BeIlman (1960) has noted, the notation chosen to represent this
arithmetic of higher mathematics is crucial to avoiding being swamped by a
sea of arithmetical and algebraical detail. A weIl-designed notation expresses
the uhderlying mathematics without obscuring or distracting the reader. Also,
a great virtue of matrix notation is that the expressions do not depend on the
number of variables involved.

Matrix computation is required in many fields, usuaIly for solving systems
of linear equations. Some examples are given by Jennings (1977:38-69) for
electrical networks, surveying, heat transfer, and nonlinear cable analysis.
Analysis of electrical network responses is described in Chapter Six. Since
transformations lie at the heart of mathematics, it should be noted that
matrices represent the most important of these, namely, the linear transforma
tions.

It is assumed that the reader has been introduced to vectors and matrices,
so the treatment in this chapter is limited to stating and iIlustrating the
surprisingly complete set of these concepts required for optimization. One goal
is to make it possible for the reader to absorb the analyses and results widely
available in both new and old literature on optimization. Algorithms for
computation are equaIly important to the personal computer user. For that
purpose this chapter includes several BASIC programs, including a major one
named MATRIX that simplifies ordinary matrix computation.

Chapter Two begins with the fundamental definitions and operations of
matrix algebra and includes a description of the MATRIX program. Vector
spaces, their geometry, and the concept of projection are described, and
matrices with special structure are included. Pertinent matrix transformations

40

Definitions and Operations 41

and factorizations are explained, especially those related to real, symmetric
matrices, their eigensystems, and illconditioning. With this specific back
ground and its applications in Chapter Three, the reader should be able to
understand and apply the several truly effective optimization algorithms that
follow.

2.1. Definitions and Operations

Since notation is an important part of comprehending matrix algebra, this
section elaborates on all aspects of notation. Program MATRIX, which
simplifies fundamental matrix operations, is described for subsequent use. All
the simple vector and matrix operations are defined, essentially the major four
functions: addition, subtraction, multiplication, and inversion. Finally, the
concepts and definitions of vector and matrix norms are introduced.

2.1.1. Vector and Matrix Notation. Except for electrical network applica
tions in Chapter Six, the notation describes sets of real numbers, as opposed to
complex numbers that have both real and imaginary parts. Many excellent
textbooks have been written for the more general case, that is, for sets of
complex numbers. Although the matrix algebra is valid for the special case of
sets of real numbers, some of the nomenclature is peculiar to the more general
case. Since optimiiation per se involves only sets of real numbers, the reader
should be aware when reading Noble (1969) and other classical texts that
unitary translates to orthogonal and hermitian translates to symmetric between
the complex and real cases, respectively.

Repeating the previous definition, a vector is a set of n numbers defined to
be in column order:

or (2.1.1)

A vector is denoted by a boldface, lower-case letter, and its elements or
components are denoted by the same letter in ordinary lower-case type with
subscripts that specify their order or position. The superscript T in the
right-hand side of (2.1.1) denotes transposition, the interchanges of rows and
columns. Thus, x T is a row vector. The set of numbers in a vector represents
the coordinates of a point in Euclidean n-dimensional space as shown in Figure
2.1.1 for n = 3. The zero vector 0 contains elements that are all zero. The
unit-direction vectors, e j , i = 1, 2, and 3, shown in Figure 2.1.1, are associated
with the direction and measurement along the three orthogonal axes. These

42 Matrix Algebra and Algorithms

X,
Figure 2.1.1. The vector x = (Xl Xz XJ) T in Euclidean 3-space. The vector has the direction and
length shown from point 0 to P. Its projection in the XI-x2 plane is the vector OQ. The elements
of x, Xi' are the units of its projections on the three orthogonal axes; for example, X2 is the length
OR.

unit vectors are defined by:

(2.1.2)

A matrix is a rectangular array of numbers:

[""
a12 ",.]a 21 a22 a2n

A ~ [au) ~ a31 aJ2 Q 3n •

am1 am2 amn

(2.1.3)

A matrix is denoted by a boldface capital letter. The subscripts on each
element or component of the matrix in (2.1.3) indicate row i and column j;
there are m rows and n columns. Matrix size is often referred to as m X n
(pronounced "m by n"), and sometimes it is useful to indicate the dimensions
by subscripts, such as Am, n = [a'j1m, n' The zero matrix 0 contains elements
that are all zero; it is distinguished from the zero vector only by its context.

Matrices may be rectangular, so it is not necessary that n ~ m, although
that is a common case. For square matrices the elements Q ji constitute the
principal (main or leading) diagonal, The trace of a matrix is the sum of the

Definitions and Operations 43

elements on the principal diagonal, that is, tr(A) = au + a22 + ... +a". A
matrix having aij = 0 for i '" j is said to be a diagonal matrix. An upper
triangular matrix U is a square matrix having all elements below the principal
diagonal equal to zero. A similar definition applies for a lower triangular
matrix L.

The transposition operator applied to any matrix (square or not) swaps
rows and columns, so that

AT = [aJ,J .
n.m

(2.1.4)

If A = AT, then elements aij = oJ' and that square matrix is said to be
symmetric. Many matrices required in optimization are symmetric and have
other special properties. Another useful way to denote a matrix is by a set of
column vectors:

(2.1.5)

where the subscripted a, are numbered m-vectors, each containing m ele
ments. The unit matrix I is such a set of vectors; it is square, having all l's on
the principal diagonal and D's elsewhere. In terms of (2.1.2) and (2.1.5), the
unit matrix can be expressed as

I = (e, e2 e3) (2.1.6)

in 3-space. Of course, it is possible to make a vertical arrangement of a set of
row vectors analogous to the column-vector arrangement in (2.1.5).

There is one more representation for a matrix, namely, as a set of sub·
matrices:

(2.1.7)

where T, P, Q, R, and S are all matrices of various dimensions (rows and
columns). In fact, the designation of the submatrices corresponds to partition
ing as indicated by the dashed lines in this particular matrix;

[

2 3: 5 6 4]
-1 I' -1 1 1

- --------~--------------T- -2 3, -4 5 -1·
5 3: -1 2-3

-4 8: -3 2 2

(2.1.8)

Superscripts in parentheses sometimes appear with both vectors and matrices
to indicate a stage or iteration number, as mentioned in Chapter One. For
example, a set of linear equations associated with the k th iteration of a
process might appear as

(2.1.9)

COLUMNS
18
19

44 Matrix Algebra and Algorithms

where dx and g are vectors and H is a matrix. Matrix multiplication and other
operations indicated in (2.1.9) are discussed after the MATRIX utility pro
gram is introduced in the next section.

2.1.2. Utility Program MATRIX. Program C2-I in Appendix C is the
standard computation tool to verify and illustrate a large number of mathe
matical operations in matrix algebra in the rest of this book. Named
MATRIX, it is the proving ground for algorithms that produce certain matrix
results as well as some parts of those optimization algorithms that appear
further on in a much more integrated form. The approximately 625 lines of
BASIC instructions or code include numerous comments and were written in
the most simple way to enhance reader comprehension and computer utiliza
tion. The code requires about 20,600 bytes in ASCII (American Standard
Code for Information Interchange) format, 16,700 bytes in compressed binary
(tokenized) format, and about 18,700 bytes in RAM during execution. A table
of variable names used in MATRIX is appended to the program listing to aid
in the addition of new subroutines. MATRIX is introduced at this point so
that the reader can refer to relevant BASIC instructions and worked examples
for the various matrix operations being described.

As presented in program C2-1, MATRIX enables the user to enter, view,
print, and operate on as many as four matrices, A, B, C, and D, each as large
as 6 X 6. Any or all of these four matrices might be a row or column vector,
that is, with one dimension equal to unity. The command menu for MATRIX
is shown in Table 2.1.1.

The data that describe the one to four matrices to be employed can be
entered as BASIC data statements using the BASIC "MERGE" command or

Table 2.1.1. Command Menu for Program C2-I, MATRIX

.*. COMMAND MENU t**•••*••*
o. DISPLAY A MATRIX IN FIXED FORMAT
I. SEE COMMAND HISTORY
2. TOGGLE PRINTER ON/OFF
3. EQUATE ONE MATRIX TO ANOTHER
4. TRANSPOSE
5. MATRIX TO/FROM DISK
6. SCALAR * (MATRIX)
7. A = B + C
8. A ~ D * C
9. D = (invB) & DETERMINANT(B); DESTROYS B~

10. SPARE
11 .. NORMS OF VECTOR OR MATRIX D
12. EXTREME ELEMENTS OF 0
13. SPARE

FORMAT: FIXED SCIENTIFIC ALL
PRINT = 14 16
DISPLAY 0 OR 15 17

20. EXIT (RESUME WITH 'GOTO 999')
".,*,.",.",*"".,.*"".",,

\

Definitions and Op_erations 45

Table 2.1.2. Two Data Entry Methods for Program C2-1, MATRlX

Method 1: MERGE Lines 400-620

400 N$ -"METHODIQ"
405 DATA 2,3
410 DATA 5,6,4
415 DATA -1,1,1
420 DATA 0,0

Method 2: ASCll File on Disk

"Method 2 for Q"
2 3
5 6 4
-1 1 1

from ASCII files, using command 5 in Table 2.1.1, or both ways. Table 2.1.2
shows the formats for these two methods. Suppose that the five lines of BASIC
instructions on the left side of Table 2.1.2 have been stored in an ordinary
PC-DOS file named "METHOD1.BAS" and that the four lines of text have
been placed into a file named "Q.MAT". Either of these files could be created
by use of the EDLIN line editor that is a standard feature of the PC-DOS
system. The file name extension ".MAT" is recommended for matrices and
".VEC" for vectors. The statements on the left could optionally have been
created and saved in BASIC, using the standard BASIC program editor.

On the first page of the program C2-1 listing in Appendix C, lines 400 to
620 have been reserved to enter none, any, or all of the four matrices or
vectors. The listing in Appendix C already contains BASIC lines 400, 410, and
420 for the case where no matrix data are entered by DATA statements. While
operating in the BASIC environment with the MATRIX program already
loaded into memory, issuing the DOS command [MERGE"METHOD1]
(without the brackets) will load lines 400 to 420 as in Table 2.1.2. They will
overwrite the original lines and will furnish data that are read by lines 660 to
730 in row order. Again referring to the left side of Table 2.1.2, the data set has
the name "METHOD1Q" according to line 400. Line 405 gives the number of
rows and columns in A; lines 410 and 415 give the first and second rows of A,
respectively.

If matrix B were to be read in, then its numbers of rows and columns would
appear in line 420; however, since A is the last matrix to be read into the
program in this case, the two zeros are read by line 740 and the READ process
is terminated by line 750. If all four matrices are to be read this way, then they
must appear in the order A, B, C, and D and no pair of zeros is required after
the last row of D. The first screen seen after the RUN command appears in
Table 2.1.3 when data from the left side of Table 2.1.2 are not employed. The
screen will freeze until the (RETURN) key is pressed so that the notes and
status can be read. The notes are discussed below.

The ASCII file on the right side of Table 2.1.2 is structured the same way
except that the delimiters are blanks instead of commas. Files written to disk
by MATRIX command 5 are in one long column as opposed to the form on
the right side of Table 2.1.2, which can be used equally well to give the
appearance of a matrix. Command 5 first asks if the user needs to see the disk

46 Matrix.Algebra and Algorithms

Table 2.1.3. First Screen from Program MATRIX Showing Notes and Data
Status, Having Execnted the DATA Statements on the Left Side of Table 2.1.2.

*•••••••••ELEMENTARY VECTOR ~ MATRIX OPERATIONS••** *_
NOTES,
1. USE ONLY UPPER CASE LETTERS
2. MERGE VECTOR AND MATRIX DATA STATEMENTS

INTO RESERVED LINE RANGE 400-620 (OPTIONAL>
3. IF 'BREAK' OCCURS~ RESTART WITH 'GOTO 999 <RTN)'

WORKING WITH DATA SET: NONE
PRESS <RETURN} KEY TO CONTINUE -- READY?

directory one or more times. Then the user is asked what matrix is involved
and if the data are to be recalled or saved. Caution: Do not press the
(Ctrl)(Break) keys while in the command 5 sequence. Since a disk file is open,
the disk directory can be damaged. If this should occur, use the DOS
command "CHKDSK IF" to repair the damaged disk directory. Command
5 will have to be used once for each matrix to be read in. Upon receiving the
name of the file, in this case Q.MAT, the program reads the first line in
quotation marks on the right-hand side of Table 2.1.2 and then asks the user if
this operation should be aborted (the file may not be the one intended).

If a file is not found with the name given, the program will report that fact
and then "break".(cease execution). As indicated at command 20 in Table
2.1.1 and by note 3 in Table 2.1.3, the program can be continued without loss
of data by typing 'GOTO 999' and pressing the (ENTER) key. Another note
in Table 2.1.3 specifies that (CAPS LOCK) should be active (e.g., an answer
"y" is expected, not "y"). Also, the impatient user can type up to 15
'keystrokes ahead of the program INPUT commands, since the IBM PC h~s a
keyboard buffer with that capacity.

Screen results i{lclude command 1, which lists the first 100 commands that
have been issued to alter data. Command 2 successively toggles the printer to
an "on" or "off' state so that all matrix operations may be recorded (if the
printer has been made ready). The operation of command 5 to recall a disk file
is shown in Table 2.1.4. Commands 14 to 17 display the data conveniently on
the 80-column screen or printer, assuming that the matrices have maximum
dimensions of six columns (and rows). Commands 18 and 19 display all
available significant digits by matrix columns. This program employs double
precision in line 330 (not mandatory), so that 17 significant figures are
available. To process matrices larger than 6 X 6, change the dimensions in line
380 and observe results with commands 18 and 19. Comments on matrix
operational commands 3 to 9 and 11 to 12 ar, made where the mathematical
operations are introduced in the next section. SPARE commands 10 and 13
allow other matrix operations or sequences to be defined as indicated by line
6390. For example, additional program lines for the iterative power method
for finding eigenvalues are presented in Section 2.2.3 to execute under com-

Definitions and Operations 47

Table 2.1.4. Screen Transactions While Entering the Disk File Q.MAT on tbe Right
Side of Table 2.1.2.

• MATs• MAT

? *.MAT

.MAT R

*. * OR <RETURN»

p

free

. MAT

. MAT
Bytes

SEE DIRECTORY (YIN>? Y
FILENAME SPECIFIER (LIKE
C~ \ib
T
Q

782336

SEE DIRECTORY AGAIN (YIN)? N
MATRIX INVOLVED IS A. B. C. OR D? A
RECALL OR SAVE MATRIX A (RIS)? R
FILE NAME IS? Q.MAT
READY TO READ FILE Q.MAT INTO MATRIX A TITLED~ Method 2 for Q
PRESS <RETURN> KEY IF OK. ELSE 'ABORT' <RETURN>?

READ FILE Q.HAT INTO MATRIX A
PRESS <RETURN> KEY TO CONTINUE -- READY?

mand 10. The added instructions simply call a sequence of existing commands
by calling subroutines and by making other calculations.

Program MATR1X is deliberately unsophisticated and has been limited in
size (18,700 bytes in execution) for computers with limited memory. All
functions are in subroutines beginning with the line numbers shown in Table
2.1.5. Program MATRIX operates according to the calculated GOSUB state-.
ment in line 1270, which reflects the line numbers in the third column of Table
2.1.5. As demonstrated by example, the SPARE commands can thus cause the
program to visit new subroutines added by the user. These can in turn call
existing subroutines after presetting the parameters that would normally be
furnished by the user from the keyboard. For example, Table 2.1.5 shows that
MATRIX command 6 normally causes the program to GOSUB 3870. The user
could accomplish the same action by assigning string values to variables S7$
and S$ and then GOSUB 3920 as observed by noting program lines 3870 to
3920. This range of lines is shown in Table 2.1.5; they solicit the variable
assignments normally .made from the keyboard. Of course, the new sub·
routine(s) can also calculate new quantities as required. The names of the
major variables and their usage are given in program lines 40 to 220, and all
variables are listed after the code in Appendix C, program C2-1.

The reader will soon find that program C2-1, MATRIX, eliminates the
tedium of computation while learning, shows how to program straightforward
matrix computations, and enables clear display of all results from algorithms
involving vectors and matrices.

2.1.3. Simple Vector and Matrix Operations. Simple matrix operations in
clude three of the four major functions: addition, subtraction, multiplication,
and inversion (comparable to division). The matrix inverse is discussed in the
next section. Unlike multiplication of real numbers, matrix multiplication
produces results that differ with the order of certain operations: This section
presents the essential rules and illustrates them using program MATRIX.

48 Matrix Algebra and Algorithms

Table 2.1.5. MATRIX Command Subroutine Beginning and Preset-Parameter Entry
Line Numbers

CMD Solicits For Preset
No. Command Parameters Parameters

O. DISPLAY A MATRIX IN FIXED FORMAT 4180 4230
1. SEE COMMAND HISTORY 1330 1330
2. TOGGLE PRINTER ON/OFF 1410 1410
3. EQUATE ONE MATRIX TO ANOTHER 1470 1560
4. TRANSPOSE 2470 2510
5. MATRIX TO DISK (SAVE) 4580 4770
5. MATRIX FROM DISK (RECALL). 4580 5010
6. SCALAR • (MATRIX) 3870 3920
7. A-B+C 2890 2890
8. A- D.C 3040 3040
9. D - (inv B) & DETERMINANT (B) 3220 3220

10. SPARE
11. NORMS OF VECTOR OR MATRIX D 5360 5360
12. EXTREME ELEMENTS OF D 5820 5820
13. SPARE
14. PRINT MATRIX IN FIXED FORMAT 4150 4230
15. DISPLAY MATRIX IN FIXED FORMAT 4180 4230
16. PRINT MATRIX IN SCIENTIFIC FORMAT 4070 4230
17. DISPLAY MATRIX IN SCIENTIFIC FORMAT 4110 4230
18. PRINT ALL COLUMNS DOUBLE PRECISION 6030 6080
19. DISPLAY ALL COLUMNS DOUBLE PRECISION 6050 6080
20. EXIT 6370 6370

Except for a few cases, only matrices are discussed, since a vector can often be
treated as a special one-dimensional matrix.

Two matrices are equal if they have the same dimensions and each
respective element is equal. For example, to require that Am" = B q means

• P.
that m = p, n = q, and aij = hi)' For 2 X 3 matrices,

(2.1.10)

so that au ~ bu , a12 = b12 , etc. This process is accomplished in program
MATRIX by command 3 (see Table 2.1.1) and lines 1450-2440 in the listing,
Appendix Co program C2-1. If matrices A, B, C, or D are equated to the unit
matrix I, then the dimension of that square matrix is requested and assigned
by lines 1540 and 1600, respectively.

Multiplication of a matrix by a scalar (a nonvector, say h) is denoted by
A = hB and requires that aij ~ hbij for all elements. Again using 2 X 3

Definitions and Operation.'i 49

matrices, for example, if h = - 1, then

al2

a"
al3] = [- bn
G 23 -b21

-bl3].

-b2J
(2.1.11)

Scalars can be moved through products; for example, (hA)B = A(hB) =
(AB)h. Similarly, (hAr 1 = (l/h)A -1. A straight line in n-space, such as
Figure 2.1.1 for n = 3, might begin at a point x and then proceed in direction
s. A scalar multiplier h enables points on that new straight-line vector, say y,
to be specified, namely, y = x + hs. The last concept plays a major role in
optimization.

Addition of two matrices, A = B + C, is also on a respective element-by
element basis; thus, aij = bij + e ij for all nm elements. Command 7 in Table
2.1.1 accomplishes matrix addition. The names of BASIC variables containing
the dimensions of each matrix are shown in program MATRIX line 40. If the
dimensions of Band C do not agree, a warning is issued by program line 2900,
and lines 2940 to 2950 set the dimension of A to the larger respective
dimensions of the operands. Matrix subtraction is accomplished by perfor
ming the scalar multiplication on the subtrahend as shown in (2.1.11) and then
performing matrix addition. Matrix addition and subtraction satisfy the same
properties as the corresponding scalar operations:

Associativity:

Commutativity:

A + (B + C) = (A + B) + C,

A+B=B+A.
(2.1.12)

Matrix multiplication is considerably more involved. It is performed by
MATRIX command 8 in Table 2.1.1, namely A = DoC. It is helpful to
consider a particular case:

dl2

(2.1.13)

The rule is that each element of Crnn may be found by

P

G jj = E dikCkj
k-l

for i = 1 to m and j = 1 to n, (2.1.14)

where p is the column dimension of D. The boxes superposed on (2.1.13) for
computing a l2 illuminate the procedure stated by Finkbeiner (1966): "In
practice, we can perform this computation (for a,) easily by the technique of
using the left index finger to run across the ith row of the left-hand matrix and

50 Matrix A1gebra and If 19arithms

simultaneously using the right index finger to run down the jth column of the
right-hand matrix, multiplying elements in corresponding positions and
adding successively the products obtained." From (2.1.13),

(2.1.15)

This rule of thumb clarifies "the fact that D and C must be conformable: the
number of columns in D must equal the number of rows in C. Where the unit
matrix is involved, ImA = Aln ~ A when A is not symmetric (m '" n), but 1m
and I n then have different dimensions so that the products are conformable.

To summarize, if A mn = DmpCq.. then it is required that p = q (D and C
are conformable), and the result has dimensions m X n. Program MATRIX
line 3050 warns the user if D and C are not conformable, but an operation is
performed anyhow. Matrix multiplications can involve a great deal of compu
tation; for the dimensions given above, a product requires m X p X n scalar
multiplications and nearly as many scalar additions.

Matrix multiplication does not satisfy all of the properties of the scalar
case. For matrix multiplication:

Associativity:

Distributivity
over matrix addition:

(AB)C ~ A(BC)

A(B + C) = AB + AC.
(2.I.l6)

Generally, matrix multiplication is not commutative because of the roles of
rows and columns as illustrated by the boxes in (2.1.13). Even if D and C were
square and had the same dimensions, in general DC * CD. Since order
mallers, for A = DC as in (2.1.13), D is said to premultiply C, and C is said to
postmultiply D. As noted by Jennings (1977), even though the identity in
(2.1.16) says that A(BC) has the same value as (AB)C, the order of evaluation
of the products may be very important in computation. For example, if A and
B have dimension 100 X 100 and C has dimensions 100 X 1, then the total
number of multiplications for (AB)C is 1,010,000 and for A(BC) is only
20,0001

There are several important rules and naming conventions of matrix algebra
that involve transposition of matrices and vectors. One of these is the reversal
rule for transposed products:

An important consequence is that

B = ATA is symmetric.

(2.1.17)

(2.1.18)

This follows from BT = (ATA)T ~ ATA ~ B. It follows in a similar fashion that

C ~ ATBA is symmetric if B is, (2.l.I9)

Definitions and Operations 51

even though the product of two symmetric matrices is in general not symmet
ric.

The inner product (or scalar or dot product) of two n-vectors is a scalar:

(2.1.20)

Inner products were used to obtain the respective elements in the result of a
matrix multiplication; the three boxes in (2.1.13) illustrate the inner product of
the ith row vector and the jth column vector. The inner product does satisfy
the rules of scalar multiplication:

Commutativity:

Distributivity over vector
addition:

(2.1.21)

Figure 2.1.1 is an illustration of Euclidean n-dimensional space, specifically
n = 3. Such space is characterized by a distance function: the distance between
any two points x and y is z; its square is Z2 = (x - y)T(X - y). For example,
the length of the vector in Figure 2.1.1 is the distance between the vector (i.e.,
the point in 3-space) and the null vector (i.e., the origin). Therefore, the length
of the x vector in Figure 2.1.1 is (xTx)lf2•

An outer product of two vectors is a matrix:

(2.1.22)

The outer product is sometimes called a proportional matrix because its rows
are proportional to elements of x, and a similar statement can be made about
its columns. Outer products such as in (2.1.22) play an important role in
optimization.

2.1.4. Inverse of a Square Matrix. This section will deal only with the
inverse of square matrices, putting aside the case for rectangular matrices to be
described in Section 3.1.2. The most familiar inverse of a matrix B is
designated B- 1 and satisfies

(2.1.23)

where I is the square unit matrix that is the same dimension as B and has l's
on its principal diagonal and O's elsewhere. The inverse of a diagonal matrix is
a diagonal matrix having elements that are the reciprocals of the given
diagonal elements, that is, lib". The inverse of a matrix may not exist,
analogous to division by a scalar zero. The matrix inverse of every square

52 Matrix AIgebra and Algorithms

n X n matrix B does exist if the determinant of B is nonzero; then the matrix
is said to be nonsingular. The determinant of B, det(B), is a scalar quantity; for
a 2 X 2 matrix, det(B) = ba b22 - b,2b2, • In general, it may be computed by
the recursive formula:

where Mij is a determinant of the matrix formed by removing row i and
column j from matrix B. The determinant of an n X n matrix consists of a
sum of n! terms having alternating signs and each one a product of n matrix
elements. Equation (2.1.24) is not an efficient way to compute the determi
nant; it can be found another way as a by-product of the inverse command 9
in program MATRIX.

Certain properties of determinants are useful in the following develop
ments:

1. A determinant is zero if the matrix has two identical rows (columns).
2. The determinant of a matrix product equals the product of the individ

ual determinants.
3. The determinant of a triangular matrix equals the product of the

elements on the principal diagonal.

4. Multiplying each row (column) of a determinant of a matrix by a scalar
factor increases its determinant by the same factor.

5. The determinant value is unchanged by adding a multiple of one row to
another row.

6. Swapping two rows (columns) in a matrix reverses the sign of its
determinant.

Both the determinant and the matrix inverse should be thought of as useful
algebraic concepts rather than as aids to computation. This is made clear in
Section 3.1. These two operations are included in MATRIX as a part of that
program's use in the learning process. Two identities involving the matrix
inverse that are important concern transposition,

and the reversal rule for inverse products:

If A = BCO, then A-I = 0-IC- 1B- 1

(2.1.25)

(2.1.26)

The former shows that the inverse of a symmetric matrix is also symmetric.
The latter leads to the identity (AP)-1 = (A -1)p.

The explanation of the implementation of MATRIX command 9 for
D = B- 1 and det(B) requires introduction of elementary transformation

Definitions and Operations 53

matrices, a concept that is needed throughout this book. For purposes of the
Gauss-Jordan method for matrix inversion that follows, three elementary row
transformations are required as described by McCalla (1967). These are
illustrated for the n = 3 case. First is the transformation matrix E,(h) that is
the unit matrix except for row i multiplied by h:

E3 (h) = [g o
1
o

(2.1.27)

Premultiplying a matrix by E,(h) multiplies each element in the ith row of
that matrix by h, as seen from (2.1.27) and the definition of matrix multiplica
tion in (2.1.13) and (2.1.14). Second is the transformation matrix Elk that is the
unit matrix with rows i and k interchanged:

(2.1.28)

Matrix E ik is a permutation matrix-one whose elements are either 0 or 1,
with just one 1 in each row and column. Premultiplying a matrix by E'k swaps
rows i and k in that matrix; the reader is urged to write out the terms of
A = EJ2B to see that rows 1 and 2 in B are exchanged in A. Third is the
transformation E'k(h) that is the unit matrix that has h times row k added to
row i:

E,2 (h) = [g h
1
o

(2.1.29)

Premultiplying a matrix by E'k(h) adds h times row k to row i; the way to see
that this is the case is to write down the result A = EJ2(h)B, where B is a
square 3 X 3 matrix. .

The immediate application for a sequence of transformations is the
Gauss-Jordan procedure previously applied in Example 1.3.4 for two equa
tions in two unknowns. In the present context, suppose that matrix B is
premultiplied by some transformation, say E

"
and that result is premultiplied

by some other transformation, say E 2 • Continuing that process, suppose that n
of these transformations result in the unit matrix:

(2.1.30)

Post multiplication of each side of (2.1.30) by B- 1 and application of (2.1.23)
yields

(2.1.31)

54 Matrix Algebra and Algorithms

Table 2.1.6. A Sequence of Gauss-Jordan Transfonnations to Compute a Matrix
Inverse for Example 2.1.1

Evolution of (2.1.30) Evolution of (2.1.31) Determinant

8
5
7

D1 = b\~)

-4

Dl = Dl* b}~)

-4-3 = 12

Dl = Dl* b~1)

-12-(-3)

Determinant = - 30.

Of course, it turns out that there is a sequence of the three elementary
transformation matrices just described that will produce a matrix inverse. It is

'emphasized that the sequence of transformations in (2.1.31) is simply a
formalism; these elementary matrices are not actually stored in the computer.
The easiest way to assimilate the sequence of Gauss-Jordan transformations is
by example, and it is imperative that the reader work through each step. The
process allows simple calculation of the determinant as well.

Example 2.1.1. Consider 3 X 3 matrices Band D shown in Table 2.1.6. There
are two steps for each of the stages 1,2, ... , n:

(a) Divide row k by bkk , leaving the new bkk ~ 1.

(b) Zero the remaining elements in column k by subtracting a suitable
multiple of the new row k from row i, i", k.

Referring to stage 1 in Table 2.1.6, b ll ~ 1 was obtained by dividing row 1 of
B by 4. Each operation on B is applied to D as well. Therefore, d II ~ 1/4. The

Dejinition.f and Operations 55

zeros in column 1 of B in stage 1 are obtained by: (1) observing that b21 = 1 in
B, so subtraction of 1.0 times the new row 1 from row 2 will make the new
bZl = 0, and (2) observing that b31 = 2 in B so that subtraction of two times
the new row 1 from row 3 will make the new b31 = O. Again, notice that the
same row multiplication factor and subsequent subtraction from the corre
sponding rows in D were also accomplished.

Stage 2 transformations operate in behalf of column 2 in the same way as
stage 1 except that the reference matrices are the new ones from stage 1
instead of the original ones given in stage O. As for the determinant of B,
McCalla (1967) shows that it is equal to the product of the pivots

(2.1.32)

for the case in Table 2.1.6. As indicated, the answer is det(B) = - 30.

McCalla (1967) shows that roundoff error can be minimized by adding a
step. Before step 1, scan the current column on and below the principal
diagonal for the largest coefficient magnitude; if it is not in the principal
diagonal, the two rows are swapped in both B and D; see lines 3410 to 3590 in
program C2·1. Each row interchange alternates the sign of the determinant in
(2.1.32). Readers who understand the transformations in Table 2.1.6 should be
able to follow the BASIC instruction in lines 3210-3840 that implement
command 9 in MATRIX. The reader is urged to enter matrix B into program
C2·1 and obtain B- 1 and det(B) using command 9. The results are shown in
Table 2.1.7.

There are several situations in optimization algorithms where it is useful to
find a matrix inverse by partitioning. Suppose that the partitioned matrix in
(2.1.7) is given and its inverse exists. Then

(2.1.33)

Table 2.1.7. Program MATRIX Matrix Inverse Command
9 Screen Display for the Matrix in Table 2.1.6.

READ FILE B.MAT INTO MATRIX B

= -30 • NOW B=1.

2.00000
3.00000
1.00000

-0.46667
0.33333

-0.40000

8.00000
5.00000
7.00000

-0.20000
0.00000
0.40000

MATRIX B(3 • 3)
4.00000
1.00000
2.00000

D=inv(B)
DETERMINANT <B)

MATRIX D< 3 • 3)
0.53333

-0.16667
0.10000

---------------------------------- ----

56 Matrix A1gebra and Algorithms

where P is p X P and S is s X s. Then the unit matrices in (2.1.33) have those
dimensions, and the zero matrix, 0, fills the remainder of the right-hand side.
Multiplication of conformable, partitioned matrices proceeds according to the
ordinary matrix rules illustrated by (2.1.13). Therefore,

PA + QC = Ip '

PB+ QD~O,

RA + SC ~ 0,

RB + SD = I,.

(2.1.34)

Equation (2.1.34) may be solved for A, B, C, and D under the assumption that
S is nonsingular; thus, (2.1.34) yields

A = (p - QS-1R)-I,

B ~ -AQS-l,

C = -S-IRA,

D = S-1 - S-IRB.

(2.1.35)

The reader is urged to use program MATRIX command 9 to find the inverse
of (2.1.8) as a whole and by (2.1.35).

An entirely different way to obtain a matrix inverse is to make a change to
a known inverse. According to Fiacco (1968:179), the rank annihilation method
or Sherman-Morrison- Woodbury formula for inverting matrices is sum
marized as follows:

The matrices have dimensions An", Qnp, Ppp , and Rnp' Equation (2.1.36) is a
powerful way to obtain an inverse by modifying an existing one by adding a
"rank p" term QPRT; rank is discussed in Section 2.2.1. See Problem 2.15. To
practice the rules of matrix algebra, the reader is urged to verify (2.1.36) by
post multiplying the right-hand side by the matrix in the parentheses on the
left-hand side of (2.1.36). It will also be necessary to insert the unit matrix,
1= p-1p to reduce (2.1.36) to 0 = O.

2.1.5. Vector and Matrix Norms and Condition Number. It is well known
that the length of the vector in Figure 2.1.1 is

Definitions and Operations 57

The symbol on the left side of (2.1.37) denotes a norm of the vector x. Norms
are non-negative scalars that are important because they measure length, s;ze,
or distance, depending on the context. For example, norms of matrices are
comparable to their "magnitude"; also, the norm IIA - BII indicates how
"close" one matrix is to another. Norms are the basis for quantitatively
describing matrix illconditioning as well.

Not just any old equation will do for a norm; vector norms must satisfy the
following three conditions: .

1. Ilxll > 0, for x * 0, and IIxll ~ 0 implies x ~ O.
2. IIhxll ~ Ihlllxll for any scalar h.

3. Ilx + YII :$ Ilxll + IIYII (the triangle inequality).

(2.1.38)

The p-norm of an n-vector satisfies all three conditions in (2.1.38):

(2.1.39)

The three ordinary values of pare p = 1, 2, and ct:>, and the corresponding
norms are called the one-, two-, and infinity-norms. The ordinary vector length
in (2.1.37) is clearly the two-norm, often called the Euclidean vector norm. For
very large p, IIxlloo = max,lx,l, the element in x with maximum modulus. All
three of these vector norms are computed by MATRIX command 11 for the
norms 01 vector d as implemented in lines 5650 to 5790. Figure 2.1.2 depicts
the locus of the vector point x in 2-space for fixed values for all three of these
vector norms.

Recalling the definition of the inner product in (2.1.20), the Schwarz
inequality

(2.1.40)

can be proved using the Law of Cosines from trigonometry. Consider the three

~E----+--7---X,-+--+--+-Xl-+--+--+-x,

la) Ib) Ie)

Figure 2.1.2. The locus of the x point in 2·space for fixed values of three vector norms: (a) the
one-norm, (b) the two·norm, and (c) the infinity norm.

58 Matrix AIgebra and Algorithms

vectors x, y, and y-x; a special case is the illustration of x in Figure 2.1.1. In
that space there exists a triangle having these three vectors as sides. The Law
of Cosines relates the angie 8 between x and y in terms of the lengths of the
three sides:

IIY - xll~ = IIYII~ + IIxll~ - 211xll,IIYII, cos 8.

Replacing the left-hand side of (2.1.41) with (y - X)T(y - x) yields

(2.1.41)

(2.1.42)

But -1 s cos 8 s + 1, so (2.1.40) is obtained. Equation (2.1.42) is useful in
its own right, since the angie between directions (vectors) is often an important
issue in optimization.

Matrices usually occur in conjunction with vectors as in the system of linear
equations

Ax = b,

which is just matrix notation for

aUxl + a 12 x 2 +
a2l x I + a22 x 2 +

+a1nXn = bl
+a2n x n = b2

(2.1.43)

(2.1.44)

Matrix norms are defined so that they are compatible with vector norms in the
sense that

IIAx l1 s 11A1l1lxll, (2.1.45)

where the first and last terms are vector norms and IIA II is a matrix norm.
Matrix norms satisfy the following four conditions:

1. IIAII > 0 for A * 0, and IIAII ~ 0 implies A = O.
2. IlhA11 = IhlllAl1 for any scalar h.
3. IIA+ BII S IIAII + IIBII.

4. IIABII s IIAIIIIBIi.

Considering (2.1.45), the matrix norm is defined by

(2.1.46)

IIAII = max IIAxll for allllxll ~ 1, (2.1.47)

where again it is important to note that norms IIAxll are vector norms. For
example, Figures 2.1.1 and 2.1.2b suggest that IIxll, = 1 requires a search over
the unit hypersphere to find the point on that surface that maximizes the

Definitions and Operations 59

vector y = Ax. Another way to look at matrix norms comes from (2.1.45): x
can be "stretched" at most by the matrix norm, IIAII, when x is multiplied
by A.

Thus, it is said that the three vector norms, defined by (2.1.39) for p = 1, 2,
and 00, induce three norms for the matrix A = [aij] according to (2.1.47):

m

IIAII, ~ max L laijl, the maximum absolute column sum,
J j-I

the square root of the maximum
eigenvalue of ATA,

(2.1.48)

n

IIAll oo ~ max L laijl, the maximum absolute row sum.
1 j-I

If A is symmetric, then IIAlioo ~ IIAII,. Readers interested in how these three
"natural" norms are derived from (2.1.47) and (2.1.39) are referred to Noble
(1969:429). The IIAlb spectral matrix norm requires the set of n scalar numbers
(possibly complex) called eigenvalues that are associated with any real matrix.
The eigenvalues are often denoted by Ai' but are denoted by Wi here; they are
described in Section 2.2.3 and are mentioned here only for completeness. The
presence of the transposed product ATA in (2.1.48) is not trivial; it plays a
significant role in optimization.

One other matrix norm is well known; it is "compatible" according to
(2.1.45) but is not "induced" by a vector norm according to (2.1.47). The
Frobenius matrix norm is

(

m n)1/2

liAllF= L Lot; ,
i-l)=-1

(2.1.49)

which is just the square root of the sum of the squares of all elements in the
matrix. It is also equal to the square root of tr(ATA), the trace of the
transposed product. Table 2.1.8 shows the values of three of the preceding
matrix norms for the 5 x 5 matrix in (2.1.8).

The solution of a system of linear equations when illconditioning occurs
was described in Chapter One. The illconditioning can be quantified in the
sense that each matrix has a defined condition number:

k(A) = IIAllliA -'II. (2.1.50)

No matter which matrix norm is used, the condition number k(A) <0 1, since
(2.1.46) shows that k(A) <0 IlAA -'II ~ 11111 = 1. A matrix is said to be illcondi
tioned if its condition number is much greater than unity. Consider the matrix

60 Matrix Algebra and Algorithms

Table 2.1.8. Three Program MATRIX Matrix Nonns for T in (2.1.8)
and the Condition Number, kIT)

Norm II'IIF

17.1756
1.6723

28.7228

II ·Ih

OOסס.18

3.0140
54.2520

OOסס.20

1.4793
29.5860

product AB, where A is a square matrix. Errors in the elements of A because
of roundoff or for other reasons will propagate into the result where they may
be magnified significantly. Suppose that matrix A is perturbed by the addition
of matrix dA so that A becomes A + dA. The relative size of the perturbation
in the product is

IldABIl
---=
IIABII

lI(dAA- l)ABII

IIABII

(2.1.51)

Therefore, condition number k(A) measures how much the relative uncertainty of
a matrix may be magnified in a matrix product. See Table 2.1.8 for an example.

Suppose that there is a set of n right-hand vectors in the linear system
described by (2.1.43). Then there are n solution vectors x. Collecting the
former in columns of B = (b, b2 ... b,) and the latter in X ~ (Xl X,

X n), those sets of linear systems can be written

AX = B. (2.1.52)

Clearly, uncertainties in the square system matrix A or in the right-hand side
matrix B will also propagate into the solution vectors in X. For small relative
uncertainties dA in A, say IldAll/IiAII « l/k(A), the condition number closely
approximates how much the relative uncertainty in A and/or in B can be
magnified in the solutions contained in the columns of X.

2.2. Relationships in Vector Space

This section introduces some spatial concepts 10 matrix algebra that are
relevant to optimization. These concepts have a geometry that is readily
observed in two and three dimensions and remain valid in any number of

---- - ~ -. ------ ----c--

Relationships in Vector Space 61

dimensions. No attempt is made to generalize the approach to include abstract
spaces, such as the space of functions. In fact, this presentation is intended to
be quite straightforward so that the reader can form and retain a mental image
of the principles on which optimization is based.

2.2.1. The Matrix Role in Vector Space. Figure 2.2.1 represents the same
Euclidean 3-space (called £3) shown in Figure 2.1.1. The three vectors, x, y,
and d lie in an oblique plane that passes through the origin. Consider how one
might locate any point in that plane; one way would be to locate any point q
in that plane by forming a linear combination of two of the vectors shown, say

q ~ ry + sd, (2.2.1)

where rand s are positive or negative scalars. The first point to be made is
that there are always choices for r and s that will reach any point in the plane
containing y and d, as illustrated in Figure 2.2.1, but no point outside that
plane is available with (2.2.1). The plane described by (2.2.1) is called a
subspace of the three-dimensional space represented by Figure 2.2.1 (not
necessarily through the origin). Lines in that three-dimensional space, for
example, the x, axis or the line coincident with vector d, are also subspaces.
Clearly, (2.2.1) would not describe every point in the oblique plane if y and d
were collinear, which corresponds to being parallel in this illustration. If they
were collinear, then y ~ td for some nonzero scalar t, and it is said that y and
d are linearly dependent. It is conventional also to write that condition:

ry + sd = 0, (2.2.2)

which implies that y and d are linearly independent if no nonzero rand scan

s
P

I
I
I
I
I
r
I
I
I

x,
I
I
I
r
I
r

Xl •p'

Figure 2.2.1. Three vectors in Euclidean 3~space that form a linearly dependent set.

62 Matrix Algebra and Algorith.....

be found to make (2.2.2) true. In other words, ry and sd cannot go out and
return to the origin. The dimension of a subspace is equal to the maximum
number of vectors in that subspace that can be linearly independent.

So much for subspaces; clearly, three vectors are required to locate any
point in E', as illustrated in Figure 2.2.1. Will y, d, and x do? No, because
they are linearly dependent; that is, there exist three nonzero scalars such that

ry + sd + tx = O. (2.2.3)

Again, the problem with those three vectors is that they form a closed loop
and are consequently coplanar. The three unit vectors previously mentioned as
having unit length and lying along the three axes are linearly independent and
will locate any point x in E':

(2.2.4)

Recall that 1 = (e, e2 e,), where e j is a column vector of the unit matrix I. A
set of vectors from En is said to span En if every vector in that space can be
represented by a linear combination of that set. A basis for En is a linearly
independent subset of the least number of vectors in En that spans the entire
space. Clearly, the columns of I, span E' and can be chosen as a basis for
that space.

The preceding illustration with the identity matrix is too easy and may
cause the reader to overlook a major concept. Any matrix-vector product is
equivalent to a linear combination of the columns of the matrix, the coefficients of
each column being the respective elements of the vector. It is not especially
obvious, so the reader should verify this important identity using, say, n = 3:

y = Ax = (a) a 2 ••• an)x = x,a, + x 2a2 + .. , +xna n • (2.2.5)

The vector y is said to be in the column space of matrix A.
Now it should be clear that Ax = 0 can only be satisfied if the columns of

A are linearly dependent. The null space of A has dimension n - r, where r is
the rank of A. A square matrix whose columns are linearly dependent is said
to be singular and its determinant is equal to zero. In general, the n columns
of a nonsingular matrix span En and can be chosen as a basis for that space.
The range or column space of a matrix Am. n is the span of its column vectors.
Such matrices are not unique, and there are an infinity of bases for any space;
however, the representation of any vector in terms of a given set of basis
vectors is unique.

Suppose that the three vectors shown in Figure 2.2.1 constituted the three
columns of a 3 x 3 matrix. Then that matrix would be said to have rank equal
to 2. The rank of a matrix, square or not, is the maximum number of linearly

--------- -

Relationships in Vector Space 63

"

Figure 2.2.2. Geometric interpretation of a de
terminant in £2 as the area of a parallelogram.

independent columns (or rows) and is equal to the dimension of the subspace
that those vectors span. The row and column spaces of a matrix Am. n have the
same dimensions. The determinant of a matrix was defined by (2.1.24). The
order of the nonzero determinant of highest order contained in a matrix
(square or not) is equal to the rank of that matrix. It is noted that the rank of a
matrix is not changed by multiplication by a· nonsingular matrix. Also, the
matrix product ATA has the same rank as A.

Since determinants playa role in matrix singularity and rank, it is useful to
note a geometric interpretation for determinants. Consider the 2 x 2 matrix

(2.2.6)

and the representation of its column vectors in E 2 as shown in Figure 2.2.2.
The cosine of the angle between any two vectors was given by (2.1.42). The
area of a parallelogram is equal to the product of the lengths of its two sides
and the sine of the angle between them. Using the identity sin'lJ = 1 - cos'lJ
and the Euclidean (p = 2) vector norm for the vector lengths, routine algebra
reveals that the area of the parallelegram in E' is equal to the magnitude of
the determinant of B. In E 3 the volume of the parallelepiped with sides
defined by matrix column vectors can be shown equal to the matrix determi
nant, and this generalizes to En. This leads to Hadamard's inequality,

(2.2.7)

since the volume of a parallelepiped cannot exceed the product of its sides.
As also seen from the left side of (2.2.5), a matrix can be viewed as a way to

transform one vector into another, for example, x into y. The vector space
containing x is called the domain of A; y is in the range of A. These are linear
transformations because of the properties of matrix multiplication previously
described. Therefore, the transformation of a linear combination of vectors is
the same linear combination of the transformed vectors:

A(ry + sd) = A(ry) + A(sd) = r(Ay) + s(Ad). (2.2.8)

If A transforms x into y, then the matrix inverse, A-" transforms y back
into x.

64 Matrix A1gebra and Algorithms

2.2.2. Orthogonal Relalionships. The basis vectors found as columns of the
identity matrix are orthogonal, that is, at right angles. Of course, orthogonal
vectors need not be aligned with the major axes, so this section begins with
some important remarks concerning orthogonality conditions. Equation
(2.1.42) provided an expression for the angle between vectors. The relationship
of a set of orthogonal vectors is

i '" j. {2.2.9}

Furthermore, the vectors q; are said to be orthonormal if an additional
property holds:

(2.2.1O)

Consider a matrix composed of these m-vectors in its n columns:

(2.2.11)

A matrix is said to be an orthogonal (orthonormal) matrix if its columns are
orthogonal (orthonormal). Simple algebraic multiplication of the case for
m = 4 and n = 3 will verify that if Q is orthonormal, then

(2.2.12)

which implies that Q-l = QT when Q is square.
When the basis vectors are orthogonal, the linear combination of those that

define a given vector is easy to compute. Suppose that the basis vectors are the
columns of Q in (2.2.11). Then a given vector y may be expressed as

{2.2.13}

The typical i th inner product is

{2.2.14}

since all but one term vanishes according to the vector orthogonality condition
(2.2.9). Thus the ith coefficient in the linear combination shown on the
right-hand side of (2.2.13) is

{2.2.15}

where the denontinator is unity when the basis vectors q; are orthonormal.
The concepts introduced by (2.2.13) to (2.2.15) lead directly to the well

known Gram-:Schmidt procedure for finding a set of orthonormal vectors from

Relationships in Vector Space 65

a given set of linearly independent vectors. Specifically, given a set of n
linearly independent m vectors, (a, a, .,. an)' construct an orthonormal
set of vectors, (q, q, .,. qn)' where the first j vectors, qj' are linearly
related to a j' Therefore, in addition to mutual orthogonality among the q,
vectors, it is required that

(2.2.16)

where the U'j are scalar coefficients of a linear combination of vectors. The
pertinent equations are worked out below for j ~ 1, 2, and 3, then general
expressions and a computer subroutine that runs in the MATRIX environ
ment are presented.

The Gram-Schmidt procedure begins with j = 1 in (2.2.16):

(2.2.17)

The orthonormal requirement means that IIqlll = 1, so un = lIa , ll, the length of
the vector a , . (It is assumed that the two-norm is used throughout the
Gram-Schmidt procedure.) Therefore, for j = 1 in (2.2.16), it is concluded
that

For j = 2, (2.2.16) yields

and (2.2.18)

(2.2.19)

Premultiplying by qf yields u12 = qfa, due to (2.2.9) and (2.2.10). It is not
possible to perform the same premultiplication to obtain U 2, because q, has
not yet been found. However, (2.2.19) can be solved for q,:

q, = (2.2.20)

The crucial step is to observe that (2.2.20) has the same form as (2.2.18),
especially that U'2 must cause q2 to have unit length. Therefore,

u" = Ilq'211,
q'2

q, = -, (2.2.21)
u22

where q', is the unnormalized orthogonal vector q 2'

This procedure is illustrated for one more step before writing the general
expressions. The j = 3 case for (2.2.16) yields

(2.2.22)

66 Matrix Algebra and Algorithms

. Premultiplying (2.2.22) by q; yields u13 and premultiplying (2.2.22) by q~
yields u 23 :

(2.2.23)

Therefore,

q,
q, ~ -. (2.2.24)

u33

It is now possible to write the general expressions for the Gram-Schmidt
orthonormalization procedure:

j>i,i=lton,

(2.2.25)

For both programming and subsequent solution of systems of linear equations,
note that the equations written for j ~ 1,2,3, ... , n from (2.2.16) are just the
jth equation of the set expressed by the matrix equation Am. n = Qm, .un, n' or

o

Ulnj
u'n , (2,2.26)

unn

Subprogram C2-2, GSDECOMP, is a 60-line subroutine that performs the
Gram-Schmidt orthonormalization procedure with respect to matrix A, plac
ing the orthonormal vectors in the columns of program matrix D (comparable
to Q) and the coefficients in the upper-right triangular program matrix C
(comparable to U), Subprogram C2-2 also computes and displays the inner
products of all combinations of orthonormal columns of D as a check on
roundoff error.

Example 1.1.1, An example of the Gram-Schmidt process given by Noble
(1969:315) involves the three column vectors in the 4 X 3 matrix

A ~ [~
-1

2
-1
-1

1

-~l2 .

1

(2.2.27)

Relation.fhips in Vector SpQce 67

Table 2.2.1. Results for Ibe Gram-Schmidt Procedure Applied to tbe 4 X 3 Matrix
in Example 2.2.1

READ FILE GSEXI INTO MATRIX A

D=or~hodecomp(A), & C ~riangular

D=orthodecomp(A} , & C triangular
INNER PRODUCT OF COLUMNS 1 1 1
INNER PRODUCT OF COLUMNS 1 2 0
INNER PRODUCT OF COLUMNS 1 3 -6.938893903907229D-18
INNER PRODUCT OF COLUMNS 2 2 .99999989824544
INNER PRODUCT OF COLUMNS 2 3 -7.1951340122056170-08
INNER PRODUCT OF COLUMNS 3 3 1.000000121884437
PRESS <RETURN> KEY TO CONTINUE -- READY? MATRIX D< 4 , 3) -

O.~OOOO 0.86603 -0.00000
0.50000 -0.28868 0.40825
0.50000 -0.28868 0.40825

-0.50000 0.28868 0.81650

Matrix A was stored in file "GSEXI". Then, in the BASIC environment, the
commands LOAD"MATRIX followed by MERGE"GSDECOMP were ex
ecuted. The composite program was then run with the results shown in Table
2.2.1. The columns of the matrix shown in Table 2.2.1 are orthonormal as
verified by the combinations of all possible inner products shown there. Using
program MATRIX, it is a simple matter to verify (2.2.12) numerically, in this
case obtaining the 3 X 3 identity matrix.

Figure 2.2.3 is a geometric interpretation of two of the three Gram-Schmidt
steps in £3. The angle 8 between two of the given vectors, a, and a 2 , obeys

X3

R

1~--7----f----- X2

Figure 2.2.3. An illustration of equation (2.2.19) af er the second step in a Gram-Schmidt
orthonormalization. Unit vector ql is a submultiple of the first given vector a\"

•

I

68 Matrix Algebra and Algorithms

Table 2.2.2. Ortbogonalization of tbe 5 X 5 Matrix in (2.1.8) by the
Gram-Schmidt Procedure

READ FILE T.MAT INTO MATRIX A

O=orthodecomp(A}, ~ C triangular
O=orthodecomp(A), & C triangular

INNER PROOUCT OF COLUMNS 1 1 1_000000000511063
INNER PRODUCT OF COLUMNS 1 2 1_4067872561307480-10
INNER PRODUCT OF COLUMNS 1 3 -2_7499564387786780-10
INNER PRODUCT OF COLUMNS 1 4 -1.1701605656666560-10
INNER PROOUCT OF COLUMNS 1 5 2.5411674518110990-09
INNER PRODUCT OF COLUMNS 2 2 1.000000167059906
INNER PROOUCT OF COLUMNS 2 3 4.7253499245447640-08
INNER PRODUCT OF COLUMNS 2 4 -2.0607814957274150-07
INNER PRODUCT OF COLUMNS 2 5 -3.9182107957041330-07
INNER PRODUCT OF COLUMNS 3 3 .9999999982116635
INNER PROOUCT OF COLUMNS 3 4 -5.3605779448163970-08
INNER PROOUCT OF COLUMNS 3 5 -2.9522600799734760-08
INNER PRODUCT OF COLUMNS 4 4 .9999999927836797
INNER PRODUCT OF COLUMNS 4 5 6.048025740969937D-07
INNER PRODUCT OF COLUMNS 5 5 1.00000001904006
PRESS <RETURN> KEY TO CONTINUE -- REAOY? MATRIX D(5 • 5

0.28284 0.40226 0.77750 0.39196
-0.14142 0.06921 -0.06081 0.13625
-0.28284 0.24655 -0.42609 0.79939

0.70711 0.51905 -0.45611 -0.13909
-0.56569 0.70937 0.04686 -0.41163

)
0.00619
0.97619

-0.19657
0.05664

-0.07187

•

the inner product relationship in (2.1.42). The vector between points 0 and P
in Figure 2.2.3 is the projection of a, on a 1. From (2.2.19), that projection is a
multiple of the unit vector, namely, u12qj' Orthonormal vectors qj and q, are
linearly independent and thus define the subspace that is the plane containing
the three points 0, P, and R. The third orthonormal vector q, is not shown in
Figure 2.2.3, but it is constructed to be perpendicular to the plane defined by
qj and q,. Then the third given vector, a" could be shown in Figure 2.2.3
according to (2.2.22).

Example 2.2.2. The 5 X 5 matrix in (2.1.8) was placed in file "T.MAT" and
orthogonalized using program GSDECOMP merged into program MATRIX.
The results are shown in Table 2.2.2. The columns of the matrix shown are
orthonormal as verified by the inner products shown there. This orthonormal
matrix D, since it is square, obeys the relationship that D- j ~ D T , as easily
verified by using the MATRIX program.

Notice the increasing roundoff error evident in the inner products shown in
Table 2.2.2. Since the Gram-Schmidt procedure worked from column 1
through column 5, the accumulation of errors made the approximation to zero
become about 10-7• One way to deal with cases where the process is more
illconditioned is to reorthogonalize. In this case the reader can use program
MATRIX to equate A ~ D and rerun command 10. Then the approximation
to zero is about 10- 14 and will not improve with subsequent reorthogonaliza-

Relationships in Vector Space 69

tions. Of course, the second orthonormal matrix is very nearly the same as the
one first obtained.

Another method that attempts to minimize roundoff error is attributed to
Rice and described by Morris (1983:165-167). Observe the angle 0 between
given vectors a, and a, in Figure 2.2.3. Since 0 may be found using (2.1.42),
one might choose some vector other than a, that is more nearly orthogonal to
a" that is, is more linearly independent. This simply amounts to swapping the
order of the given column vectors. At the third step the choice would involve
comparing the angle between the vector that is normal to the q,-q, plane and
each of the remaining given column vectors. There is a recursive relationship
for the entire process; it lengthens the computer code and can only minimize,
not eliminate, roundoff error.

Golub (1970:238) noted that if A is at all illconditioned, the algorithm in
program C2-2 would never be used without reorthogonalization, whereas
consistently excellent results have been obtained by the Rice method. The
interested reader is also referred to Lawson (1974:129-132) for additional
analysis.

1.1.3. The Matrix Eigenproblem. For every square matrix A" " there exist
vectors Vi' i = 1 to n, such that A transforms Vi into a vector pr~portional to
itself:

(2.2.28)

The scalar factor Wi is variously known as an eigenvalue, characteristic value,
proper value, or latent root. As Bellman (1960) noted, the hybrid word
eigenvalue is derived from eigenwerte, which means "characteristic value" in
German. "Despite its ugliness, it seems to be too firmly entrenched to
dislodge." Each vector Vi in (2.2.28) is called an eigenvector. The n eigenvectors
are the basis for an invariant' subspace in the sense that x and Ax are both
linear combinations of the same basis vectors. If q of the n eigenvalues are
equal to the same number, say w, then the q-dimensional subspace spanned by
the eigenvectors associated with them is called the eigenspace associated
with w.

The eigenproblem has a lot to do with the solution of linear equations, and
thus with optimization as well. In vibration and similar instances of simple
harmonic motion, eigenvalues are usually called the normal modes because
they define the extreme positions between which the system oscillates when
vibrating at a single "natural" frequency. As Noble remarked, "the computa
tion of eigenvalues and eigenvectors ... is a vast and technical subject. Many
of the more obvious methods are computationally unstable and/or inefficient."
In this section the discussion is directed toward clarity of concepts, and the
computations here are performed with less than maximum efficiency. Tech
niques for improving algorithmic efficiency are discussed in the next section.

The matrix involved, say A, is assumed to be real for purposes of optimiza
tion procedures. It may be unsymmetric, although the vast majority of

70 Matrix AIgebra and Algorithms

applications in optimization involve only symmetric matrices. An equivalent
statement of (2.2.28) is

(A - w,I)v, = 0, i = 1 to n for A/l,," (2.2.29)

and w, and v, represent any corresponding pair. A nontrivial solution for v (to
within a multiplicative constant) requires that

det(A - wI) = 0,

which may be expanded to appear as

[

an - w

det a21

a,l

The determinant for n = 2 yields

(2.2.30)

(2.2.31)

w2 - (an + a22)w + det(A) = O. (2.2.32)

In general, (2.2.31) produces an nth-degree polynomial with real coefficients
called the characteristicequation. It can always be factored to appear as

(w - w,)(w - w2) ... (w - w,) ... (w - w,) = 0,

Table 2.2.3. Some Important Properties of the Eigenproblem

(2.2.33)

(1) tr(A) = L:7_tWi' i.e., all + 022 + ... +ann = WI + w2 + .,. +wn .

(2) det(A) = TIr_tWi' i.e., det(A) =' wtw2 ... Wn , where n is the product operator.
(3) The Wi of a triangular matrix are equal to the elements on the principal diagonal.
(4) The Wj are real or in complex conjugate pairs for real A.
(5) The Wi of a real, symmetric matrix are real and the Vj are orthogonal.
(6) A real, symmetric matrix with orthonormal eigenvectors may be expanded as

,
A = L WjVjVr.

i-I

the spectral decomposition of A, and if A is nonsingular, then

,
A -I ,,-1 T

= f...., Wi ViVj .

i-I

(2.2.34)

(2.2.35)

(7) Eigenvectors of an arbitrary matrix corresponding to distinct eigenvalues are
linearly independent.

(8) The eigenvalues of (A - h I) are each greater than those of A exactly by the amount
h. and the eigenvectors are not changed.

Relationships in Vector Space 71

where the w; may not be distinct, that is, the eigenvalues may represent
multiple roots. Root-finding algorithms are readily available [Cuthbert
(1983:40)], so one means for computing eigenvalues is to solve the characteris
tic equation. However, finding the coefficients of the characteristic equation
involves roughly n4 multiplications, and root finding is often an iIIconditioned
process. Better methods are described, but the characteristic equation is of
great value in establishing many important properties of the eigenproblem.

The most important properties of the eigenproblem in the context of
optimization are listed in Table 2.2.3 for subsequent discussion. The first two
properties are a consequence of (2.2.31) through (2.2.33) and the well-known
algebra of polynomials. From property (2) it is seen that a singular matrix has
at least one eigenvalue equal to zero. Property (3) follows from the fact that
the determinant of a triangular matrix is the product of the elements on the
principal diagonal; thus, (2.2.31) and (2.2.33) lead to property (3). This is
easily confirmed for n = 2 when a 21 = 0 and a l2 '" 0; see (2.2.31).

It is common practice to normalize eigenvectors to the two-norm so that
they have unit length, although it is clear from (2.2.28) that their lengths are
completely arbitrary. Properties (4) and (5) are very important, because of the
predominance and tractability of the situation for real, symmetric matrices.
The transpose of any matrix has the same eigenvalues as the matrix, since the
determinant of a matrix is equal to the determinant of its transpose. Property
(6) involves sums of outer products and is discussed in the following. Property
(8) is evident by inspection of (2.2.31).

Finally, it is noted that for every eigenvalue w associated with an eigenvec
tor v, there is also an eigenvector, p, associated with AT:

ATp = wp or pTA = WpT. (2.2.36)

The equation on the right-hand side was obtained by transposition and
associates p as the left eigenvector of A. It can be shown that if Pk and vj are,
respectively, left and right eigenvectors corresponding to distinct eigenvalues,
then Pk and vj are orthogonal. Since a symmetric matrix is its own transpose,
its left and right eigenvectors coincide.

Bounds on the magnitudes of eigenvalues are available from Gerschgorin's
theorem. Consider (2.2.28) under the assumption that the eigenvector v has
been scaled by the infinity norm, where vk is its element with maximum
modulus. Then

all a ,2 a lk a In v, V,

a 2, an au a2n V2 V2

=w (2.2.37)
ak! a k2 akk akn 1 1

an' a n2 a nk ann Vn Vn

72 Matrix A Igebra and Algorithms

The k th equation from (2.2.37) is

w - akk = L GkjVj .

j#.k

(2.2.38)

However, the infinity normalization provides that Iv) :s; 1, so the result is that

Iw - ak.!:s; L: lak;l·
j#.k

(2.2.39)

In general, the eigenvalue w may be complex, so (2.2.39) states that on an
Argand diagram (real and imaginary axes) ,the eigenvalue must lie within a
circle of center au with a radius given by the summation in (2.2.39). The most
general statement possible, according to Gerschgorin's theorem, is that every
eigenvalue must lie within the union of n such disks constructed from the rows
of A according to (2.2.39). Since the major emphasis is on symmetric matrices,
observe that all of those eigenvalues must be real, so that the intercepts of the
disks lie on the real axis. Jennings (1977:36) shows that bounds on eigenvalues
for real, symmetric matrices are:

(a,,)mox:S; w, :s; (au + L: la j .!) ,
j#.k max

(2.2.40)

where Wn is the lllimmum eigenvalue and WI is the maximum eigenvalue.
Program C2-3, SYMBNDS, can be merged with program C2-I, MATRIX, so
that command number 13 computes the bounds of eigenvalues of symmetric
matrices. The reader interested in a more complete discussion of Gerschgorin's
theorem is referred to Jennings (1977: 35)

Example 2.2.3. One way to obtain a symmetric matrix is to form the
transposed product of another matrix. Let Z = TTT, where T was given in
(2.1.8). Table 2.2.4 shows that result. While in the BASIC environment,
LOAD"MATRIX and then MERGE"SYMBNDS. Run the composite pro
gram, create matrix Z in program matrix D, and execute command number 13.

Table 2.2.4. A 5 X 5 Symmetric Matrix: The Transposed Product of (2.1.8)

MATRIX D(5 ~ 5
50.00000

-18.00000
26.00000

3.00000
-14.00000

)
-18.00000

92.00000
-25.00000

56.00000
17.00000

26.00000
-25.00000
·52.00000

1.00000
20.00000

3.00000
56.00000

1.00000
70.00000
18.00000

-14.00000
17.00000
20.00000
18.00000
31.00000

Relationships in Vector Space 73

The results from equations (2.2.40) place the maximum eigenvalue between 50
and 208, and the minimum eigenvalue between - 38 and 31. The actual
eigenvalues are calculated in the following development; the maximum and
minimum eigenvalues are 149.42 and 0.3719, respectively.

Consider a real, symmetric matrix A and define a matrix Y whose columns
are the normalized eigenvectors of A:

Y ~ (v, v2 .•• vn). (2.2.41)

Further define a diagonal matrix W, whose elements are the corresponding
eigenvalues of A:

[

Wl

W= 0
o
o

o
W2

o

o] .
~ ~ diag(w,

Wn

W2 '" wn). (2.2.42)

Then all n equations represented by the eigenproblem in (2.2.28) can be stated
by

AY = YW.

Since Y is orthonormal, VV T = I and thus (2.2.43) yields

A = YWy T
,

(2.2.43)

(2.2.44)

which is equivalent to the summation in (2.2.34). Another arrangement of
(2.2.43) is

(2.2.45)

a special transformation. By making one orthogonal change of coordinates in
the domain of this transformation A and another orthogonal change in the
range, the representation W becomes diagonal.

If there exists a matrix P such that

(2.2.46)

then B is said to be similar to A, and B is the result of a similarity
transformation. Whenever A is symmetric, the similarity transformation in
(2.2.45) results in a diagonalization of A, and the eigenvalues of A are the
elements on the principal diagonal of W. (Note that y-l ~ y T)

A similar result can occur for any arbitrary real matrix. According to
Ralston (1965:471), there always exists a particular similarity matrix P such
that (2.2.46) produces a triangular matrix, say R:

P-lAP = R. (2.2.47)

74 Matrix Algebra and Algorithms

Recall that the principal diagonal of the triangular matrix R will contain the
eigenvalues of R (some may be complex), according to property (3) in Table
2.2.3. But similar matrices have the same characteristic equation and, there
fore, the same eigenvalues. To prove that A and R in (2.2.47) have the same
eigenvalues, note that det(p-l)det(P) = det(p-lp) = det(I) ~ 1, so that

deteR - wI) = det[p-l(A - wI)P]

= det(p-l)det(A - wI)det(P)

= det(A - wI) ~ O.

(2.2.48)

It so happens that the Gram-Schmidt orthogonalization algorithm that
produced (2.2.26) is the basis for finding eigenvalues from (2.2.47) in every
case and from (2.2.45) when all eigenvalues of an arbitrary A happen to be
real. Orthogonal matrices are special cases of similarity matrices, that is,
p-l = pT. Consider the following infinite iteration based on Gram-Schmidt
orthonormalization as described in Section 2.2.2:

A(l) = A,

k=I,2,

(2.2.49)

(2.2.50)

This procedure calls for an orthonormalization of A as before. The next step is
to obtain a new matrix A as the product of the reversed factors, namely, UQ.
Then that new A is decomposed into two factors using the same Gram-Schmidt
procedure, those factors are reversed and multiplied, and so on. Note that
(2.2.49) can be solved for U(k) ~ Q(k)TA(k). When that is substituted into
(2.2.50), it is found that

(2.2.51)

(2.2.52)

which is a similarity transformation in the form of (2.2.47). After k steps, the
algorithm described by (2.2.49) and (2.2.50) produces

A'k+l) = (Q(l)Q(2) ... Q(k»TA(Q(lW2) ... Q(k».

As was the case for the elementary transformations employed in Section 2.1.4
in the Gauss-Jordan matrix inversion algorithm, the sequence of orthogonal
transformations, Q, are not explicitly collected to form similarity matrix P in
(2.2.47). This procedure is called the QR algorithm and was first described by
Francis (1961). He noted that the algorithm can be expected to be numerically
stable because it employs orthogonal transformations. He proved that the
matrix A(k+l) tends to an upper triangular (or diagonal) matrix in which the
elements on the principal diagonal are the eigenvalues in order of modulus,

Relationships in Vector Space 75

Table 2.2.5. The Diagonalized Matrix from Table 2.2.4 After 16 Iterations of the
QR Algoritbm

MATRIX At 5 , 5) -
149.41766 -0.01060
-0.01060 81.27141
0.00000 0.00969
0.00000 0.00000
0.00000 -0.00000

COMPLETED ITERATION # 16

-0.00000
0.00968

48.00166
-0.00000
0.00000

0.00001
-0.00000
0.00000

15.93808
-0.00000

-0.00000
0.00021
0.00061
0.00007
0.37119

the first (all = Wj) being the largest. Francis also proved that the rate of
convergence of the element aiJ) below the principal diagonal of A(k) is
proportional to (wi/w)k, which indicates that the rate of convergence to
triangular or diagonal form is slowest when some eigenvalues are closely
spaced.

Program C2-4. QRITER, in Appendix C implements the QR algorithm in
conjunction with program C2-2, GSDECOMP, the Gram-Schmidt decom
position. The composite program is obtained by issuing the following three
commands in the BASIC environment: LOAD"MATRIX, MERGE"GSDE
COMP, and MERGE"QRITER. The Gram-Schmidt orthogonalization pro
cedure appears as command 10. It is called automatically by the QR al
gorithm, which also operates on matrix A and is initiated by command 13.
Because command 13 asks the user if the algorithm should continue after each
iteration, the user may find that the IBM-PC keyboard buffer is useful in that
it will remember as many as 15 (RETURN) keystrokes to keep the iterations
going.

Example 2.2.4. Consider the symmetric matrix Z shown in Table 2.2.4. It was
generated by the transposed product of the 5 X 5 matrix T in (2.1.8). The
diagonal matrix in Table 2.2.5 was obtained after 16 iterations of the QR
algorithm. Nearly all the nondiagonal elements have converged to zero, and
the elements on the principal diagonal are the eigenvalues of the original
matrix, ordered according to modulus. According to (2.1.48), the spectral norm
of T is the square root of the largest eigenvalue of TTT, namely, 149.42. Thus,
11TH, = 12.22, which is the same order of magnitude as the other matrix norms
of T shown in Table 2.1.8. .

Example 2.2.5. Consider the 3 X 3 nonsymmetric matrix shown in Table
2.2.6 The result obtained after seven iterations of the QR algorithm are also
shown there. Observe that nonsymmetric matrices with all real eigenvalues are
triangularized by the QR algorithm. In this special case the three real eigenval
ues are shown on the principal diagonal (846.50, 20.46, and 3.03). Notice that
properties (1) and (2) in Table 2.2.3 verify the accuracy of this decomposition
(the determinant being available from command 9).

Example 2.2.6. Now copy matrix T from (2.1.8) into program matrix A and
execute command 13 for the QR algorithm. The resulting matrix shown in

-96.24244
14.29877
3.03078

76 Matrix Algebra and Algorithms

Table 2.2.6. A 3 X 3 Nonsymmetric Real Matrix Having
Real Eigenvalues Before and After Seven Iterations of the
QR Algorithm

MATRIX At 3 , 3) -
530~00000 550~00000 150~00000

275~00000 300.00000 100.00000
80.00000 90~OOOOO 40.00000

•••••••••••••••••••••••••_, •••••••••__•••••*
MATRIX At 3 , 3) -

846.50580 266.74814
0.00000 20.46343
0.00000 0.00003

COMPLETED ITERATION * 7

Table 2.2.7. Matrix from (2.1.8) after 20 Iterations of the QR Algorithm

MATRIX A(5 , 5) -
7.48306 0.91139
0.50558 -3.22727

-0.00192 4.67517
0.00000 -0.00004

-0.00000 0.00000
COMPLETED ITERATION. 20

-2.25749
-6.58359
-3.08647
-0.00005
0.00000

-1.79853
-2.15423
7.27831
3.56256
-O~OOOOO

-0.99830
1.97081
5.03873
6.39289

-1. 73188

Table 2.2.7 is almost upper triangular. Evidently, there is one pair of con
jugate-complex eigenvalues as indicated by the principal 2 X 2 submatrix
composed of a 22 , a2J' a'2' and a". As Francis (1961) explained, the most
likely occurrence of eigenvalues of equal modulus would be those in con
jugate-complex pairs: "Then the nearly-triangular matrix A becomes split into
independent principal submatrices coupled only in so far as the eigenvectors
are concerned." The extraction of complex pairs of eigenvalues is beyond the
scope of this treatment; the interested reader is referred to Francis (1962),
Morris (1983:359), and Golub (1983).

Several important improvements can be made to make the QR algorithm
more efficient and accurate. The major inefficiency in the QR algorithm
implemented here is that the Gram-Schmidt decomposition procedure re
quires on the order of n' multiplications; Householder elementary transforma
tions that will triangularize a matrix using about n2 multiplications are
described in the next section. There is a way to accelerate convergence of the
ann element; it will usually converge first because in general the rate of
convergence of subdiagonal elements to zero is governed by the ratio of
adjacent eigenvalues, especially an. n-I --. 0 at a rate proportional to (Wn_l/wn)'
According to property (8) in Table 2.2.3, the ann element in Table 2.2.7 can be
made quite small by adding 1.731 to A before employing the QR algorithm.
The before and after results are shown in Table 2.2.8. Notice that the last row
converged in only three iterations. The conventional procedure is to (1)
estimate Wn at each iteration and shift A accordingly, (2) deflate the matrix
when ann has converged by eliminating the last row and column, and (3)

Relation..fhips in Vector Space 77

Table 2.2.8. Matrix from (2.1.8) shifted by 1.71 for Rapid Convergence to the
Eigenvalue of Smallest Modulus

1.94178
-0.52142
2.08605

-7.92110
-0.03188

4.00000
1.00000

-1.00000
-3.00000
3.70000

-3.07325
-3.66087
4.58315
5.30901

-0.00000

2.38470
-3.19527
-1.57100
-6.50438
0.00000

READ FILE T.MAT INTO MATRIX B
C=I
5X5 UNIT MATRIX
1.7'C
A=9+C

MATRIX A(5 , 5) -
3.70000 3.00000 5.00000 6.00000

-1.00000 2.70000 -1.00000 1.00000
-2.00000 3.00000 -2.30000 5.00000
5.00000 3.00000 -1.00000 3.70000

-4.00000 8.00000 -3.00000 2.00000............_-_ __ _.._. __ .
MATRIX At 5 • 5) -

9.26277 0.53595
1.86793 -1.46890
0.97351 3.07693
2.07081 -3.06019

-0.00000 0.00000
COMPLETED ITERATION # 3

recommence QR iterations for the reduced (n - 1, n - 1) matrix. Interested
readers will find details in Morris (1983:353).

Finally, it is noted that any real matrix can be transformed into a
Hessenberg, tridiagonal, or bidiagonal form using noniterative processes that
preserve the eigenvalues. An upper Hessenberg matrix is upper triangular with
one more nonzero subdiagonal adjacent to the principal diagonal (i.e., ail ~ 0
for i > j + 1). The reason for doing so is to apply the iterative QR algorithm
on a matrix containing many zeros and known to converge much more rapidly
than from a general matrix. See Acton (1970:317).

The remaining problem is finding the eigenvectors that correspond to the
approximate eigenvalues that are now known. From (2.2.28), one approach is
to solve that set of n equations for the unknown Vi' However, that system is
actually of rank n - 1, since the eigenvector can be determined only to within
an arbitrary factor as seen from (2.2.28). The power method successfully
determines the eigenvalue of largest modulus and its corresponding eigenvec
tor. Since it leads to a general scheme for finding all eigenvectors, it is
discussed first. It assumes that the eigenvalues are ordered according to
modulus, so that IwII is the largest and Iwnl is the smallest. Property (7) in
Table 2.2.3 states that an arbitrary vector may be expressed as a linear
combination of distinct eigenveciors of a matrix. Thus, suppose that

(2.2.53)

where the Vi are eigenvectors of matrix B. Now premultiply c(O) by B;
observing (2.2.28), the result can be expressed as

(2.2.54)

78 Matrix AIgebra and Algorithms

Continuing to premultiply these results by B, after k times, the vector
obtained is

elk) = Bke(O) = wkp. + wkp V + ... + wkp.
111222 """. (2.2.55)

Since the eigenvalues are distinct, IWd > !w,1 and for PI * 0 and k sufficiently
large, a limiting relationship is that

(2.2.56)

Therefore, elk) approaches being proportional to the dominant eigenvector, '1'

Example 2.2.7. Program C2-5, SHINVP, finds any eigenvector, but it is easily
modified to accomplish the power method for finding the dominant eigenvec
tor. LOAD" MATRIX, then MERGE"SHINVP. Then change the following
two lines:

7000 M9 = K9 : N9 = 1 : GOTO 7120
7380 RETURN

This program assumes an initial vector e(O) composed of all l's; see (2.2.55).
There are cases where coefficient PI is so small that convergence is to the
second eigenvector instead of the first. A common implementation employs
randomly selected normalized starting vectors. The infinity norm is used to
scale each new estimated eigenvalue. Running this modified program with the
top matrix in Table 2.2.6 placed in program matrix B results in the following
calculations:

[530 550 150Wr~ c(O) [1]
275 300 100 1 = 1230.0 .54878 ,

80 90 40 1 .17073
~

[530 550 150] [1] C(l) [1]
275 300 100 .54878 = 857.43 .53264 ,
80 90 40 .17073 .15887

~
[530 550

150] [1] c(2) [1]275 300 100 .53264 = 846.78 .53223 ,
80 90 40 .15887 .15859

~

[530 550
150] [1] c(3) [1]275 300 100 .53223 = 846.51 .53222 .

80 90 40 .15859 .15858

Therefore, the eigenvalue is 846.51, which agrees with Table 2.2.6, and the
corresponding eigenvector is (1 0.53222 0.15858)T The convergence criterion

Relationships in Vector Space 79

in (1.3.22) was applied to the estimated eigenvalue (reported as the "trial
factor" by the program) with a tolerance value of 0.0001.

The eigenvalue having the least modulus can be found by using B-1 in place
of B and inverting the resulting eigenvalue (the eigenvector is the same). In
other words, if (w, v) is the dominant eigenpair for B, then (l/w. v) is the
dominant eigenpair for B- 1 This is called the inverse power method. The
reader is urged to confirm this result for the matrix in Example 2.2.7. This and
the shifting property (8) in Table 2.2.3 are the basis of the universally accepted
method for finding eigenpairs: the shifted inverse power method.

Note that (2.2.28) can be modified to be

(B - hI)v = (w - h)v. (2.2.57)

Suppose that Wi is the eigenvalue nearest h. Then the least dominant eigenpair
for (B - hI) is (Wi - h,v

i
), and the dominant eigenpair for (B - hI)-1 is

[(Wi - h) - " Vi]' Therefore, given an estimated eigenvalue h, the eigenvalue
nearest h is

Wi = [dominant eigenvalue of (B - hI) -1]-1 + h. (2.2.58)

Program C2-5, SHINVP (unmodified), performs the calculations just de
scribed for the shifted inverse power method, including renormalization of the
eigenvector to the two-norm. As before, the matrix (uninverted) is entered into
program matrix B; then command 13 requests an estimate for the eigenvalue
and performs all other calculations. These unit-length eigenvectors are con
tained in matrix (vector) A and can be stored as obtained, one at a time. Then
program C2-6, VECTOCOL, can be merged as a new command 13 to store
each of the eigenvectors in the appropriate column of program matrix O.
Caution: Since B is inverted each time, the matrix must be recalled into B for
each eigenvalue-eigenvector calculation.

Example 2.28. The 5 x 5 symmetric matrix in Table 2.2.4 has the approxi
mate eigenvalues shown in Table 2.2.5. These can be used one at a time in
program C2-5, SHINVP, to find their respective eigenvectors. These were
placed into columns of program matrix 0 by program C2-6, VECTOCOL, as
shown in Table 2.2.9. Use of MATRIX command 8 to form the transpose
product 0 TO = I verifies that 0 is in fact an orthonormal matrix.

Example 2.2.9. Program SHINVP was employed to characterize the 3 x 3
nonsymmetric matriX in the top of Table 2.2.6, using the eigenvalues in the
bottom of Table 2.2.6. The resulting columns shown in Table 2.2.10 were
stored using program VECTOCOL. In this case it is easily verified that the
resulting matrix of eigenvectors is not orthogonal.

As Jacobs (1977) noted, "In the last decade inverse iteration has established

80 Matrix Algebra and Algorithms

Table 2.2.9. An Orthonormal Matrix of Eigenvectors Characterizing the
Symmetric Matrix in Table 2.2.4

MATRIX O(5 ,
-0.19844

0.75412
-0.20313

0.56318
0.18302

5 } -
0.52573

-0.04281
0.69700
0.40860
0.26271

0.65297
0.11400

-0.33871
0.16550

-0.64693

-0.26471
-0.62599
-0.21396

0.69617
-0.08738

0.43333
-0.15690
-0.55895
-0.06193
0.68654

Table 2.2.10. A Matrix of Eigenvectors
Characterizing the Nonsymmetric Matrix
at the Top of Tahle 2.2.6

MATRIX O(3
0.87424
0.46528
0.13864

, 3)
0.70600

-0.52418
-0.47623

-0.63882
0.69946

-0. 3204t

itself as the standard algorithm for computing eigenvectors corresponding to
specific eigenvalues." Finally, the generalized eigenproblem is mentioned for
completeness. It is

or

Av ~ wBv,

(A - wB)v ~ 0,

(2.2.59)

(2.2.60)

analogous to (2.2.29). The v is referred to as the eigenvector of A - wB. There
are specialized algorithms for solution of the generalized eigenproblem, de
pending on the nature of matrix B. Highly reliable FORTRAN routines are
available for solutions to the eigenproblem, especially the UNPACK series
(Dongarra, 1979), and the EISPACK series (Garbow, 1977; Smith, 1976).

2.2.4. Special Matrix Transformations. Several other important orthogonal
matrices are introduced in this section. An orthonormal matrix is called proper
if det(A) ~ 1 and improper if det(A) ~ -1. Consider the plane rotation matrix
in £':

Q ~ [COSO
stn 0

-sinO]
cosO'

(2.2.61)

The transformation y = Qx using (2.2.61) represents t~o equations in two
independent variables, Xl and x" and two dependent vanables, Yl and 12. It
is not difficult to verify that this is the rotation of axes shown in Figure 2.2.4.
It is also easy to verify that Q in (2.2.61) is orthonormal, that is, QTQ = I.
Any proper 2 X 2 or 3 X 3 matrix represents a rotation in Euclidean space;
see Noble (1969:421). In general, orthonormal matrices employed in transfor
mations like y ~ Qx leave angles and lengths unchanged between ranges and

X2
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

Relationships in Vector Space 81

p

R

Figure 2.2.4. A rotation of axes according to y = Qx. where Q is an orthogonal rotation matrix
in £2.

domains. It is especially easy to see that lengths are preserved by orthonormal
transformations,

(2.2.62)

because IIQxll~ = (QxlQx = xTx = IIxll~.

It was remarked in the last section that there were means to transform
general real matrices to an upper Hessenberg form and symmetric real
matrices to a tridiagonal form. A bidiagonal form is also required in Section
3.1.2. These forms are illustrated in Figure 2.2.5. The process of arranging for
zeros in matrices is called element annihilation. A very efficient way to perform
those transformations is based on the Householder transformation:

Q ~ I - 2uuT , Iluib ~ 1.

The Householder transformation of x into y is

y = Qx = x - u(2uTx).

X X X X X X X X 0 0 a 0
X X X X X X X X X 0 0 0
0 x x x x x 0 x x x 0 a
0 0 x x x x () 0 x x x 0
0 0 0 x x x 0 0 0 x x x
[0 0 0 0 x x 0 0 a 0 x x

(0) (b)

(2.2.63)

(2.2.64)

x x 0 0 a 0
0 x x 0 0 0
0 0 x x 0 0
0 a 0 x x 0
0 0 0 0 x x
0 0 0 0 0 x

(c)

Figure 2.2.5. Three matrix fonns that can be obtained by Householder similarity transforma
tions: (a) Upper Hessenberg, corresponding to any real matrix; (b) tridiagonal. corresponding to
any real, symmetric matrix; and (c) bidiagonal, for use in singular value decomposition.

82 Matrix A Igebra and AIgarithms

C

A

tJi"=::::....----------X2

• C'

• A'

Figure 2.2.6. A geometric interpretation of the Householder transformation. B is the midpoint
of AC, where OB is perpendicular. Therefore, u is the projection of -x on AC.

This shows that (1) u is in the (x - y) direction, (2) Yi ~ Xi if and only if
u i = 0, and (3) y = x only if uTx = 0, the orthogonality condition discussed
previously, In fact, uTx is the projection of x on u discussed in connection with
the Gram-Schmidt procedure and illustrated in Figure 2.2.3, A similar geo
metrical interpretation for the Householder transformation is shown in Figure
2.2.6.

It is easily verified that the Householder matrix in (2.2.63) is symmetric
(QT = Q) and orthonormal (QTQ = I), and thus preserves Euclidean lengths
according to (2.2.62). It will now be shown that the vector u can be chosen so
that use of the Householder transformation in a similarity transformation, as
in (2.2.46), can reduce general and symmetric matrices to Hessenberg and
tridiagonal forms, respectively. This is accomplished in a finite number of
steps, and eigenvalues are not affected. The principal application of that result
is to simplify and accelerate solutions of the eigenproblem, including those
described in the last section. .

Consider the similarity transformation according to (2.2.46), using the
Householder matrix:

B = QAQ = A(I - 2uuT) + 2uuT(2c1 - A),

where c is a scalar equal to the quadratic form

(2.2.65)

(2,2.66)

Carrying out the substitution of (2.2.63) into (2.2.65) will verify the latter. The

Relationships in Vector Space 83

fact that c is a scalar can be seen from the dimensions of its components; its
actual value is not used in this analysis. As encountered earlier in (2.1.22), the
outer product is

["'
uIU 2 ".".]

uuT = u,~, U' u2un . (2.2.67),
unu l unu2 U'•

Choose the vector u to have u, = 0 and unit length; then

u = (0 u, u, ... u.) T, lIull, = 1. (2.2.68)

Also, the two parenthetical expressions in (2.2.65) are

o
1 - 2u~ -2~'U.],

1 - 2u;

(2.2.69)

[

2C - au

(2cI - A) = -a2l

-anI

-a12
2c - a22

-a
ln

]-a,. (2.2.70)

2c - a••

It is now easier to find expressions for the elements in the first column of B
as defined by (2.2.65). Recall that the elements in the result of a matrix
product are located by the row of the multiplier and the column of the
multiplicand. For convenience, define a term

(2.2.71)

Then the first column of B = fbi) is bu = au, and

b2l = a 2l - 2u,h = r

(2.2.72)

84 Matrix Algebra and Algorithms

If B is to be in upper Hessenberg form, then bn and b21 are not zero; they are
equal to an and some constant, r, respectively. Also, bJ! through bn1 are to be
zero. Two different operations on the set of equations in (2.2.72) will yield
values for rand' h, and thus for uj ' First, square each equation and then add
them all together; the result is

(2.2.73)
• i

But the second summation is equal to h according to (2.2.71), and the third
summation is equal to unity because u has unit length. Thus an expression for
,2 is

(2.2.74)

The second operation on the equations in (2.2.72) is to multiply each one by
a i1 and then add them all together; the result is

(2.2.75)

But the first summation can be replaced by (2.2.74) and the second summation
is equal to h. Therefore,

(2.2.76)

Since r is determined with an arbitrary sign by (2.2.74), its sign is chosen as
opposite that of a 21 SO that there is no cancellation in (2.2.76). Then, referring
to (2.2.72), the vector u can be written in terms of A using parameters r
and h:

(2.2.77)

and the outer product uuT must be divided by 2h 2 so that u has unit length,
that is, u = u'/h/(2)l/2.

So much for the first column of B, a matrix in Hessenberg form. A little
thought will show that making u1 and u2 zero in (2.2.68) will lead to a second
similarity transformation that will annihilate the appropriate elements in the
second column of B. A Hessenberg matrix as in Figure 2.2.5 has a lower
triangular structure with exactly n - 2 columns defined equal to zero. There
fore, any real matrix may be reduced to upper Hessenberg form by the
sequence of n - 2 similarity transformations starting with A(l) ~ A, and

(2.2.78)

Relationships in Vector Space 85

where Q is defined by (2.2.63), and

r = -(sign aj+1.J(a]+l.j + a]+2.j + '" +a;.J
1

/
2

, (2.2.79)

2h 2 = r 2
- raj + 1• j , '(2.2.80)

(2.2.81)

for j = 1,2, ... , n - 2. The first j elements in the vector uU) are zero.
These equations have been programmed as MATRIX command 13; the

additional instructions are contained in program HOUSE, C2-7 in Appendix
C. This calculation may be run by invoking the BASIC environment, and then
executing LOAD"MATRIX and then MERGE"HOUSE. Command 13 shows
the effects of this particular Householder transformation on each successive
column of the matrix placed in A and returus to the menu when the
Hessenberg form has been obtained.

Example 2.2.10. The transformations to upper Hessenberg and tridiagonal
forms were obtained for the 5 X 5 nonsymmetric matrix in (2.1.8) and its
symmetric transposed product, namely, Z = TTT. The final results are shown
in Tables 2.2.11 and 2.2.12, respectively.

Some reasons for wanting to obtain these forms have been given in
connection with an increased rate of convergence of the QR process for
finding eigenvalues, especially when matrix deflation is employed. Some other
methods for finding the eigenvalues and eigenvectors of matrices with these

Table 2.2.11. The Real Nonsymmetric Matrix in (2.1.8) After Transformation
to Upper "essenberg Form

MATRIX A(5 , 5) -
2.00000 0.14744
6.78233 0.76087

-0.00000 -5.85025
-0.00000 0.00000
0.00000 0.00000

-7.59203
-1.04183
-1.27637
-0.51077
0.00000

-5.00257
4.48833
3.44000
2.47215
0.52385

-1.82032
2.92576
5.25292
6.76662

-0.95665

Table 2.2.12. The Real Symmetric Matrix Transposed Product of (2.1.8) After
Transformation to Tridiagonal Form

MATRIX A(5 ,
50.00000
34.71311
-0.00000
-0.00000
0.00000

5)
34.71311
67 .. 77595
53.98535
-0.00000
-0.00000

-0.00000
53.98535
92.06268
35.62140
0.00000

-0.00000
0.00000

35.62140
65.35001

-15.49466

0.00000
-0.00000
-0.00000

-15.49466
19.81138

86 Matrix A Igebra and Algorithms

special forms have not been discussed. The reader is referred to Wilkinson
(1963), Ralston (1965), and Acton (1970). The reader is cautioned that
program C2-7 has been deliberately left in a very inefficient state, since clarity
is much more important for these purposes. However, Jennings (1977) and
many others have shown that the full Householder matrix need not be
constructed at all, thus conserving memory space and avoiding spurious
multiplications by zero. When optimally programmed, the Householder method
requires as many as ~nJ multiplications. As Acton (1970:329) noted, "We
have here one of many examples where matrix notation, though very useful for
derivations and proof, can lead the unwary computor astray."

The remainder of this section describes projection matrices. In order to
treat that subject, it is necessary to formalize the concept of the hyperplane. A
hyperplane H is the subspace described by vectors x in En that satisfy

(2.2.82)

where h is a scalar. The nonzero vector n is called the normal to the
hyperplane, which is especially apparent when h ~ O. In E 2, consider the case
when n ~ (t 1)T and h ~ t. Then (2.2.82) yields

(2.2.83)

This particular normal vector n and the hyperplane H are shown in Figure
2.2.7. Clearly, if h ~ 0, the hyperplane passes through the origin. Apparently,
the scalar h causes a shift from point 0 to point 0'. This particular
hyperplane is a line having the coordinate Yl' Note that the x vectors that
describe the line are not in the line, only their tips. Similarly, Figure 2.2.8
shows a two-dimensional hyperplane in a three-dimensional space. Any vector
Y = CIYI + c,Y, lies in the hyperplane.

When h = 0, the hyperplane passes through the origin in En. Then nTY= 0
forms a vector subspace of dimension n - 1 which has orthonormal basis

x,

I
"2

Figure 2.2.7. A hyperplane H in £2. The
E....----l'------~-x1 normal vector is n = (t 1)T, and the hyper-

2" plane is one-dimensional (a line).

Relationships in Vector Space 87

n

)L------------X2

x,
Figure 2.2.8. A hyperplane H in EJ. The hyperplane is two-dimensional and has coordinate
vectors Yl and Y2'

vectors Y" Y2" .. ,Yn-" But normal vector n is linearly independent of these, so
the n - 1 basis vectors in the hyperplane and the normal vector n form a basis
for En. Therefore, every vector x in En that satisfies (2.2.82) can be written as
the linear combination

(2.2.84)

Premultiplying (2.2.84) by nT and substituting (2.2.82) yields

so that the last coefficient can be found equal to

h h
c=-=--

n nTn IIn lli'

(2.2.85)

(2.2.86)

But the squared length of any vector x from the origin to a point in the
hyperplane is the sum of squared coefficients related to the basis vectors in
(2.2.84):

(2.2.87)

Note that the last term accounts for the fact that n is not necessarily of unit
length as are the y, vectors in H. From (2.2.87) and the Pythagorean theorem,
the minimum x occurs where x is collinear with n, that is, along 0-0' in
Figure 2.2.8. Therefore, the hyperplane is displaced Ihl/llnll, from the origin in
En, that is, from point O. This displacement is (~}3/2 in Figure 2.2.7.

88 Matrix A Igebra and Algorithms

"
",

",

H,

L -\- .::::.~----"

H,
Figure 2.2.9. A polyhedral cone having a vertex at the intersection of two hyperplanes, HI and
H;. The cone is included in the half-spaces of the two hyperplanes and is generated by their
respective normal vectors, nl and n2' In this case the manifold Q is simply a point in £2.

A half-space is the set of vectors lying on one side of a hyperplane, usually
taken to be that vector space in the direction of the related normal vector. A
polyhedron is the intersection of a finite number of haH-spaces. If there are a
number of hyperplanes, Hi' associated with normal vectors n i' then the
hyperplanes are said to be linearly independent if the n i are linearly indepen
dent. The intersection of q hyperplanes is called a manifold, Q. A manifold is
sometimes called an affine subspace as opposed to a linear subspace, the
technical distinction being that the latter passes through the origin.

The intersection of any two linearly independent hyperplanes is an (n - 2)
dimensional manifold in En. In the same way, the intersection of any (n - I)
such hyperplanes determines a line, and n such intersecting hyperplanes
determine a point in En, called the vertex of a polyhedron. A polyhedral cone
is "generated" by two or more normal vectors at a vertex; see Figure 2.2.9.

The following analysis is simplified by two assumptions: (1) all normal
vectors n i that generate hyperplanes Hi have unit length, and (2) all hyper
planes contain the origin, that is, h = 0 in (2.2.82). After Rosen (1960), use q
of these linearly independent normals to define the Nm • q matrix, m :2: q:

N = (n, n, ... n j '" n q), (2.2.88)

which has rank q. Therefore, NTN is nonsingular and its inverse exists. The
concepts of Figure 2.2.9 in E 2 can be extended to the E J space in Figure 2.2.8
by constructing two intersecting hyperplanes as illustrated in Figure 2.2.10. Q
is the subspace or affine manifold representing the intersection of the hyper
planes; Q is generally of dimension (m X q) when there are q intersecting

Relationships in Vector Space 89

X3

r------------ X2

Xl

Figure 2.2.10. Two intersecting hyperplanes, HI and H 2• generated in £3 by their respective
normal vectors, n J and n 2 . Q is the (m ~ 2)-dimensional manifold representing their intersection.
A q-dimensional subspace is that spanned by the two normal vectors; it is called Q.

hyperplanes. If Q is the subspace seanned (generated) by n l and n z, then
clearly Em consists entirely of Q and Q (their direcI sum). Also, any vector r in
Q is perpendicular to any vector d in Q, that is, rTd ~ 0, so that Q and Q are
orlhogonal complemenls of each other.

Now define a matrix

(2.2.89)

The matrix j> is a projeclion malrix that takes any vector in Em into subspace
Q. As a consequence of the preceding direct-sum statement, proof of projec
tions by (2.2.89) may be satisfied by showing that j> takes any vector in Q into
the zero vector and any vector in Qinto itself. Again, if any vector r is in Q,
then n)r = 0, for j = 1 to q. That is equivalent to NTr = 0, so that

(2.2.90)

Again, let d be any vector in Q, so that d may be expressed as a linear
combination of its basis vectors, namely,

where t ~ (1, I z

q

d = I: I,n, ~ Nt,
i=1

(2.2.91)

(2.2.92)

----------------------~------

90 Matrix Algebra and Algorithms

Q

i------X2

Xl

Figure 2.2.11. Projection of ,vector y from EJ into the intersection (manifold) of the two
hyperplanes in Figure 2.2.10. Notice that Py is "parallel" to the manifold.

Now a second projection matrix can be defined that takes any vector in Em
into the manifold Q, the intersection of q hyperplanes. Stated another way,
this transformation projects the direction on which it operates into the
orthogonal complement of the directions represented by the columns of N. It
IS

(2.2.93)

P has dimensions m Xm. Using the same vectors and properties of P as
previously defined,

Pr ~ r ~ Pr = r,

Pd ~ d - Pd ~ o.

(2.2.94)

(2.2.95)

Figure 2.2.11 illustrates the projection of a vector in E 3 into a point on the
inlersection of the two hyperplanes shown in Figure 2.2.10. Vectors X o and x
terminate on the manifold Q. Vector Py is "parallel" to Q, and any veclor x
on Q may be expressed as

x~xo+Py· (2.2.96)

Projection matrices have a number of interesting properties. Their eigenval
ues are either unity or zero. The rank of a projection matrix is equal to its
trace, and the number of unity eigenvalues is equal to its rank. Projection
matrices are idempotent, meaning that p 2 = P. The necessary conditions for a
matrix to be a projection matrix are that it be both idempotent and symmetric.

Relatiomhips in Vector Spm:e 91

There are several useful identities that involve projection matrices; these will
be left to the problems at the end of this chapter.

Some of the terms on the right side of (2.2.93) have a pervasive importance
in analysis of overdetermined systems of linear equations and other analysis
related to optimization. At this time, the full-rank generalized (pseudo)
inverse is defined as

(2.2.97)

where Am. n is of rank n and m 2: n. A+ has dimension n X m. When m = n,
then A+ = A-I. Clearly, P = 1 - NN+. Program GENINVP, C2-8 in Ap
pendix C, can be merged into program MATRIX. Then command 10 com
putes the generalized inverse for the matrix in A according to (2.2.97). Also,
command 13 computes the projection matrix defined by (2.2.93), using the
data in matrix A which is automatically normalized by column as required for
matrix N in (2.2.88). The anSWerS are returned in matrix A in both cases.

Exampk 2211. Consider the 3 X 2 matrix

N= [~ n (2.2.98)

To find its generalized inverse and the associated projection matrix,
LOAD"MATRIX and then MERGE"GENINVP. The results are shown in
Table 2.2.13. The upper 2 X 3 matrix is the generalized inverse of rank two;
the reader is urged to confirm that A+A = I,. The lower 3 X 3 matrix in Table
2.2.13 is the projection matrix, P defined in (2.2.93). The reader is urged to
note that P is symmetric and its rank (equal to its trace) is 1, and to confirm
that P' = P (P is idempotent). The geometric significance of P can be
observed by noting that the columns of matrix N in (2.2.98) define two
hyperplanes through the origin in £'; using (2.2.82), with h = 0,

Xl + 5x, + 5x, = 0,
(2.2.99)

2x1 + 7x, + 3x, = 0.

Table 2.2.13. The Generalized Inverse and Projection
Matrix P = I - NN + for the Matrix in (2.2.98)

MATRIX A(2 •
-0.09170
0.10917

MATRIX A(3 •
0.87336

-0.30568
0.13100

3)
-0.11790
0.21179

3) -
-0.30568

0.10699
-0.04'585

0.33624
-0.23362

0.13100
-0.04585

Q.01965

92 Matrix A 1gebra and Algorithms

By substituting from one equation into the other, it is found that X 2 =

-7xl /20 and x 3 = 3xl /20. Arbitrarily equating Xl = 4, we find that
x = (4 - i 1)T is a vector lying in the intersection Q of the two hyperplanes,
since they both pass through the origin. Each of the unit coordinate vectors e;
projects into this same direction, since Pe;. i = 1 to 3, represents each column
of P shown in the lower part of Table 2.2.13, and each column is proportional
to x ~ (4 - i 1)T. Furthermore, consider the arbitrary vector y = (2 1 3)T,

. having a length of (14)1/2. Then Py = (1.82406 - 0.64192 0.27512)T, having a
length of 1.96253. But by the formula for the angle between two vectors,
(2.1.42), the angle between y and Py is 58.3648 degree, and the projection of
length (14)'/2 at that angle is 1.96253, verifying the relationship illustrated in
Figure 2.2.11.

It was noted in Chapter One that inequality constraints to optimization
problems could be expressed in the form

c(x) ;;, O.

When c(x) is a set of q linear constraints, they may be expressed as

(2.2.100)

njx ~ 0, j ~ 1 to q. (2.2.101)

The question is: Given a point in space, x, which constraints contain that
point in their positive half-spaces? The answer lies in the sufficient condition

(2.2.102)

where N is defined by (2.2.88). For example, when N is given by (2.2.98), then
x ~ (2 1 3)T is in the positive half-space of both hyperplanes since NTx ~

(22 20)T. But x = (1 -1 l)T is in the positive half-space of HI but the
negative half-space of H 2 since NTx ~ (1 - 2) T.

Two final notes about projection matrices. The practical application of the
projection of search direction vectors into applicable constraint hyperplanes
requires that the columns of matrix N receive additions and deletions of one
or more hyperplane normal vectors. Since N -1 is needed repeatedly for
projection, the methods of Rosen (1960:189) enable the update of N- l effi
ciently following additions and deletions of columns of N. Finally,
Willoughby (1973) noted that, "An understanding of the geometric signifi
cance of the equations associated with the projection process leads directly to
an understanding of the calculations that are needed to apply the projection
operator to any direct gradient search optimization method." As in previous
methods, it is seldom necessary to explicitly compute and store the P matrix.
There are a number of computational shortcuts that depend on the structure
of the linear constraints; see Fiacco (1968:153).

1----- ---
I

Probkms 93

Problems

2.1. A matrix defined so that AT = -A, that is, laji] = I-ao]' is called a
skew matrix. Show that:
(a) A skew matrix is square.
(b) Only zero elements occur on the principal diagonal.
(c) For any square matrix A, (A - AT) is skew.
(d) Any square matrix can be uniquely decomposed into the sum of a

symmetric and a skew matrix.

2.2. Show the form of the elements in the inverse of a real, diagonal
matrix. Show that if a matrix A is symmetric, then A-1 is also
symmetric. Show that the inverse of a nonsingular elementary House
holder matrix I - 2uuT is also a Householder matrix involving the same
two vectors.

2.3. If matrices A, B, and A + B all have inverses, show that

2.4. Given the partitioned matrices

and

where T and Pare nonsingular. Show that

A = p-1 + p-1QC,

B = _P-1QD,

C = DRP-1,

D = (S _ RP-1Q)-1.

2.5. Consider the matrix product DA, where D is diagonal, that is, D =
diag(d, d 2 ••• d, '" d.). Show that DA is equivalent to multi
plying the ith row of A by d,. Conversely, show that AD is equivalent
to multiplying the ith column of A by d,.

2.6. For orthogonal matrices, show that
(a) The product of two orthogonal matrices is also orthogonal.
(b) The inverse of an orthogonal matrix is orthogonal.
(c) All eigenvalues of an orthogonal matrix have modulus unity.

2.7. Show that the columns of a diagonal matrix are linearly independent if
all of elements on the principal diagonal are nonzero.

.2.8. A set of vectors forms a vectoT space if any two vectors, say x and y,
are members and x + y and hx are also members, where h is a scalar.

94 Matrix Algebra and Algorithms

Show that the eigenvectors v corresponding to a given eigenvalue W

constitute a vector space, where Av = wv.

2.9. Show that swapping any two rows (or columns) in a matrix A swaps the
corresponding columns (or rows) of A-I.

2.10. Show that the det(A 3,3) is equal to

det(A) = 0Ua22033 - 011032023 - 012021033

+012031023 + alJalIa n - Q13 0 31 0 22'

Note that no two elements in each product lie in the same row of A,
nor do any two elements lie in the same column.

2.11. Show that the product of two upper triangular matrices is also an upper
triangular matrix. Also show that the elements on the principal diago
nal of the product matrix are given by the product of the corresponding
elements in the given matrices.

2.12. Use the result in Problem 2.10 to confirm the product of the eigenval
ues 1, 3, and 4, of the matrix

A = [-~ -1. 0]
2 -1.

-1 3

Verify that tr(A) equals the sum of the eigenvalues. Assume that the
first element in each eigenvector is unity; then delete one equation from
the defining set, Av = wv, and solve for all three eigenvectors v. Since A
is symmetric in this case, verify that the eigenvectors are orthogonaL

2.13. Prove that the eigenvalues of the matrix cA are cwi , where Wi is an
eigenvalue of A and C is a scalar. Similarly, prove that the eigenvalues
of Ah are wt, where h is a positive integer.

2.14. Show that every polynomial of degree n is the characteristic polynomial
of the companion matrix:

There are several equivalent forms for the companion matrix.

2.15. Show that a special case of equation (2.1.36) is the rank 1 update
equation:

A -lxy TA -1

1 + yTA IX'

Problems 95

Verify this identity numerically by using T" in (2.1.8) and x =
(1 2 3 2 I)T, Y~ (1 3 2 3 I)T. Check your answer by direct inver
sion, using MATRIX program command 9.

2.16. Find an expression for the eigenvalues of a 2 X 2 general real matrix.
Show that when it is symmetric the eigenvalues must be real; obtain
expressions for the eigenvectors. What are the eigenvalues when 012 or
G 21 is zero?

2.17. Show that the inner product of real vectors is linear (obeys superposi
tion and scaling). Also, show that outer products are symmetric.

2.18. Let matrix B = (hI b, ... bn). Then show that

AB = (Ab1 Ab, ... Ab.).

2.19. For any two vectors in En, say x and y, verify the parallelogram
relation:

IIx + YII' + Ilx - YII' = 2(lIx ll' + IIYII').

2.20. If matrices A and B are similar, prove that det(A) = det(B).

2.21. In the spectral decomposition of real symmetric matrix A, the rank 1
matrix E; = v;vt is composed of the outer product of the orthonormal
eigenvectors V;. Verify that E is idempotent (E' ~ E). Also, show that
A ~ U(VU) -1V is idempotent. Why are all vector outer products
rank I?

2.22. Prove that if a similarity transformation VTAV ~ W exists, where W is a
diagonal matrix, then AP ~ VWPV T

, for p a positive integer, or p a
negative integer if A is nonsingular. Note that this is a simple expres
sion for the pth power of a matrix.

2.23. Find condition numbers using three different matrix norms for the
matrix in Table 2.2.4 and compare them to those in Table 2.1.8.
Compute the condition number of equation (2.1.8) using the IITII,
norm.

2.24. For the projection matrix in equation (2.2.93), prove the following
properties, where x and yare arbitrary vectors in En:

(a) pT=p.

(b) P(PX) = Px.
(c) x ~ Px + Px.
(d) yT(Px) = (Py)T(Px).

(e) y T(Px) ~ (Py)TX.

(fl xT(Px) = IIPxII~.

Chapter Three _

Functions of Many Variables

Linear functions provide the framework for analysis of general nonlinear
functions, and this is as true for many variables as for just one variable. The
point was made in Chapter One that quadratic functions would be used to
approximate the neighborhood of extreme values in multivariable surfaces
and, furthermore, that equating the derivatives of the general quadratic
function to zero results in a set of linear equations. There is an even beller
reason for solving sets of linear equations in connection with nonlinear
optimization: almost all descriptions of a promising search direction in
n-dimensional space require the solution of a system of linear equations.

Chapter Three begins with pertinent methods for solving systems of linear
equations, especially those that are symmetric and/or illconditioned. The most
straightforward case involves systems having the same number of independent
equations and unknowns. Certain matrix decompositions are introduced for
the general and special cases useful in optimization. Then overdetermined
systems having more equations than unknowns, but with rank equal to the
number of unknowns, are considered. This laller class of systems is related to
the weighted linear least squares problem, because of its close relationship to
nonlinear least-pth problems to be discussed in Chapter Four. The generalized
inverse and the singular value decomposition will provide important concep
tual and computational tools, respectively.

Description of nonlinear functions begins with the quadratic function,
which serves as a basis for introducing the Taylor series in many variables.
The set of derivatives, or gradient vector, of the nonlinear function is crucially
involved. Various related topics such as the implicit function theorem and
convexity are introduced as required to set the stage for optimization al
gorithms.

Nearly all nonlinear optimization algorithms are based on the concept of
choosing a sequence of promising search directions in multidimensional space.
Then so-called line searches are accomplished in each of those directions until
a minimum (or maximum) is reached. The mechanics of carrying out these line

96

Systems of Linear Equutions 97

searches involves both theoretical and practical strategies. The most successful
of these will be described for later use in optimization algorithms, beginning
with some theoretically important practice on quadratic functions.

Finally, the application of constraints to optimization problems will be
considered. For linear constraints, the projection matrices and line searches
discussed previously will be involved in the theoretical and practical imple
mentation, respectively. A natural extension of these concepts is the Lagrange
multiplier method for dealing theoretically with general nonlinear constraints.
After this chapter, the description of practical optimization algorithms can
begin.

3.1. Systems of Linear Equations

The reader undoubtedly has been exposed to the solution of systems of linear
equation from very early years. However, it is important to deal with the
special cases related to optimization, using the methods that have proved most
effective.

3.1.1. Square Linear Systems of Full Rank. The solution of two equations in
two unknowns is easily illustrated. Figure 3.1.1 shows the loci of the three
linear equations Nx = (4 21 15)T, where N was given by (2.2.98). The inter
sections of all pairs are graphically obvious and are easily computed using a

X2

6

(2)

(1)

Figure 3.1.1. Three linear equations in two unknowns. (1) (1 2)x = 4, (2) (5 7)x = 21, (3)
(5 3)x = 15. The "+" marks the linear least-squares solution (LLS).

98 Functiom 01 Muny VariDbIe,

Table 3.1.1. Data for The Three Linear Eqnations in Figure 3.1.1

Equation Pairs x, k(A)

(1)-(2)
(1)-(3)
(2)-(3)

4.6667
2.5714
2.1000

-03333
0.7143
1.5000

8.8882
6.2450

10.3923

2.9627
0.8921
0.5196

26.3333
5.5714
5.4000

(3.1.1)
1

o

o
o

succession of three A2. 2 matrices in the equation Ax = b. Also the condition
number (2.1.50) using the Frobenius matrix norm (2.1.49) can be computed by
using MATRIX command II. The results are summarized in Table 3.1.1.
Clearly, the more nearly orthogonal the intersection of line pairs, the lower the
condition number (that is, the solution is better conditioned). As previously
indicated, the matrix inverse is not a computationally e/licient means for
obtaining the solution of linear equations. Two e/licient methods are de
scribed, one for the general real matrix and a similar one for symmetrical real
matrices; the latter situation is the case in nearly all applications of optimiza
tion.

The most general trouble-free case is when the set of linear equations
Ax = b involves a matrix A that is dimensioned n X n and is of rank n. In
that case one of the most effective means for finding x given A and b is LV
factorization. The method is very similar to the Gauss-Jordan procedure
previously described in Section 2.1.4 for the matrix inverse. The Gauss-Jordan
method employed a series of elementary transformations to reduce A to a
diagonal form. Another well-known method is Gaussian elimination, which
reduces A to a triangular form; LV factorization is entirely equivalent to that
method. It has been determined that Gauss-Jordan elimination requires on
the order of n'/2 mathematical operations, while Gaussian elimination re
quires on the order of n'/3 operations. (In keeping with standard practice, the
operational count includes only multiplications and divisions.) Description of
LV factorization here is worthwhile because of its pervasiveness in the
literature and its relationship to another method more commonly employed in
optimization.

As described by Vlach (1983:43), consider the n = 4 case, without loss of
generality; suppose that A is decomposed into two factors:

[

Ill 0

A = LV = 121 122

IJj 132

141 142

Assuming that this factorization can be done, consider its application in
solving Ax = b for x:

LVx = b. (3.1.2)

The well-known approach when two triangular matrices are involved is to

---- -- --~~--------~---

Systems of Linear Equations 99

define an auxiliary vector y such that

Ux = y. (3.1.3)

Substituting (3.1.3} into (3.1.2}, a second triangular system of linear equations
is obtained:

Ly = b. (3.1.4)

It is clear from the nature of L in (3.I.1} that the first equation in (3.1.4} is
simply IllYt = b j , so that Y, = bj/l ll . The second equation in (3.1.4} involves
just Yt and Y2' so that the laller can now be determined, and so on. The
process described for solving (3.1.4) is called forward substitution. By writing
each equation represented by (3.1.4), it is easy to verify the general equations
for forward substitution:

(3.1.5)

for i = 2 to n.

At the completion of forward substitution, y is known so that (3.1.3) may
be solved for x, the dependent variable of interest. However, the upper
triangular structure of V evident in (3.1.1) makes it clear that the last equation
in (3.1.3) is X 4 = Y4' Also, the next-to-last equation in (3.1.3) involves only X 4

and X 3' so that X 3 may be found. The process described for solving (3.1.3) is
called back substitution. By writing each equation represented by (3.1.3}, it is
also easy to verify the general equations for back substitution:

X n = Yn
n

Xi = Yi - L UijXj '
)-Hl

for j = n - 1, n - 2, ... 1.
(3.1.6)

Approximately n212 operations each are required for forward and for back
substitution, as compared with n3/3 for the LV factorization. There are at
least three useful features of LV factorization:

1. The determinant is simply the product of all the Iii as seen from (3.1.1).

2. The decomposition need not be recalculated for a sequence of different
right-hand vectors, b, in solving the system Ax = b.

3. ATX = z can be solved with the same LV factorization, a requirement in
certain electrical network sensitivity calculations discussed in Section
6.3.4.

There are two remaining developments for LV factorization: (1) determina
tion of the elements of L and V as defined in (3.1.1), and (2) economization of

'nUl3

121U13 + 122u23

I"u" + 132 u23 + I"
141U" + 142 u23 + 143

[nU 12

I21U12 + 122
I"U I 2 + 1J2
141U12 + 142

Equation (3.1.1)
product:

[

In
121

I"
141

100 Functions of Many Variables

storage so that L and V are computed and stored in place of the given matrix
A. The diagonal of Is in V (u il = 1, i = 1 to n) as shown in (3.1.1) carries no
unique information, so the conventional means for storing L and V in an
n X n matrix (n = 4 for illustration) is to replace matrix A with

[

In U12 u13 U14]
i21 /22 U23 U 24

I I I
· (3.1.7)

" 32 " U34
141 142 143 144

can be written to show explicitly each term in the LV

(3.1.8)

Now (3.1.8) is LV, which is equal to A:

[

an

LV = A = a21
a"
a41

(3.1.9)

The respective elements in (3.1.8) and (3.1.9) must be equal; clearly, the first
columns are easily equated, so that Iii = ail> for i ~ 1 to n. The first row in
(3.1.7) is equally easy to determine: u1j = aI/In, j = 1 to n. These and other
results are shown to correspond with the respective elements in (3.1.7):

[

Ill an/Ill a13/lll a14/I11]

121 a22 - 121 U12 (a2J - l21u,,)/122 (a 24 - I21UI4)/122

/31 a 32 - '31 U12 a33 - '3l Ul3 - '32 U23 (0 34 - '31 U14 - '32 U24)/133 .

141 042 - [41 U12 043 - 141 U13 - '42 U 23 044 - 141U 14 - 142 u24 - '43 U34

(3.1.10)

There are at least three different methods for computing the elements
according to the relationships in (3.1.10) as discussed by Vlach (1983); the
main constraint is that the aij elements in (3.1.9) cannot be overwritten until
they are no longer required. The method that is equivalent to Gaussian
elimination computes terms such as I" in (3.1.7) by first computing a" - I"u"
and later subtracting the remaining term lJ2u2J. Similarly, 144 in (3.1.7) is
computed by first computing a 44 - 141U.. and later subtracting the remaining
terms 142 u24 and 143u34 , and so on. The BASIC instructions for that process
are contained in subprogram C3·1 called LUFAC in Appendix C. When it is

Systems oj Linear Equation.f 101

Table 3.1.2. LV Factorization Matrix for Matrix T in (2.1.8)

MATRIX D(5 , 5) -
2.00000 1.50000

-1.00000 2.50000
-2.00000 6.00000

5.00000 -4.50000
-4.00000 14.00000

2.50000
0.60000

-2.60000
-10.80000
-1.40000

3.00000
1.60000

-0.53846
-11.61538
-9.15385

2.00000
1.20000
1. 61538

-0.84768
-12.29801

merged into the MATRIX program, command 10 performs LU factorization
on matrix D, and command 13 performs forward and back substitution using
vector C, returning the solution vector in C. There is one issue not addressed
in program LVFAC: The "pivoting" strategy demonstrated in Section 2.1.4
with the Gauss-Jordan procedure and also employed in Gaussian elimination
has not been incorporated in subprogram LUFAC. For example, it is clear in
(3.1.10) that all = III = 0 would cause a divide-by-zero operation. In general,
it is desirable to swap equations so that divisors with the largest modulus are
always in position to minimize buildup of roundoff errors. That additional
complication is not implemented in program LUFAC because nearly all
systems of linear equations involved in optimization are symmetric and have
other properties that eliminate that risk.

Example 3.1.1. To perform LV factorization on a matrix, first create a data
file containing the vector b ~ (53 -1 -1 35 9)T; call it TEST.VEe. In the
BASIC environment, LOAD"MATRIX and MERGE" LUFAC. Then run the
combined program and recall the 5 X 5 matrix T as defined in (2.1.8) into
program matrix D, using command 5 and the appropriate data file name. Also
recall vector b from file TEST.VEC into program matrix C. Then command 10
can be used to produce the LU factorization of T in the format of (3.1.7). That
result is shown in Table 3.1.2. Then command 13 solves for x ~ A-lb ~

(5 4 3 2 l)T. By recalling any number of other right-hand vectors b, com
mand 13 will effectively perform the solution without explicitly computing the
inverse and without recalculation of the LU factorization. Of course, any of
the results just demonstrated may be checked by using the matrix inverse
command 9 as described in Chapter 2.

(3.1.12)

(3.1.11)

!l
o
o
1

o
1

Nonlinear optimization involves quadratic functions, and it is seen that
quadratic functions involve symmetric matrices that contain second partial
derivatives of the function. Therefore, suppose that there is a real, symmetric
matrix A and that it can be decomposed or factorized in the form:

A = LDLT
,

where D = diag(d, d, '" dn), an n X n diagonal matrix, and

L~ [1~1
I"
141

102 FunctiollS of Many Variables

Equation (3.1.12) and subsequent analysis will consider the n = 4 case without
loss of generality. A matrix is said to be positive definite if all its eigenvalues
are positive real; an equivalent condition is that the diagonal matrix D in the
LDLT decomposition has only positive elements. Since it is shown that positive
definiteness is a crucial property of matrices that are related to quadratic
functions, the LDLT decomposition indicates that condition and provides a
simple means to alter the matrix to make it positive definite.

The matrix factorization in (3.1.11) can be expressed as A = LDl/2 D1/ 2LT

= UTU, where D l / 2 contains the square roots of positive diagonal elements in
D, and U is a general upper-triangular matrix. (Note that postmultiplication of
L by a diagonal matrix scales each column of L by the respective diagonal
element.) This form is found in the literature as Cholesky factorization, or the
square-root method, which requires a positive-definite symmetrical matrix. In
a sense, U is the" square root" of A.

The decomposition in (3.1.11) can be derived by ignoring any elements
above the main diagonal, since LDLT is symmetric. The LDLT product is equal
to

dll~l + d 2

dl / 21 / 31 + d2 / 32

dl/21/41 + d2 / 42

d1/j} + d2fj2 + dJ

d}/41/31 + d2 / 42 /n + d)/43

(3.1.13)

Symmetric matrices that are n X n actually contain only n(n + 1)/2 unique
elements as opposed to the n2 elements in the ordinary matrix format.
Therefore, it is common practice to evolve a given symmetric matrix A as
follows:

["" H~: JLDLT = a 21 a 22 d2
a 31 a'2 a" /31 132 d,
a 41 a42 a 43 a 44 /

/42 /4341

[''!'l
H(,J

H(2) H(5)
(3.1.14)->

H(6)H(3) H(8)
H(4) H(7) H(9)

The matrix [a i) on the left in (3.1.14) is given; its decomposition is ordinarily
represented as shown by the middle matrix. However, in computer programs,
both the given matrix and later its decomposition are stored in a singly

Systems ofLinear Equations 103

dimensioned array (vector) denoted here as H(·) and shown embedded in the
lowest matrix in (3.1.14).

A sequence of equations may be obtained by equating the respective
elements in (3.1.13) and the [a,) matrix in (3.1.14). In the upper left-hand
comer it is seen that d, = au. Equating elements in the first column of the
second row, a 2, = d,12" so that 12, = a 2,/d,. Since that is typical of the
remainder of the first column, the relationships so far are:

d, = all> 12, = a2,/aU' 131 = a31/aU' and 14, = a4,/aU' (3.1.15)

In the top of the second column, a 22 = d,l?, + d2 , so that

2a21
d 2 =a22 --·

au
(3.1.16)

Writing two more equations involving a'2 and a42 , respectively, the results are

(3.I.l7)

(3.I.lS)

Continuing, the respective results for a", a4" and a44 are:

(3.I.l9)

(3.1.20)

(3.1.21)

The sequence of computations is severely limited by the evolution of
matrices in (3.1.14) in light of these last equations and the necessity to avoid
"covering up" any data until they are no longer required. For example, it can
be seen that (3.1.17) cannot be solved for 1'2 until it has been used in both
(3.1.19) and (3.1.20). Nevertheless, it is possible to program these relationships
so that the symmetric matrix A may be given by elements on and below the
principal diagonal and then may be replaced by elements of the LDLT

factorization without requiring additional storage. Beyond that, the actual
storage and all computed results can be realized in a single array H(·), having

104 Functions of Many Variables

only n(n + 1)/2 elements. The LDLT decomposition requires on the order of
n'/6 operations. The forward and back substitutions are similar to those for
the LV factorization and require a total of about n 2 operations. The forward
and back substitutions are described in detail in Section 4.1.3, where there is a
direct application.

Program C3-2 called LDLTFAC in Appendix C accomplishes the LDLT

factorization with the same external indications of the preceding program
LVFAC. Decomposition occurs as MATRIX command 10. Only the lower
triangular part of the symmetric matrix must be placed in program matrix D.
Program lines 7040 to 7110 transfer D to a vector H where the actual
computations occur (lines 7120 to 7310). If any diagonal element d, is
negative (the matrix is not positive definite), the program terminates and

, announces that situation. A symmetric matrix that is positive definite may be
decomposed into the LDLT format without pivoting; however, a symmetric
matrix that is not positive definite has none of the numerical stability of the
positive-definite case.

The final decomposition by command 10 in LDLTFAC is returned to
matrix D for display or printing (lines 7690 to 7770); however, subsequent
forward and back substitutions by command 13 employ array H, not D, so the
decomposition must precede any sequence of solutions using command 13.
Following decomposition (command 10), the user is asked if an update is
required. That part of the program is described next, so an answer of "N" is
appropriate at this time.

Example 3.1.2. The positive-definite, symmetric matrix in Table 2.2.4 was
obtained as Z = TTT, where T was given in equation (2.1.8). In the BASIC
environment, LOAD"MATRIX, then MERGE"LDLTFAC and place matrix
Z in program matrix D. Command 10 performs the LDLT factorization,
leaving the results in vector H(·) and in matrix D for inspection in the format
illustrated in the middle of equation (3.1.14). The matrix Z and its factors are
shown in Table 3.1.3. For example, d2 = 85.52 and /43 = 0.27734. If the
vector c = (248 332 208 400 125)T is placed in program matrix C, then
command 13 returns the solution to Z -1C in program matrix C; the solution
vector is (5 4 3 2 l)T.

Table 3.1.3. The Symmetric Matrix from Table 2.2.4 and Its LDL' Factorization

MATRIX D(5 . 5) -
50.00000 -18.00000 26.00000 3.00000 -14.00000

-18.00000 92.00000 -25.00000 56aOOOOO 17.00000
26.00000 -25.00000 ·52.00000 1.00000 20.00000

3.00000 56.00000 1 a00000 70aOOOOO 18.00000
-t4.00000 17.00000 20.00000 18.00000 31.00000

MATRIX D(5 5) -
50.00000 0.00000 0.00000 0.00000 0.00000
-0.36000 85.52000 0.00000 0.00000 0.00000

O.'52()OO -0.18288 35.61974 0.00000 0.000(10
0.06000 0.66745 0.27734 28.98235 0.00000

-0.28000 Oa13985 0.82727 0.09264 0.78120

Systems of Linear Equations 105

Many important optimization algorithms require a sequence of rank 1
"updates" or additions to the inverse of a symmetric matrix. Problem 2.15
illustrated the "rank annihilation" method, a special case of equation (2.1.36),
which is an identity that furnishes the inverse of the matrix that has been
"updated" by addition of a matrix product. Gill and Murray (1972) have
described a procedure for performing that operation in the context of LDLT
factorization; although it requires no fewer operations than the classical rank
annihilation method (3n 2/2), it does allow testing and correction when the
result is not positive definite. In most cases, the theoretical result should be
positive definite, but that condition may not be obtained because of roundoff
errors or other practical difficulties. As previously noted, positive definiteness
is established when all d, > 0 in matrix D.

The rank J update to a matrix A is

(3.1.22)

where q is a scalar and ZZT is a rank 1 outer product as defined by (2.1.22).
The asterisk denotes the "updated" matrix. The Gill and Murray (1972)
"method B" defines an equivalent relationship:

A* = L(D + qvvT)LT = LDLT + q(Lv)(Lv) T.

Comparison of (3.1.22) and (3.1.23) shows that

Lv = z,

(3.1.23)

(3.1.24)

so that forward substitution of the given z vector will provide the intermediate
vector v. The objective is to determine the factorization

The analysis requires that an LDLT factorization be derived for

D + qvv T = LbiT

When that is available, the left-hand side of (3.1.23) shows that

A* = LLbLTLT,

(3.1.25)

(3.1.26)

(3.1.27)

so that L* = LL and D* = b.

The derivation begins by writing the expansion indicated in (3.1.26); the
n = 4 case is shown without loss of generality:

d j + qv;

LbLT=
qv2v1 d 2 + qv~

(3.1.28)
qv3v1 qv3v2 d3 + qv~

QV4D1 qv.v2 Qv4v3 d. + qvl

106 Fruu:tions 01 Many VorUJbles

As in the previous case, (3.1.28) is compared with its triangular counterpart,
LbiI, which has exactly the form of (3.1.13). A series of equations results
from equating corresponding elements. Beginning with respective elements in
the first column as before, the first two relationships are

(3.1.29)

(3.1.30)

The next relationship comes from equating elements in the second row, second
column:

d2 + qo~ = d{i~I + di,

which can be solved for d i:

d * d 2 q(0201)2 d 2{ b2d*)
2 = 2 + q02 - d* = 2 + °2 q - 1 1 •

1

(3.1.31)

(3.1.32)

The right side of (3.1.32) contains a new variable: bI = qoJdt.
If the reader is persistent, it is possible to continue writing these equations

in the manner illustrated, using the defined variable

Then it can be found in general that

(3.1.33)

j < i, (3.1.34)

(3.1.35)

The rank 1 update defined by (3.1.22) has been appended as an option in
the WLT factorization in program C3-2, LDLTFAC. The BASIC instructions
for the update occur in lines 7350 to 7780, beginning with the choice for
updating and the request for input of the scalar multiplier q in (3.1.22). The
program assumes that the vector z has already been stored in program
matrix B.

Example 3.1.3. LOAD"MATRIX and MERGE"LDLTFAC, then store ma
trix Z.MAT shown at the top of Table 3.1.3 in program matrix D. Also store
the update vector z = (1 2 3 4 5)T in program matrix B and the right-hand
side vector b = (265.5 367 260.5 470 2I2.5)T in program matrix C. Use

Systems of Linear Equatiom 107

command 10 to factor A; when the program asks if an update is desired,
answer "Y" and furnish scalar q = t, that is, A* = A + tzZT. At this stage,
the LDLT factorization of A* is stored in program vector H(·) and also
program matrix D. Command 13 then computes the solution vector (A*) -lb;
the result in program matrix A should be (5 4 3 2 I)T. Of course, any other
rigbt-hand-side vectors for b could be stored in program matrix C to obtain
new solutions without refactoring the updated matrix. The reader is encour
aged to verify this example numerically by the method in Problem 2.15 and by
directly forming (3.1.22) and using matrix inverse command 9.

In summary, when there are square linear systems of full rank, solutions are
obtained by methods that implicitly save the matrix inverse. The LV factoriza
tion and the LDLT factorizations are efficient, requiring on the order of n3

operations. The LV factorization is the same as Gaussian elimination, factors
any real matrix, but requires pivoting to ensure numerical stability. The LDe
factorization is similar to Cholesky factorization, factors only real symmetrical
matrices, and is numerically stable without pivoting only if the matrix is
positive definite, that is, has all positive real eigenvalues. The forward and
back substitution operations required to obtain a solution vector from a
rigbt-hand-side vector require ouly on the order of n' operations. Rank 1
updating for a matrix can be performed by a well-known identity given in
Problem 2.15, using on the order of n' operations. However, the Gill-Murray
method performs that function on the LDLT factorization and thereby enables
detection and potential correction of a non-positive-definite matrix. This is a
particular risk when the scalar multiplier q is negative in the rank 1 update,
qvv T. It is generally agreed that the QR (ne QU), LV, and LDLT factorizations
are the major ones in linear algebra.

3.1.2. Overdetermined Linear Systems of Fun Rank. Systems having more
linear equations than unknowns are overdetermined. When there are m equa
tions in n unknowns, the system is still represented by Ax = b, where A is of
order m X n, but the equations are said to be inconsistent. This section
examines the case where r = n < m, and r is the rank of A (i.e., A has full
column rank). This is the situation illustrated in Figure 3.1.1; those particular
equations are:

(3.1.36)

Since only pairs of the three equations can be satisfied (the three intersections
in Figure 3.1.1), the crucial question for overdetermined, full-rank systems of
linear equations is the nature of a compromise solution. As Noble (1969:142)
described it, the classical compromise is to minimize the sum of the squared
errors for each equation, namely, to minimize the square of the two-norm of

--------------------------------- - -

108 Functions 01 Mony VariDbles

the residual vector:

r = b - Ax.

Labeling this error criterion S = IIrll~ = rTr and using (3.1.37):

(3.1.37)

(3.1.38)

A necessary condition for defining the minimum of the scalar error criterion S
is that aU partial derivatives of S with respect to each element of x, namely,
Xi' ; = 1 to n, must be equal to zero.

For this immediate purpose and subsequent more general applications, it is
necessary to examine the nature of each term in (3.1.38), especially the
meaning of derivatives with respect to a vector. First, the scalar "del"
operator

and the vector del operator

a
V"j = -a 'x,

(3.1.39)

(3.1.40)

are defined. They have no numerical significance by themselves. However, if h
is a scalar function of x, then the derivative of h with respect to x in E' is
called a gradient vector and is defined as the n vector whose i th element is the
partial derivative of h with respect to x,:

(3.1.41)

The nature of the terms in (3.1.38) can be described by defining the bilinear
form of two vectors, namely, the inner product xTy. An inner product is a
scalar quantity, and it is bilinear in the sense that it is a linear function of x
for a fixed y, and vice versa. In the more general case, suppose that x and yare
in En and that y = Cz, where C is n X m and z is in Em. Then xTCz is also a
bilinear form, which can be expressed according to (2.2.5) as

(3.1.42)
• m

= L L C'iX,zj'
;=1 j=l

Systems 01 Linear Equations 109

An important special bilinear form is the quadratic form:

n n

Q(x) = XTCx = L L CUX,X}
i-I j=I (3.1.43)

The case when C is symmetric, C = C T
, is most often of interest. By writing

the terms from (3.1.43) and taking the partial derivatives, it can be confirmed
that the partial derivative of a quadratic form is

vQ = 2Cx, (3.1.44)

With that background concerning partial derivatives of a scalar with respect
to a vector, the gradient of the sum of squared residuals in (3.1.38) is

(3.1.45)

and vS = 0 is the necessary condition for a minimum of S. Note that ATA is
always symmetric. Therefore, the solution to an overdetermined system of m
equations in n unknowns, Ax = b, of rank nand m ;e, n is

(3.1.46)

The generalized inverse matrix A+ has been defined previously in (2.2.97) in
connection with projection matrices.

It will now be shown that the same solution for overdetermined systems of
equations may be obtained by using orthogonal decomposition. Recall that the
Gram-Schmidt decomposition Am. n = Qm..un. n was described in (2.2.26),
where Q is an orthonormal matrix and U is an upper triangular matrix.
According to Jennings (1977:139), if Ax = b and A = QU, then QUx = band

(3.1.47)

since QTQ = I. However, U is upper triangular, so the system of equations in
(3.1.47) can be solved for x by back substitution. As Golub (1970:239) has
noted, the matrix ATA is square, so that the condition numbers k(ATA) = k 2(A).
Therefore, the loss of accuracy in solving (3.1.46) with an elimination method
may well be twice that of solving (3.1.47) by a similar method, since k(U) =

k(A).
Although (3.1.47) represents a practical way to solve systems of equations,

overdetermined or not, further manipulation is useful to reveal a theoretical
result. Premultiplying both sides of (3.1.47) by U T and substituting UTQTQU
for UTU yields

(3.1.48)

no Functions of Many VarUlbles

Now substitution of QU = A yields the same result as (3.1.46);

(3.1.49)

The first set of equations in (3.1.49) is called the normal equations.
It is concluded that solution of an overdetermined system of linear equa

tions by orthogonal decomposition is equivalent to minimizing the two-norm
of the vector of residuals. This result is to be expected, since IIQrll2 = IIr1l2'
where Q is an orthonormal matrix and r is the residuals vector defined by
(3.1.37). Orthogonal matrices have desirable properties because they do not
magnify errors and do not change Euclidean lengths. Henceforth, the mini
mum two-norm of the residuals corresponding to a set of overdetermined
linear equations of any rank are called the linear least-squares problem, or
LLS. It is also known as linear regression in statistical applications.

Example 3.1.4. The generalized inverse of the matrix in (3.1.36) and (2.2.98)
was previously computed in Example 2.2.11. using program C2-8. The corre
sponding generalized inverse matrix was shown in the upper half of Table
2.2.13. Using the right-hand-side vector b from (3.1.36) in (3.1.46) with the
generalized inverse yields the solution x = (2.20087 1.37991)T The same
solution can be obtained by (3.1.47). This point is shown graphically by the
"+" in Figure 3.1.1. The squared magnitude of the residual vector in (3.1.37)
corresponding to this solution is 1.05677. The same measure applied to each of
the three intersections in Figure 3.1.1 having the coordinates given in Table
3.1.1 produces 178.11, 9.87732, and 1.21, respectively. In fact, it is instructive
to evaluate the sum of squared residuals at points in the immediate neighbor
hood of the least-squares solution to verify that it is indeed the minimum.

The overdetermined system Ax = b is inconsistent because there is no exact
solution. However, there is a related consistent system, Ax' = b', where b' is
the projection of the right-hand side b vector into the column space of A.
Consider the case in the preceding example, where b is in £3 and the column
space of A = (a1 a 2) is spanned by a1 and a 2, that is, a subspace having only
two dimensions. This is pictured in Figure 3.1.2. According to (3.1.46),
x' = A +b; premultiplying by A,

Ax' = b' = (AA +)b. (3.1.50)

Even more explicit, A may be written in column-vector form to show the
nature of b', as illustrated in Figure 3.1.2;

(3.1.51)

Systems of Linear Equations 111

y,

Figure 3.1.2. The 3-space containing the independent vector b in Ax = b also contains the
subspace spanned by the two column vectors from A. The LLS solution is obtained by first
pn?jecting b onto that subspace using b' = AA + b and then solving Ax' = b'.

However, (2.2.89) showed that (AA+) = P is a transformation that takes a
vector into the subspace spanned by the columns of A, previously referred to
as the normal vectors related to hyperplanes. This is the mathematical justifi
cation for the illustration in Figure 3.1.2. It is not to scale, since inevitably the
angle between the b and b' 'vectors is quite small. For the system in Example
3.1.4, it is easily found from (2.1.42) that the angle in that case is only 2.26
degrees.

The major application of the LLS problem in classical mathematical and
engineering fields is evaluating coefficients in a linear mathematical model.
Assume that some function d{t) of independent variable t is known only by
m pairs of data points, say (Ii' d i), i = 1 to m. Consider approximating the
function d(l) by a linear combination of n basis functions, fj(t):

f(x, t) = xd,(t) + Xd2(t) + ... +x;fit) + ... +x.f.(t). (3.1.52)

This is the linear mathematical model because it is linear in the coefficients xi'
even though the functions fj are nonlinear in the independent variable t. For
example, f(x,t)=x,cos{2t)+x 2exp{-3t)+x3(t 2 -1)1/2 is linear in x.
This is in contrast, to the nonlinear mathematical model described in (1.2.5),
where some elements of x are also involved in the basis functions; that case is
considered in a later chapter. Figure 3.1.3 shows the m data pairs at the" x"
points in the sample space t. The linear mathematical model in (3.1.52) "fits"
the data within some residual error, ri , at each ith sample point as shown in
Figure 3.1.3. Writing the equations for each sample point as if each residual

112 Functions oj Many Variables

d(t)

d(t,l = d,J
x .

~
rj(ReSJdUal) x

~t) ~Q
x ' I ~jngfUnctjOn

x

o
Sample space

Figure 3.1.3. A curve-fitting example where a function d(t) known by m given data pairs is to
be approximated by a linear function f(x. t) that is the sum of given basis functions. The problem
is to minimize the sum of the squared residuals ri defined at each point in the sample space t.

were equal to zero (for n = 3 and m = 5 without loss of generality):

xJl(r1) + x,f,(r1) + x3f J (r1) = d1

x1fl(t,) + x,f,(t,) + xJf3(t2) = d,

XJ1(t J) + x,!,(tJ) + X'/3(t3) ~ dJ

XJl(t4) + x,!,(t4) + x3f3(t 4) = d4

XJl(t,) + x,f,(t,) + x3fJ(t,) ~ d,

(3.1.53)

These equations are overdetermined and therefore inconsistent.
It is seen from (3.1.53) in comparison to matrix equation Ax ~ b, where

A ~ [a,}], that

and j ~ 1 to n, i ~ 1 to m. (3.1.54)

Matrix A is calIed the design matrix and vector h ~ d is called the data vector.
Note that A depends only on the basis functions and the discrete sample
space. To "fit" the curve I(x, t) to the discrete data pairs, it is only necessary
to solve the LLS problem. Emphasis on particular residuals can be obtained
by weighted least squares, where the ith row of A is multiplied by some
positive scalar, called a weight. This amounts to scaling matrix A, which can
also be viewed as changing the column space and condition number, k(A).

Example 3.1,5. Suppose that the piecewise-linear ramp shown by the two
solid lines in Figure 3.1.4 is to be approximated by the linear mathematical
model

(3.1.55)

--------- - -

Systems ofLinea,. Equations 113

.7

- -.6

/"
+ + +--.... /

~ -
.5

t / ..,."'"'~
0 .4-;;;
> f .c
0:e

.3 'Ic

i
0
~

.2 !I
j

• 1
//., .

I
I,,

0.0t - ~
, I

" , ,:c ~ ~
, ." ." ~

y " ~. ','

Independent variable t _

Figure 3.1.4. A 4th-degree power series LLS fit to a piecewise-linear ramp. In this case six
unequally spaced data pairs are given as indicated by the" +" points. The approximating curve is
shown by the dashed line.

The given data are shown in Table 3.1.4. Assuming unity weighting factors for
each row (i.e., for each point in the sample space), the design matrix is:

1 (I (, (3 ('
1 1 1

1 (, (, (3 (,, , ,
1 (3 (, (3 (,

A= 3 3 3 (3.1.56)
1 (, (' d (t,
1 (s (, (, ('

S 5 5

1 (6 (, (3 ('
6 6 6

Table 3.1.4. Given Data Pairs for the Linear Least-Squares Curve Fitting
Dlustralion in Example 3.1.5

t
d,

1
-1.

0.0

2
-.25
0.45

3
o
0.60

4
.25

0.60

5
.5

0.60

6
1.
0.60

---- --

114 Functions of Many Variables

Matrix A in this case is the well-known Vandermonde matrix. The elements of
vector b, the data vector, are the corresponding values of d, shown in Table
3.1.4.

The MATRIX program can be used in any of three ways to solve this LLS
problem: (1) solve the normal equations ATAx = ATb, according to (3.1.46);
using matrix inverse command 9; (2) merge program GENINVP and use
command 10 to obtain the generalized inverse, according to (3.1.46), assuming
full rank; and (3) merge program GSDF.,COMP and use command 10 to
obtain the orthogonal decomposition, according to (3.1.47). The last method is
highly recommended, because the system of equations that is actually solved is
much better conditioned. The LLS solution x' and b', the projection of b onto
the column space of A as suggested in Figure 3.1.2 for different dimensions, is
found to be:

[

0,58105]0.32872
x' = -0.70796 ,

-0.02829
0.42712

b' =

-0.00021
0.45674
0.58105
0.62021
0.59158
0.60063

(3.1.57)

The angle between band b' is 1.32 degrees. The dashed curve in Figure 3.1.4
represents the linear mathematical model in (3.1.55) with x defined in (3.1.57).

The basis functions in (3.1.55) in this example are the exponential terms
from the power series; these usually result in a badly conditioned set of
normal equations, (3.1.49). It is important to select basis functions so that the
columns of A tend toward orthogonality, that is, the condition number of ATA
approaches unity. Better choices for basis functions include Chebyshev poly
nomials of the first kind; see Cuthbert (1983:21). Also, shifting the basis
functions along the real axis and scaling their magnitudes are often necessary
conditioning operations; see Forsythe (1977:200).

3.1.3. Rank-Deficient Linear Systems. As described by Lawson (1974:3),
there are exactly six possible cases that may occur with sets of linear equa
tions, depending on the number of equations (m), the number of unknowns
(n), and the system rank (r). The two cases of interest in optimization concern
square and overdetermined systems (i.e., m = n and m > n, respectively): If A
is underdetermined (i.e., m < n), then AT can be analyzed instead without loss
of generality (see Problem 3.14). Having dealt with the full rank case (r ~ n),
this section provides a universal approach to systems of linear equations that
are rank-deficient, (r < n). This corresponds with having some of the lines
parallel in Figure 3.1.1.

It is possible to approach rank-deficient linear systems. on the basis of
orthogonal decompositions, as previously discussed; the interested reader is

Systems of Linear Equations 115

referred to Lawson (1974:13). However, Klema (1980) has called attention to
the singular value decomposition (SYD): It now forms the cornerstone of
modern linear algebra, it is the most elegant algorithm in numerical algebra
for exposing quantitative information about the structure of a system of linear
equations, and it is the only generally reliable method for numerical de
termination of rank. The SYD is useful for square matrices of full rank, but its
greatest application is for solution and analysis of overdetermined systems,
such as LLS, where there also may be rank deficiency. The singular value
decomposition is defined, an algorithm in BASIC is provided, and several
examples of rank-deficient systems of linear equations are used to illustrate
some of its many applications.

The singular value decomposition of any matrix is

A = USy T
, (3.1.58)

where the respective dimensions are Am,n, Um,m. 8 111 ,n. and V",n' Matrices U
and V are both orthonormal, and their columns are called the left and right
singular vectors of A, respectively. They are unique within a factor of ± 1.
Rectangular matrix S has elements S;j = 0 for i * j and s" = s, ;0, 0 on the
diagonal. The non-negative quantities s; are called singular values of A and are
equal to the positive square root of the eigenvalues of ATA or of AAT. In fact,
the matrix two-norm of A described by (2.1.48) is equal to the largest singular
value. It is called the spectral norm. Furthermore, the left and right singular
vectors of A are particular choices of the eigenvectors of AAT and ATA,
respectively. Reordering (3.1.58),

(3.1.59)

As Forsythe (1977:203) noted, the matrix transformation A may be modified
by an orthogonal change of coordinates in its domain and by a second
orthogonal change of coordinates in its range, so that the total transformation
becomes diagonal. Since orthogonal transformations are of full rank, it is clear
that the rank of a diagonal matrix is equal to the number of its nonzero
diagonal elements.

The definition of the SYD given by (3.1.58) is equivalent to the summation
of rank 1 matrices that are composed of the outer product of respective
columns from U and Y:

•
A = LSjUjVr

i=l
(3.1.60)

It is convenient to assume that the singular values are ordered from largest to
smallest, so that Sl ;0, S2 ;0, S3;o, ••• ;0, s. ;0, O. The smallest singular value s.
is a measure of how "close" A is to singularity. There are exactly r nonzero
singular values, s" i = 1 to r, for a matrix of rank r. The rank r matrix in

116 Fune/;om of Many VoriDbles

(3.1.60) is thus the linear sum of r rank 1 matrices, each weighted by the
respective nonzero singular value.

According to (3.1.59), the elements of S are

(3.1.61)

The concept of singular value decomposition is that the respective columns of
U and V can be chosen so that S;j = O. That process is the second step in the
SVD computer algorithm due to Golub and Reinsch, which is a variant of
Francis' iterative QR algorithm described in connection with (2.2.52), Section
2.2.3, to diagonalize a symmetric matrix. The first step in computing the SVD
is to reduce the given matrix A to a matrix having only the principal diagonal
and the one above it (the "" -erdiagonal) using Householder's bidiagonaliza
tion. This transformation is similar to the Householder transformation previ
ously described in Section 2.2.4, except that A is transformed by both pre- and
postmultiplications, as indicated by the resultant U and V matrices in (3.1.58).
This process is described in considerClble detail in Golub (1983:171) and in
Forsythe (1977:221). Program C3-3, SVD in Appendix C, follows the ex
tremely robust program by Forsythe (1977:230), which in turn was based on
the Golub and Reinsch Algol program by Golub in 1970. As the following
example will make clear, there is no need to utilize the full dimensions given
for each matrix shown in (3.1.58), since there can be no more than n nonzero
singular values in S. Therefore, in practice, the SVD is computed using
dimensions according to

(3.1.62)

Example 3.1.6. Program SVD can be loaded and run in the BASIC environ
ment after storing the matrix A given at the top of Table 3.1.5. The menu in
program SVD is similar to that in program MATRIX. Command 1 can be
used to load matrix A. On completion of command 2, command 0 can be used
to see the results on the screen or command 3 prints any of the four matrices.
Command 1 also enables storage on disk of any of the four matrices; this is
useful for subsequent execution of program MATRIX for further processing
of these results. For example, it is easy to confirm that UTU = I, = VTV, and
that A = USV T. Also, the fixed format in Table 3.1.5 indicates that element
S33 = 0; command 19 in MATRIX shows that in fact sJ3 = 0.00000022. In this
case, there is little uncertainty about the rank of S and, consequently, A (rank
2). Often it is useful to display the distribution of singular values, since the
determination of a suitable approximation for zero is arbitrary. In this case A
is rank 2 because its middle column is the average of the outer two; this is
indicated by the third column of V, which has element magnitudes in the ratio
1 : 2 : 1. In order that there be no subsequent confusion from showing matrices
of reduced dimensions, the actual S matrix that appears in (3.1.58) is

- ------~---------------

Systems 01 Linear Equations 117

Table 3.1.5. A 6 X 3 Rank 2 Matrix and Its Singular
Value Decomposition

MATRIX A(6 , 3) -
1.00000 7.00000 13.00000
2.00000, 8.00000 14.00000
3.00000 9.00000 15.00000
4.00000 10.00000 16.00000
5.00000 11. 00000 17.00000
6.00000 12.00000 18:00000

MATRIX U(6 , 3) -
-0.31969 -0.64931 -0.34771
-0.35348 -0.41267 0.76239
-0.38726 -0.17602 -0.22093
-0.42104 0.06063 -0.44084
-0.45483 0.29727 0.23351
-0.48861 0.53392 0.01359

MATRIX 5{ 3 , 3) -
45.80601 0.00000 0.00000

0.00000 3.28775 0.00000
0.00000 0.00000 0.00000

MATRIX V{ 3 , 3) -
-0.19819 0.89110 0~40825

-0~51582 0~25934 -0.81650
-0~83345 -0.37241 0~40825

45.8 0 0
0 3.29 0

s= 0 0 0
0 0 0
0 0 0
0 0 0

The SVD is a reliable, well-conditioned tool for solution of systems of
linear equations represented by Ax = b. Substitution of (3.1.58) yields

or (3.1.63)

Similar to the definition of an intermediate variable in the LU factorization
procedure, define

These substitutions in (3.1.63) leave the diagonal system

Sz ~ d,

(3.1.64)

(3.1.65)

(3.1.66)

118 Func/ions of Many Variables

so that

d,
z=-, 's,

j = 1 to n, Sj '* O. (3.1.67)

Then the system solution from (3.1.64) is

x = Vz. (3.1.68)

Actually, (3.1.67) is misleading in the general case; Forsythe (1977:208)
notes that there are exactly three cases to consider:

1. SjZj = d i , if i ~ nand Si =1= O.
2. o· z, ~ d" if i ,;; n and s, = o.
3. 0 = d" if i ;> n.

Case 1 is that described in (3.1.67). Note that x is determined by z in (3.1.68),
z is determined by d in (3.1.66), and d is determined by b in (3.1.65); however,
the actual dimensions of UTare m X m and bare m X 1. Case 2 cannot occur
if the system has full rank (r ~ n), and case 3 cannot occur if the system is
square (m = n). Otherwise, the system Ax = b is inconsistent unless d, = 0
whenever s, ~ 0 or i ;> n (overdetermined equations). In other words, (3.1.65)
leads to the conclusion that b is not in the range of A in the sense previously
portrayed in Figure 3.1.2.

The practical situation occurs in the LLS problem, wbere the norm of the
residuals vector r can now be expressed in terms of the SVD:

(3.1.69a)

Therefore, the SVD reduces the LLS problem to one involving the diagonal
matrix S, and clearly (3.1.67) does result in minimum IIrll, when Si oF o. The
remaining z, and thus x, are arbitrary when Si = 0 (i between 1 and n) or
when i ;> n. From (3.1.69a), the squared norm of the LLS residuals vector is
simply "f.d;, summed over all i except those for which s, oF O.

From Golub (1983:25), note that when A = USVT has full rank, the
solution vector x in the system Ax = b may be expressed as

(3.1.69b)

In (3.1.69b), v, is the ith column vector of V; similarly, u, is from U, and s, is
the ith singular value. Note that the inner product (uTb) in the summation is a
scalar quantity. The expansion in (3.1.69b) shows that changes in band
changes in A reflected in u, and Vi will drastically affect the solution x when
some singular values are relatively small.

----~- - - - --- ~~-------- - - - ------------

Systems of Linear Equations 119

A condition number based on singular values has been defined; it is similar
in concept, application, and numerical value as those based on matrix norms.
The condition number using singular values is

s,
k,(A) = -,

s,
(3.1.70)

where s, is the largest singular value and s, is the smallest nonzero singular
value (s, = s, when A is full rank). The condition number based on singular
values is applicable to a rank-deficient matrix, a situation that is untenable for
the norm-based condition number (2.1.50) that theoretically requires the
matrix inverse. An example will illustrate the use of the singular,value condi
tion number and serve to introduce the concept of matrix scaling. Recall that
premultiplication of a matrix by;" diagonal matrix multiplies each row of the
multiplicand matrix by the corresponding element in the diagonal matrix.
Similarly, postmultiplication of a matrix by a diagonal matrix multiplies each
column by the corresponding diagonal element in the diagonal matrix.

Example 3.1.7. Consider the matrix scaling operation A = BCD on a matrix
(C) attributed to Bauer by Klema (1980):

1 0 0 0 0 0 -74 80 18 -11 -4 -8
0 1 0 0 0 0 14 -69 21 28 0 7

BCD =
0 0 1 0 0 0 66 -72 -5 7 1 4
0 0 0 1 0 0 -12 66 -30 -23 3 -3
0 0 0 0 8 0 3 8 -7 -4 1 0
0 0 0 0 0 7 4 . -12 4 4 0 1

1 0 0 0 0 0
0 1 0 0 0 0

X
0 0 2 0 0 0 (3.1.71)
0 0 0 3 0 0
0 0 0 0 10 0
0 0 0 0 0 10

-74 80 36 -33 -40 -80
14 -69 42 84 0 70

A~BCD = 66 -72 -,10 21 10 40
-12 66 -'60 -69 30 -30

24 64 -112 -96 80 0
28 -84 56 84 0 70

The multiplications of C by both Band D shown above may be verified using
program MATRIX, although it is very useful to do this by hand to reinforce
the concept of row scaling and column scaling by diagonal matrices. Further,
program SVD shows that the singular values of Care 173.84, 64.86, 10.67, 1,

120 Functions of Mony Variables

0.17525, and 0.00004744. Clearly, the last singular value can be taken as zero,
so that C has rank 5 and condition number k 2(C) = 992. Similarly, program
SYD shows that the singular values of A are: 295.95, 181.66, 48.94, 12.88,
0.70960, and 0.001397. Again, the rank is 5 and the condition number
k 2 (A) = 417.

For the system of linear equations Cx = b, a scaling of the rows (previously
suggested in connection with weighted LLS problem) is achieved by transfor
mation of C by premultiplying by a diagonal matrix B. A scaling of the
columns of C is achieved by postmultiplying by a diagonal matrix D. This
latter scaling amounts to a linear transformation of variJlbles, x = Dy, since
Cx = b can be restated as (CD)y = b. For row and column scaling taken
together, the scaled system of linear equations becomes (BCD)y = (Bb). The
optimal choices of diagonal scaling matrices have been treated in literature
attributed to Bauer (1963) and in his subsequent articles. A discussion that is
easier to read appears in Noble (1969:438). The essence ofoptima/ly scaled
rna/rices is that the absolute row sums should be about equal and the absolute
column sums should be about equal. An absolute row sum is the sum of the
absolute values of element in a particular row. For C in (3.1.71), the absolute
row sums range from 23 to 195, and the absolute column sums range from 9 to
307. Scaling matrices Band D improved the matrix condition number from
k 2 (C) = 992 to k 2 (A) = 417. This improvement is reflected in A in (3.1.71),
where the absolute row sums range from 219 to 376 and the absolute column
sums range from 160 to 435. Scaling of variables is also discussed in later
chapters. I

The SVD enables a more general statement of the generalized (pseudo)
inverse. When matrix A has rank r < n, it was shown by (3.1.69a) that the
squared residual IIAx - bll ~ is equal to

IISz - dll~ = (SIZI - d1)2 + '" + (s,z, - d,)2 + d;+1 + ... +d;'. (3.1.72)

The residual is thus independent of Z,+1 through Zn; according to (3.1.68), the
residual is likewise independent of X,+1 through x n' and these are taken to be
zero in order to minimize the length (norm) of x. The remaining values of z
(thus x) are used to minimize (3.1.72); therefore, z, = d,js;, i ~ 1 to r, and
the corresponding elements of x are determined by (3.1.68). A concise expres
sion for x is available: from (3.1.64), x = Yz; from (3.1.65), d = UTb; and the
linkage between z and d is indicated by (3.1.67) and the summation related to
(3.1.72). Therefore, it is seen that the/solution vector can be expressed as

x = (YS+UT)b = A+b,

if the n X m S + matrix is defined to be

(3.1.73)

o o
o
o

o
o
o

o
o
o

(3.1.74)

Systems of Linell1' Equations 121

The definition shown for S+ in (3.1.74) has been given for a 3 X 6 matrix
without loss of generality; the main specification is that the reciprocals of the r

nonzero values of s, are placed on the principal diagonal as shown for r = 2,
and zeros occur elsewhere. The definition of A+ = VS +U T

, the pseudoinverse
of A given in (3.1.73) and (3.1.74), is entirely consistent with the solution just
reviewed for the rank-deficient LLS problem. There are a number of ways to
compute the pseudoinverse, but the SVD is preferred because it provides a
sound basis to determine the system rank. Like the ordinary inverse, there is
seldom any reason to form the pseudoinverse explicitly, its main value being in
the concept.

The pseudoinverse of matrix A satisfies four identities that are sometimes
taken to define A+:

AA+A = A,

AA+=(AA+)T,

A+A= (A+A)T.

(3.1.75)

Note that the expression from (3.1.46) for the full-rank pseudoinverse, A+ =

(ATA) -lAT, satisfies (3.1.75). In fact, it is easily verified that S + is the pseudoin
verse of S; for example, SS+S = S. Then it follows that the generalized
inverse for any rank, A+ = VS+U T, also satisfies (3.1.75).

The SVD has some interesting geometric properties. As previously noted,
IIAx1I/llxII measures how much the transformation A "deforms" the unit
hypersphere, IIxll = 1. From Forsythe (1977:206), recall that A = USV T

, and
let z = V Tx. Since orthonormal matrices preserve Euclidean length, IIzll = IIxll,
and

(3.1.76)

But S is a diagonal matrix composed of the singular values Sl 2. " 2. •.. 2.'

',2. 0, r ~ n, so the length IISzli varies from ',lIzll to 'll1zll, depending on
direction. Therefore, the distortion introduced by the matrix transformation
b = Ax for x over the unit hypersphere is

(3.1.77)

The transformation b = Ax actually maps an n-dimensional hypersphere
into an r-dimensional hyperellipsoid embedded in m-dimensional space; the
geometry is illustrated in Figure 3.1.5 for the case when n = m = r = 2. The
lengths of the ellipsoidal axes corre~pond to the singular values, and the
condition number k, is equal to its eccentricity. The matrix spectral norm,

122 Functions of Many Variables

2

)

t 0
N

x

-)

-2

-3
-3 -2 -1 0 1

x1_
(a)

3

2

t 0
N

.0

-)

-2 l\AXll~ = Wl

-3 7--+---:----!:--~-...J,_-_!
-3 -2 -) 0 1 2 3

b1 --.,..

(b)

Figure 3.1.5. The matrix transformation b = Ax in 2-space with full rank. The 'unit circle in (a)
is mapped into an ellipse in (b) with axes corresponding to the singular values.

IlAII, = Sl' as defined earlier in (2.1.48). The matrix spectral norm is the length
of the major axis in Figure (3.1.5(b) and measures the maximum distortion
because of the transformation b = Ax.

Now consider a symmetric matrix B = ATA. Since IlAxll~ = xTATAx = xTBx,
(3.1.77) leads directly to the well-known Rayleigh quotient:

Wr :S (3.1.78)

The eigenvaluesof B, WI '" W, '" ••. '" w, correspond to the squared singu
lar values of A.

-------~---------------_._---------------

Nonlinear Functions 123

Example 3.1.8. Consider the nonsymmetrical matrix

A=[i ~]

and its related symmetrical transposed product

(3.1.79)

11]13' (3.1.80)

Program SVD computes the singular values of (3.1.79) as 5.11667 and 1.95440.
Program MATRIX with GSDECOMP and QRITER merged with it computes
the eigenvalues of (3.1.80) as 26.18034 and 3.81966. This confirms numerically
that the singular values are equal to the positive square roots of the eigenval
ues of the related symmetrical transposed product. According to (3.1.78), the
maximum possible value of the quadratic form Q = (AX)T(Ax) = xTBx
is WI = 26.18034 for x on the unit circle as in Figure 3.1.5(a). According
to (3.1.43), when B is symmetric and given by (3.1.80), the quadratic form
in E 2 is

Q= 17xl + 22x I x, + 13x~.

That is the locus plotted in Figure 3.1.5(b) when Q = WI = 26.18034.

Finally, the SVD easily confirms that a similarity transformation, as in
(2.2.46), results in a diagonal matrix composed of positive semidefinite eigen
values, w; ~ 0, when applied to symmetrical matrices. Since

then

UTAV = diag(sl s, '" sn)'

UT(ATA)V = diag(sl s~ ... s;).

(3.1.81)

(3.1.82)

While it is true that Wi = s,', the eigenvalues should not be computed this way,
since any small singular value might be reduced to rounding-error magnitude
by the squaring process.

3.2. Nonlinear Functions

The most elementary nonlinear function of many variables is the second
degree function centered at the origin and called the quadratic form; it was
introduced in (3.1,43). A number of its important properties are described,
including the various conic sections that the quadratic form may represent,
before considering the more general second-degree function, the quadratic
function. The first and second derivatives of the quadratic function are

124 Functions of Mony Voriobles

derived, and their use in locating the minimum function value is developed.
Searches on a line in the variable space will be described, including first and
second derivatives along the line, namely, the directional derivative and
curvature. The step to the minimum along any line is applied to a sequence of
several search directions that approach the quadratic function minimum.

The Taylor series in many variables is employed to describe a nonlinear
function of any degree, and some properties of classical interest such as
convexity and continuity are defined. The Jacobian and Hessian matrices will
be introduced, especially as they apply to the solution of systems of nonlinear
equations by the Newton-Raphson method. The general implications for line
searches are developed for both elementary cutback methods and automatic
methods based on interpolation on the line.

3.2.1. Quadratic and Line Functions. The quadratic form introduced in
(3.1.43) is only the numerator of the Rayleigh function in (3.1.78) and is thus a
different function. The quadratic form is defined for a symmetric matrix B by

(3.2.1)

where Q is a scalar quantity. A particular B matrix was considered in Example
3.1.8, and its quadratic form was expanded in the two components of x in
(3.1.81). The cross terms, typically involving XiX, had a nonzero coefficient so

J ,

that the contour for a given value of Q was tilted at an angle to the axes as
shown in Figure 3.1.5. To classify quadratic forms and for other important
purposes, it is useful to employ a linear rotation of axes so that the cross terms
do not appear in a new set of variables.

It was shown in Section 2.2.3 that a similarity transformation would
diagonalize a symmetrical matrix. In particular, the orthonormal matrix whose
columns are the eigenvectors of a symmetrical matrix transforms that matrix
into a diagonal matrix with the eigenvalues as elements. From (2.2.45),

(3.2.2)

where V = (VI v, ... vn), and the Vi are the eigenvectors of the correspond
ing Wi eigenvalues of B. Now define a new vector y that is also in En with x:

x = Vy.

Substituting (3.2.3) into (3.2.1),

The canonical form has been .obtained:

(3.2.3)

(3.2.4)

(3.2.5)

-------~.- - - - - --_._----------------------

Nonlinear Function.<; 125

Table 3.2.1. Canonical Fonns in Three Variables for Positive Q

1. Q ~ y,'la' + y,'lb' + yfle'
2. Q - yUa' + y,'lb' - y,'le'
3. Q = yfla' - yUb' - yfle2

4. Q ~ yUa' + yUb'
5. Q = yfla' - yUb'
6. Q ~ yfla'

Ellipsoid
Hyperboloid, one sheet
Hyperboloid, two sheets
Elliptic cylinder
Hyperbolic cylinder
Pair of parallel planes

The canonical form enables simple classification of quadratic forms based
on the conic forms shown in Table 3.2.1. The reduction of a quadratic form as
in (3.2.1) to the canonical form (3.2.5) can also be accomplished by the
ordinary method of algebra known as "completing the squares," beginning
with (3.1.43). That method is known as Lagrange's reduction in this appli
cation (Ayres, 1962:132). It is mentioned only for completeness, since it lacks
the notational and conceptual compactness inherent in diagonalization by
similarity transformations.

The case of most interest is that involving a positive definite B (i.e., all the
eigenvalues of B are strictly positive). Since a2, h', and e'. in case 1 of Table
3.2.1 are the lengths of the major axes of the ellipsoid when Q = 1, it follows
that the ellipsoidal axes are in the direction of the eigenvectors and have lengths
that are inversely proportional to the square roots of the corresponding eigenval
ues. These relationships exist in higher dimensions but have no geometric
significance in greater than three dimensions.

Example 3.1.1. Continuing the analysis of B in (3.1.80), program
MATRIX with subprogram SHINVP merged into it can be used to find the
eigenvectors corresponding to eigenvalues 26.15 and 3.82. They are v, =

(0.76775 0.64075)T and v2 = (-0.64075 0.76775)T, respectively. The transfor
mation of variables in (3.2.3) is thus x, = 0.76775Yl - 0.064075y, and x2 =

0.64075y, + .76775Y2, so that (3.2.5) yields Q = 26.18Yl + 3.82y]. These two
axes are included in Figure 3.2.1, which shows three contours or level curves
for Q = 5, 20, and 35.

. Example 3.1.1. Consider the symmetrical matrix

C ~ [17
21

21]
11· (3.2.6)

Program MATRIX with both GSDECOMP and QRITER merged into it can
be used to find the two eigenvalues of C: WI ~ 35.2132 and w, = -7.21320.
Since these two eigenvalues have opposite signs, the contours of constant
values of Q ~ x TCX form a hyperboloid as shown in Figure 3.2.2. Actually,
what is shown in Figure 3.2.2 is a plot of the canonical equation Q = 35.21Yl

126 Functions oj Many Variables

3,---..,----,------,..----r----,------,

2

t
1

II

-1

-2

::l.L-,--:!-_---J.__~--:-'--__:!'---~

~ /1; ~, ~ '\. I'}.. "b
Xl~

Figure 3.2.1. The y axes obtained by similarity transformation of the symmetric matrix in
(3.1.80).

- 7.21yi', where axes Yl and Y2 are in the directions of the two eigenvectors.
The saddle point at the origin is seen in both (a) the level curves and (b) the
three-dimensional surface. At the saddle point, the first derivatives are zero,
but the surface represents a minimum in the Y, direction and a maximum in
the Y2 direction.

There are several conclusions available from the preceding analysis. First,
movement away from a given point x in the direction of the eigenvector
corresponding to a very small eigenvalue effects very little change in the
quadratic function value Q. Conversely, large changes in Q may be expected
when movement is in the direction of an eigenvector corresponding to a large
eigenvalue. Second, it should be apparent in Figure 3.2.1 that only two
searches in the directions of the y, and Y2 axes are necessary to locate the
minimum Q = 0, no matter where the starting point x (0) is located. The first
search is in the direction of the y, axis that decreases Q as rapidly as possible;
and the second search is accomplished by varying only Y2 in a similar way.
Therefore, one search strategy for quadratic forms is to compute the eigenvec
tors and find the point of minimum value of Q by searching sequentially in

,

.,~ <ti~,~, (" 'hci, -''"). TIm, "'=. ,. "',."."" "m"imw,_g_ J

----- ------- - - ------

3o

o

-6. +'....L..~..w-~..L-....G.~......a::;..............,f-'-'-.....u:~~~.......,.......;,.........l-......l>o~~

-3

t

Yl »
(a)

Figure 3.2.2. Hyperboloid in 2·space representing the quadratic form associated with matrix C in
(3.2.6) for Example 3.2.2. (0) Level curves, (b) three-dimensional surface.

127

128 FUltciions 01 Many Variables

-6 -3

(bi

Figure 3.2.2. Continued

(3.2.5) by adjustment of each y,. one at a time. The least one could conclude is
that it is always possible to find the minimum of a quadratic form from any
starting point in no more than n steps, where the quadratic form is defined in
the En space. Of course, this is somewhat trivial as long as the quadratic form
is centered at the origin; it is displaced as described next.

It turns out that a proper choice of directions will enable location of the
point of minimum Q without diagonalizing the quadratic form at all. Before
proceeding with that development, it is useful to define the more general
quadratic function. A quadratic function is a quadratic form whose minimum
has been both displaced from the origin and elevated by a constant:

(3.2.7)

Both the value of the quadratic function q and the constant c are scalar

Nonlinear Functions 129

quantities. The factor t is traditionally used to simplify the gradient or vector
of partial derivatives of q with respect to each component of x:

vq = g(x) = b + Bx. (3.2.8)

The expression for the gradient vector, called Vq or g interchangeably, is
easily obtained from (3.lAI) and (3.1.44). Since Bx = (b,x1 b,x2 ... b.x.), it
is easy to see that the second derivative of q, called the Hessian, is

V'q = B, (3.2.9)

where B = [bijJ = [a'q/ax i axj]. Clearly, the Hessian of a quadratic function
is a matrix constant. As noted previously, B must be positive definite for the
quadratic form to have an unambiguous minimum (the hyperellipsoidal form).
The necessary conditions for a minimum are that all first derivatives of q are
equal to zero, that is, the gradient g(x) = O. Setting (3.2.8) equal to zero yields

(3.2.10)

The vector x' denotes the point in E' where a function is minimum.

(3.2.11)22] .
26 x.

Example 3.1.3. The quadratic form of Examples 3.1.8 and 3.2.1 is extended
to the case of a quadratic function. Suppose that a quadratic function having
the form of (3.2.7) is

q(x) = 653 + (-202 -166)x + tXT[~i

Note that the elements of matrix B have been doubled to account for the
multiplier t preceding the quadratic form in (3.2.11). Also, the scalar constant
653 has been chosen to make Q = 0 at the center of the quadratic form; see
(3.2.33). Therefore, the family of level curves associated with that quadratic
form is just that shown in Figure 3.2.1 except for a displacement from the
origin. According to (3.2.10), that displacement vector is

(3.2.12)

as easily computed by using program MATRIX, The displaced level curves are
shown in Figure 3.2.3. According to the expansion for a quadratic form in
(3.1.43), the ordinary algebraic notation for the surface q(x" x 2) is

q = 653 - 202x, - 166x, + 17x~ + 22x1x, + 13xi- (3.2.13)

Differentiating (3.2.13) by ordinary calculus, the elements of the gradient
are

v,q = -202 + 34x, + 22x"

'V,q = -166 + 22x, + 26x,.

(3.2.14)

(3.2.15)

These last two equations are the same as those expressed in matrix notation by

130 Functions of Many Variables

5

4

N
X

2

",-
Figure 3.2.3. Quadratic function in 2-space for Example 3.2.3.

(3.2.8), of course, and the values of Xl = 4 and X, = 3 make both derivatives
equal to zero as required for a minimum or a maximum. Additional differenti
ation of both (3.2.14) and (3.2.15) with respect to Xl and with respect to X,

result in the second partial derivatives of q; these are the elements of the
matrix B, which is a constant matrix in the case of a quadratic function.

The concept of a line in En is important in optimization. Suppose that the
initial guess at a point x for minimum q(x) is x(O) = (1.9 4.5f in the Xl-X,

plane. The ne"t point, x(I), is usually approached on a straight line, namely,

(3.2.16)

The relationship in (3.2.16) is shown in Figure 3.2.4. Departure is from point
X(k) in direction S(k) for distance t measured in units of Ilsll,. An alternative
notation for a line in multivariable space (3.2.16) is less cluttered and is
employed when it will not confuse the analysis:

x* = x + ts. (3.2.17)

Nonlinear Functions 131

x,

X(k)

L x,
Figure 3.2.4. A straight line in 2-space illustrating vector search direction S(k) and scalar fac
tor lk"

There are several important concepts associated with the line function.
First, it is a vector function of a scalar, namely, t. Notationally,.x* = x*(t).
For any scalar function of a vector, say F(x), the scalar function along the line
is a function of only t, when given a starting point x and direction s, that is,
F(x*) = F(t). A line search is the process of finding some t, say t*, to
minimize F(t). For the general quadratic function, the value of t* may be
found hy substituting (3.2.16) into (3.2.7);

(3.2.18)

Expanding the terms and setting the first derivative of (3.2.18) with respect to t
equal to zero yields

S(k)Tg(k)

tt = - S(k)TBs(k)· (3.2.19)

When s(k) = - g(k) and q is used in (3.2.16), x(k+ll is called the Cauchy
point.

Example 3.2.4. Again using the quadratic function in (3.2.11), start a line
search at x = (1.9 4.5)T in the direction s ~ (1.7 -0.6)T. This line is shown
in Figure 3.2.5 from the starting point out to x = (5.3 3.3)T, where 1 = 2.
Notice that the dash-dot-dash line has a point of tangency with the q = 5
contour. Use the short BASIC program in Table 3.2.2 to compute t * and the
function F(I). According to (3.2.19) the minimum occurs at t* = 0.9716,
which coincides with the tangent point in Figure 3.2.5. It can be seen from

132 Functions oj Many Variables

5

4

N
X

2

(3.2.2i)

x
1

Figure 3.2.5. Line searches on a quadratic function. The steepest·dcscent strategy usually causes
zigzagging and slow convergence.

(3.2.16) that the range of t values depends entirely on the length of search
direction s, which is arbitrary.

It is important to know both the first and second derivatives in a direction
with respect to t, that is, the slope and its rate of change at any point on line
functions that are not quadratic, especially for less well-bebaved functions.
After Fletcher (1980:6), recall the chain rule and apply some special notation
as it relates to (3.2.17): .

'!.- = L dX
i !- = LS!- = STV . (3.2.20)

dt i dt oX j i I aX j

The terms Si and Xi are ihe ith components of x and s, respectively. Therefore,
the slope at any point along the line F'(t), called the directional derivative, is

dF
£'(t)'= - = sTVF = VFTs

dt '

Nonlinear Functions 133

Table 3.2.2. A BASIC Program to Perfonn Searches on the Quadratic Function in
(3.2.11)

- CALC (3.2.13)-(3.2.16) - LINE SEARCHES ON QUAD FNCN
PRINT"INPUT STARTING Xl,X2"; : INPUT X1,X2
: X4=X2 : REM - SAVE STARTING POINT
180 : REM - COMPUTE ~ PRINT FUNCTION AND GRADIENT VALUES

10 REM
20 CLS
30 X3==Xl
40 BOSUB
50 PRINT
60 PRINT "INPUT DIRECTION COMPONENTS 81,S2"; : INPUT 81,82
70 REM - CALC OPTIMAL ST~P T==Tt ON QUADRATIC SURFACE
80 T1 == (-Sl*Gl-82tG2> I (34*81 ..··2+44*51*52+26*82""2>
90 PRINT "OPTIMAL T=";Tl
100 PRINT
110 REM - LOOP TO CALC POINT ON LINE GIVEN T
120 PRINT "T="; INPUT T
130 Xl:=X3+TtSI
140)(2=)(4+T.52
150 GOSUB 180 : REM - COMPUTE ~ PR I NT FUNCT I ON ~(GRAD I ENT VALUES
160 GOTO 100
170 REM - SUBROUTINE TO CALC :!(PRINT FNCN a. GRADIENT VALUES
180 Q=653-202*X 1-166*X2+17"f.X1""2+22*Xl tX2+13*X2...·2
190 61=-202+34*X1+22*X2
200 62~-166+22*Xl+26*X2

210 PRINT "Xl.X2=";Xl;X2
220 PRINT "FUNCTION Q=";Q
230 PRINT "GRADIENT COMPONENTS AR£:":Gl;G2
240 RETURN
250 END

where the gradient vector V'F and the direction vector s are evaluated at the
particular x' of interest on the line. Some authors refer to (3.2.21) as the
projecled gradient. since V'F is "projected" onto s. The second derivative of F
with respect to I is the curvalure. Applying the operator from (3.2.20) to
(3.2.21), the curvature at any point on the line is the quadratic form

(3.2.22)

Since both the ditectional derivative and curvature depend on the length of the
.direction vector s. it is common to require that IIsll, = 1. It can now be
observed that the optimal step in parameter I to a minimum -along a line as
expressed in (3.2.19) is simply the negative of the ratio between the directional
derivative and the curvature of the function with respect to the line.

Being at a point in variable space, say x = (1.9 4.5)T in Figure 3.2.5, the
previous direction taken in Example 3.2.4 was not the one with the steepest
slope at that point. From (2.1.42). the directional derivative gTs =

IIgll,llsll ,cos 0, where 0 is the angle between vectors g and s. In seeking a
minimum. it might be supposed that the more negative slope the better; in that
case, the direction s that provides the most negative directional derivative is
seen to be s = - g. Thus the gradient vector is the direction of steepest ascent,
and the negative gradient is the direction of steepest descent. As early as 1847.

134 Functions of Many Variables

Cauchy suggested the method ofsteepest descent: a sequence of line searches in
the direction of the negative gn'dient, each line search terminating at the
minimum on that line segment (called an iteration).

Example 3.2.5. It is easy to use the program in Table 3.2.2 to compute a
sequence of steepest descents on the function portrayed in Figure 3.2.5.
Starting from x = (1.9 4.5l, the steepest-descent iterations always terminate
at a point of tangency with a level curve or contour of constant function value.
It is also seen that consecutive search directions are perpendicular, and this
can be checked numerically without difficulty. Therefore, for quadratic func
tions there is substantially no difference in steepest-descent strategy and that
of searching in the directions of principal axes. More important, the phenom
ena of zigzagging often associated with the steepest-descent method can be
observed in Figure 3.2.5. Steepest descent is an inferior search strategy. The
same can be said for searching in the directions of the coordinate axes, unless
the function is in canonical form.

The difficulty encountered by the steepest-descent method relates to the
eccentricity of the quadratic form. Crowder (1972:433) notes that the in
equality

F[Xlk+l
l
] < (k - 1)'

F[xlkl) - k + 1
(3.2.23)

holds for steepest descent on a quadratic function, where k is a condition
number defined as the ratio of largest to smallest eigenvalues of matrix B. The
matrix related to Figure 3.2.5 was given in (3.2.11); in Example 3.1.8, its
eigenvalues were found to be 26.18 and 3.82, so that k = 6.85 in this case.
Then (3.2.23) predicts a sequential decrease in steepest-descent function values
by a factor no greater than 0.56. Using the program in Table 3.2.2, it is found
that every value of Q at the turning points of the zigzag descent decreased by
a factor of 0.48. Convergence of the steepest-descent method is linear (large
k), but it could converge in just n iterations (k = 1, circular contours).

The significance of a positive definite matrix has been developed in connec
tion with ellipsoidal forms that have unambiguous minima. A family of
direction vectors is now developed based on positive-definite matrices, that is,
those having all positive eigenvalues. A more generally employed criterion for
positive definiteness can be obtained from the spectral decomposition of a
matrix according to (2.2.34). Such an expansion of a matrix is

(3.2.24)

where wk is the kth eigenvalue and vk is the kth eigenvector. Then a quadratic

,------------- - - - - --------- - - - -

Nonlinear Functions 135

form for B involving a vector, say s, is

sTBs = Wj (vts) T(vtS) + '" +wk(v[S)T(V[s) + ... +(V:S)T(V:S).

(3.2.25)

If B is positive definite, then all W; > 0 so that each term in (3.2.25) is positive,
and an alternate sufficient condition for a positive-definite matrix is

for all S * o. (3.2.26)

Positive definiteness is a special property of a matrix with respect to a
vector. A property of a positive definite n X n matrix with respect to n vectors
is that of conjugacy or B-conjugacy: .

for i *j,
fori=j. (3.2.27)

Furthermore, the n different Sj vectors are linearly independent, that is,

(3.2.28)

implies that all Ij = 0, j = 1 to n. This can be shown to be true by premulti
plying (3.2.28) by srB. The result is equal to hjlj according to (3.2.27);
therefore, (3.2.28) implies that Ij = O. But this condition is true for all j = 1 to
n so that conjugate vectors are linearly independent. A trivial case of conjugacy
is the orthogonal set of vectors in (3.2.27) when B = I, the identity matrix.
Two examples are the unit vectors that define orthogonal axes and the
eigenvectors of a positive-definite symmetrical matrix.

Fletcher (1980:25) has given a clear explanation of the important fact that a
sequence of n optimal line searches in conjugate directions on a quadratic
surface in En will terminate at the exact minimum. This property of quadratic
termination is the basis of nearly all optimization algorithms that employ
gradient information. Suppose that the n conjugate search directions (vectors)
are placed in columns of a matrix:

(3.2.29)

where the superscripts now denote the different search directions. Since the
S(k) are conjugate, they are also linearly independent so that any vector in En
can be expressed as a linear combination of them. If the search is to begin at
point x(O), then any point in En can be expressed in the form

n

X = x(O) + 2: S(k)!k = x(O) + St,
k-I

(3.2.30)

136 Funclions of Many Variobles

where the coefficients I k are collected in vector t;

(3.2.31)

The meaning of an optimal line search is that there is a value of I., say It, that
minimizes F[X{k) + IkS{k)]. It is assumed that the minimum value of the
quadratic function is F(x') at point x' (see Figure 3.2.3) and that x' can be
found after n optimal line searches, that is,

x' = x(O) + St'. (3.2.32)

It is noted that the standard quadratic form in (3.2.7) can be altered to read

where x' = -B- 1b as in (3.2.12) and c' = c - tx,TBx'. Since c' is only a
scalar elevation, it can be ignored in finding the minimum of

F(x) = (x - x,)TB(x - x'). (3.2.34)

Uponsubstitution of (3.2.30) and (3.2.32) into (3.2.34), the x{O) terms subtract
out and the result is

"
= t L (Ik - In

2
hk .

k-1

(3.2.35)

Note that the second expression in (3.2.35) is a result of B-conjugacy, (3.2.27).
The very important conclusion to be drawn from (3.2.35) is that it is equiv
alent to making n line searches in n-space, and thus B-conjugacy implies a
diagonalizing transformation STBS to a new coordinate system t that decou
pIes the variables. This method is just as effective as the diagonalizing
transformation that employs eigenvectors (Example 3.2.1).

Example 3.2.6. Again consider the quadratic function in (3.2.11) as il
lustrated in Figure 3.2.5. The properties of B-conjugacy state that two such
search lines, each terminated at the minimum in that direction, must minimize
a quadratic function of two variables. Consider two cases to verify that any
two line segments joining an arbitrary point to the origin are conjugate if Iheir
common point is a minimum point along Ihe firsl line. The program listed in
Table 3.2.2 can make the following calculations. First, let x(O) = (1.9 4.5)T and
s{O) = (1.7 -O.6{; movement in that direction traces the dash-dot-dash line
in Figure 3.2.5. The optimal step length for minimum function value according

Nonlinear Functions 137

to (3.2.19) is To' = 0.9716289. Then (3.2.16) yields the" turning point" X(l) =
(3.551769 3.917023)T. To verify conjugacy, suppose that the new search
direction is S(l) = x' - X(ll, since the minimum of the quadratic function is
known to be at x' = (4 3f, as shown in Figure 3.2.5. Therefore, s(1)
= (0.44823 - 0.91702)T. To test for all cases of B-conjugacy according to
(3.2.27), form the ~irection matrix S = (s, S2)T and then compute STBS =

diag(62.74 1O.61)T, confirming the B-conjugacy of S, and S2' A second case
might also start at point x(O) = (1.9 4.5)T but proceed in another arbitrary
direction, say s(O) = (4 5)T; the minimum along that line occurs at tt =

9.141753£-2.. Then the turning point is X(l) = (2.26567 4.95709)T. The direc
tion from there to the origin is a multiple of sU) = (1. 73433 -1.95709)T.
Again, all cases of conjugacy are verified by computing STBS, equal to
diag(2074.00 52.50) for this second case.

There are an infinite number of ways to select sets of n conjugate directions
that lead to the minimum of a quadratic function, and later those with the
most valuable additional properties are described. It is useful now to define
one unique set of conjugate directions that constitute the conjugate gradient
method. This method was originally designed by Hestenes and Stiefel to solve
systems of linear equations (such as the set of linear gradient equations related
to a quadratic function); a good description of its original application is given
by Beckman (1960). The conjugate gradient method has since been used in
optimization of nonlinear functions; see Cuthbert (1983:145) for a description
and BASIC program.

The conjugate gradient algorithm involves the gradient of Q, namely,
vQ = g = b + Bx. The steps in this algorithm are shown in Table 3.2.3. For
quadratic functions, t' is found using (3.2.19) and the conjugate gradient
algorithm will have found the minimum of Q (where the gradient is zero) after
a total of n line searches. Note that each new direetion is a linear combination
of the gradient at the current and preceding turning points and thus accu
mulates information about the function. Unlike more sophisticated conjugate
direction methods, only three vectors need to be stored, namely, the last x, g,

Table 3.23. Steps in the Conjugate Gradient Algorithm lor Quadratic Functions

1. x{O) is an arbitrary starting point.
2. s(O) = - g(O) starts search in steepest-descent direction.
3. X(k+l) = x(k) + ftS(k\ where 1* determines minimum Q in direction S(k).

4. g{k+l) = g(X(k+l)) is the gradient at the turning point.

Ilg'k+l'II'
5. hk = Un;1 is a ratio of two-norms.

IIg II
6. S(k+l) = _g(k+~) + hks(k).

7. Go to 3 il k < n, else stop.

--~--- - ----------------~~-

138 Functions of Many Variables

and s vecto{s. The reader can use data from the following examples to confirm
that each of the n defined directions is indeed B-conjugate according to
(3.2.27). However, the conjugate gradient method requires the initial
steepest-descent direction and line searches to the exact minimum for the
conjugacy property to hold. Readers interested in the derivation or proof of
the conjugate gradient method are referred to Fletcher in Murray (1972:79).

Example 3.2.7. In order to start with a positive definite symmetric matrix,
form 0 = ATA, where A is the 3 X 3 matrix given in Table 2.1.6. (The
eigenvalues of 0 are 167.6, 4.0820, and 1.3155.) That matrix is employed in the
quadratic function Q = bT

X + !xTO X, where vector b is assigned the value
b = (- 200 - 532 -16O)T. It is left as an exercise to write a program that
computes the conjugate gradient algorithm just described. The output of such
a program that works in conjunction with program MATRIX is shown in
Table 3.2.4. The first three data lines describe the given matrix and the next
data line is the given vef'tor. The program was written to start from x =
(1 1 1)T In iteration 1, the gradient g = b + Dx evaluated at the starting x is
g = (- 115 - 305 - 95)T. As shown in Table 3.2.4, the first search direction is
the negative gradient vector; the coefficient to determine the minimum in that
direction according to (3.2.19) is t* = 5.97115E-3. The new "turning point"
in the search is then computed, ending iteration 1. The remainder of the
conjugate gradient algorithm proceeds in the same way, except that the search
direction formula adds a certain proportion of the last search direction to the
negative gradient at the turning point. The minimum value of Q occurs at
x' = (4 1 5)T; it is easily verified that g(x') = O.

There are several important points to make concerning this example. First,
this problem was posed as minimization of a quadratic function, but it is
exactly the same problem as solving the linear matrix equation Dx = - b.
Second, the three search directions shown in Table 3.2.4 can form the columns
of a matrix S as in (3.2.29) to compute STOS = diag(1.9305E7 279.18 25.398).
That proves that the search directions are D-conjugate and that the process
represents a diagonalization of a quadratic function according to (3.2.35).
Finally, it is noted that direction matrix S is often illconditioned; using
program SVD, the singular values of S are found to be 339.52, 9.5516, and
3.8029, corresponding to a condition number k, = 89.28.

Example 3.2.8. To illustrate how easily. the conjugate gradient method can
become illconditioned, consider the well-conditioned positive-definite symmet
ric 5 X 5 matrix given at the top of Table 3.1.3. (It has approximate eigenval
ues of 150,81,48,16, and 0.37.) The problem posed with that matrix, say D, is
equivalent to the linear matrix equations in Example 3.1.2. Now the constant
matrix is b = (- 248 - 332 - 208 - 400 -125)T. The conjugate gradient
algorithm working in double precision and starting at x = (1 1 1 1 I)T finds
the solution x' = (5 4 3 2 I)T in five iterations as expected; the five search
vectors placed as columns of the direction matrix S are shown in Table 3.2.5.

------- - -- --- - --------~----------- -

Table 3.2.4. Results from a Prognun That Perlonns the Conjugate
Gradient Algorithm on a Given Positive-Definite 3 X 3 Matrix
and Vector, Starting from a Given Solution Estimate, x =(I 1 I)T

MATRIX D< 3 • 3) -
21.00000 51.00000 13.00000
51.00000 138.00000 38.00000
13.00000 38.00000 14.00000

CONSTANT VECTOR B (TRANSPOSED) IS:
-200.00000 -532.00000 -160.00000

VARIABLE VECTOR (TRANSPOSED) rs:
1.00000 1.00000 1.00000

COMPLETED ITERATION # 0 CONTINUE <Y/N)?

GRAOIENT VECTOR TRANSPOSED IS~

-115.000GO -305.00000 -95.00000
CURRENT SEARCH DIRECTION (TRANSPOSED VECTOR) IS:

115.00000 305.00000 95.00000
OPTIMAL LINE SEARCH STEP T*= 5.971150446832675D-03
NEW VARIABLE POINT IN X SPACE IS:

1.68668 2.82120 1.56726
COMPLETED ITERATION * 1 CONTINUE (YIN)?

GRADIENT VECTOR TRANSPOSED IS:
-0.32406 2.90237 -8.92587

CURRENT SEARCH DIRECTION <TRANSPOSED VECTOR} IS:
0.41205 -2.66901 8.99855

OPTIMAL LINE SEARCH STEP T*= .31592637483586
NEW VARIABLE POINT IN x SPACE IS:

1.81686 1.97799 4.41014
COMPLETED ITERATION * 2 CONTINUE <YIN}?

GRADIENT VECTOR TRANSPOSED IS:
-3.63665 1.20775 0.52475

CURRENT SEARCH DIRECTION <TRANSPOSED VECTOR) IS:
3.70654 -1.66043 1.00146

OPTIMAL LINE SEARCH STEP T*= .5889976917456501
NEW VARIABLE POINT IN X SPACE IS:

4 • 00000 1 . 00000 :5. 00000
SOLUTION VECTOR <TRANSPOSED) IS JUST ABOVE
PRESS ~RETURN) KEY TO CONTINUE -- READY?

Tahle 3.2.5. Search Directiou Matrix S for the Conjugate Gradient Algorithm iu
Example 3.2.8 .

MATRIX A(5 • 5
201.00000
210.00000
134.00000
252.00000
53.00000

)
131.03000
-31.85660

70.20460
-21.04685
-34.67800

22.31000
27.06400

-12:88581
-21.14677
-20.24608

2.10500
13.62720
8.29660

-17.04150
7.(15850

0.01281
-0.00464
-0.01653
-0.00183
0.02030

139

140 Functions of Many Variables

The solution was obtained with some luck; program SVD shows that the
transformation SrDS = diag(1.716E7 2.166E6 7.915E4 1.134E4
- 4.793E-4). The apparent rank deficiency is confirmed by using program
SVD to compute the singular values of the S matrix given in Table.3.2.5; they
are 414.8, 174.3, 46.47, 21.10, and 0.02957. The conclusion is that S is
essentially of rank 4, not 5, even though the computer solution carried out in
double precision survived that iIIconditioning.

3.2.2. General Nonlinear Functions. The analysis of functions that are neither
linear nor quadratic is based on their representation by a Taylor series that
embodies those two well-behaved classes of functions. It is helpful first to
review the elementary analysis of scalar functions in this context. For some
function y = [(x), it is commonly assumed that y is a continuous single-val
ued function of x, and at least the first and second derivatives exist so that
they are" smooth" functions. In general, the class of functions having continu
ous derivatives through order k is often denoted by C k • Two properties that
disqualify such ideal functions are illustrated in Figure 3.2.6a and b. A
function is said to be convex in some range if a line between two points (linear
interpolation) in the range overestimates the function. See Figure 3.2.6c.

y = fIx) y = Ixl

L.---- x X

.~) (b)

y y

f(a) C",-_-"
lIb)

'--'------!---....... x
abc

(e)

L-_~--.....L--_;_ x
d e

(d)

Figure 3.2.6. Some properties of functions. (a) A discontinuous function, (b) a continuous;
nonsmooth function. (c) convex range a 5, X:S b on a nonunimodal function, and (d) a srnooth
function having a maximum, a point of inflection, and a minimum.

_J

Nonlinear Function... 141

Mathematically, a function y = I(x) is convex on an interval h = b - a if

I(a + Ih)'; I/(b) + (1 -1)/(a) (3.2.36)

Convexity implies that a minimum exists within the range of convexity, but it
does not necessarily imply smoothness. Conversely, the function is said to be
concave when linear interpolation between two points underestimates the
function. If I(x) is convex, then I(-x) is concave.

A global minimum is said to exist if it is the only minimum over the entire
range of the independent variable; such functions in space E' are called
unimodal. The function shown in Figure 3.2.6b is unimodal. A minimum that
is not unique is called a local minimum. The function in Figure 3.2.6c has two
local minima and is not unimodal. The necessary condition for a minimum or
a maximum value of a scalar function is that its first derivative equal zero,
such as at points d, e, and I in Figure 3.2.6d. The maximum requires that the
second derivative be negative, 1"(d) < 0, and the minimum requires that the
second derivative be positive, I"(/) > O. A point of inflection occurs when
the second derivative is zero, 1"(e) = O. Usually, the following analysis will
deal with minima, since a minimum in y ~ I(x) is a maximum in the function
z = - y = - I(x). All of these properties carry over into functions of many
variables. For example, a quadratic function is convex everywhere and has a
global minimum if its matrix is positive definite. If the matrix has both
positive and negative eigenvalues, it is said to be indefinite, and the surface is a
hyperboloid having a saddle point as in Figure 3.2.2.

Finally, for a scalar function of a scalar variable, recall that an infinite
Taylor series expansion about x = a is

y(x) = y(a) + y'(a) dx + (f,)y"(a) dx' + (f,)y"'(a) dx 3 +

(3.2.37)

where the displacement from the expansion point a is

dx = (x - a).

Example 3.2.9. Consider the function

y ~ 4x - x' - In(x) - 2,

so that the first and second derivatives are

(3.2.38)

(3.2.39)

1
y'(x)=4-2x-

x
and

1
y"(x) =' -2 + ,.

x
(3.2.40)

The function y(x) is shown in Figure 3.2.70. The minimum and maximum are
found by solving y'(x) ~ 0 using the quadratic formula. The first three terms
of the Taylor series in (3.2.37) are adequate in a small neighborhood of x = a
such that dx 3 is insignificant. Therefore, an approximate representation of

Figure 3.2.7. The function y(x) = 4x - Xl - In(x) - 2. (a) There is a minimum at x = 0.2929
and a maximum at x = 1.7071. (h) Quadratic approximation h (x) was obtained from a Taylor
series expansion about point x = 0.2.

142

Nonlinear Functions 143

y(x) in the neighborhood of x = 0.2 is

h(x) ~ 0.369438 - 1.4(x - 0.2) + 11.5(x - 0.2)'.

Both y(x) and h(x) are shown in Figure 3.2.7b.

(3.2.41)

The multivariable Taylor series for a scalar function is a generalization of
the scalar variable case:

F(dx) = F(p) + g(p)T dx + 1dxTH(p)dx + (3.2.42)

The higher-order terms (not shown) must be expressed as "tensors" and are
seldom discussed in connection with optimization. The Taylor series in (3.2.42)
is an expansion about the vector point p, so that the multidimensional
displacement about p is

dx ~ (x - p) = (dx, dx, ... dX.)T. (3.2.43)

The gradient vector evaluated at point p is g(p), and the Hessian matrix of
partial derivatives evaluated at point p is H(p). Since multidimensional Taylor
series are seldom contemplated greater than degree 2, it is clear that the
approximations of interest are simply the quadratic functions treated in the
preceding section.

Example 3.2.10. In Chapter One, a surface over two dimensions was de
scribed mathematically and geometrically in Sections 1.1.1 and 1.1.2. Equa
tions (1.1.1) through (1.1.8) gave the function, its first and second derivatives,
and a quadratic approximating function. Figures 1.1.1 and 1.1.3 show the
general surface and the quadratic approximation of a peak, respectively. In
fact, the quadratic approximation employed was the Taylor series in (3.2.42)
about the point p = (- 3.7793 - 3.2832)T, which is the exact location of a
peak. Therefore, F(p) ~ 0 and g(p) = 0, so that the approximation is

I T [116.2645
F(dx) = ,(dx, dx,) -28.2500

-28.2500][dX,]
88.2356 dx,·

(3.2.44)

Since (3.2.44) is a quadratic form, its expansion proceeds as given by (3.1.43).
The approximation shown in (1.1.8) is F(x), which required expansion of the
first and second powers of the terms dX I = Xl - p, and dx, = x, - p,. Of
course F(dx) and F(x) are equivalent except for the points of reference,
namely, x = p and x = 0, respectively.

The first three terms in the Taylor series approximation given by (3.2.42)
are all functions of p, the point of reference on the scalar surface over the

144 Functions of Many Variables

n-dimensional variable space x. If F(x) is a quadratic function such as (3.2.7),
then g(p)T ~ VF(p) = b + Bp and H(p) = B. However, it is emphasized that
when F(x) is a general nonlinear function, then

g(p) = [g,(x) g,(x) .. , g,(xjf, (3.2.45)

where each gj(x) is a scalar nonlinear func1ion of the vector x. Furthermore,
the Hessian matrix (in the 3 X 3 case, for example), is

a'F a'F a'F

ax; aX2 ax} ax) ax} 'I7,(v,!F) v, ('17, F) 'I7,('I7,F)

a'F a'F a'F
H~ --- 'I7l('I7,F) '17,('17, F) 'I7,('I7,F)aX1aX2 ax~ ax) aX2

a2F a'F a'F

ax;
'17, ('I7,F) 'I7,('I7,F) 'I7,('I7,F)aX1ax) aX2ax)

(3.2.46)

Because the Hessian matrix H is always symmetric, there are n(n + 1)/2
nonlinear functions of x involved in En.

Since the gradient of a quadratic F(x) with respect to x is g(x) ~ b + Bx
according to (3.2.8), the gradient of F(dx) with respect to dx, using the first
three terms in (3.2.42), must be

VF(dx) ~ g(p) + H(p) dx. (3.2.47)

Therefore, the step to the minimum where VF(dx) ~ 0 from any point p on a
quadratic surface is

dx' = - H(p) -lg(p). (3.2.48)

This is the well-known Newton step in the Newton-Raphson search procedure,
and x = p + dx' is called the Newton point. In practice, the set of linear
equations H dx = - g would be solved by LU factorization as opposed to
obtaining the matrix inverse shown in (3.2.48).

Example 3.2.11. A quadratic function is illustrated first to show how the
Newton step in (3.2.48) works exactly. Again consider the quadratic function
given by (3.2.11) that has the level curves shown in Figure 3.2.5. As in that
figure, start from p = (1.9 4.5)T; since g(p) ~ b + Bp according to (3.2.8),
the gradient at that point is g ~ (- 38.4 -7.2)T. Using that and the matrix
from (3.2.8) in (3.2.48), dx = (2.1 . -1.5)T. From (3.2.43), x ~ p + dx ~

(4 3)T, which is the minimum point and center of the quadratic form in Figure
3.2.5. Assuming that the Hessian matrix is available, a single Newton step
minimizes a quadratic function.

Nonlinear Functions 145

Example 3.2.12. The scalar function of a vector of interest in this book is
neither linear nor quadratic, and neither are its derivatives. Consider the
nonlinear function

F = -XIX, + x,[2 - 4x l + xl + In(x l) + x,], (3.2.49)

where In(x l) represents the natural logarithm of Xl > O. The first partial
derivatives of F with respect to Xi' i = 1 to n, are the components of the
gradient vector:

gl = '\11F = -x, + x,(-4 + 2xl + l/xl)

(3.2.50)

g, = '\1,F = 2 - 4x l + xl + In(x l) + x,.

The Hessian matrix H = [hijl is written in new notation (called the Jacobian
matrix) of g that is still equivalent to (3.2.46) in this case:

(3.2.51)

For instance, '\1,g, is the first partial derivative of g, with respect to x" and
that is identical to the second partial derivative of F with respect to x, and x,.
(In general situations, the Jacobian need not be a square matrix.) In this
example, the matrix of second partial derivatives of F(x) is

J = [[x,(2 ~;/xm
(-4 + 2x l + ljx l)

-1

o
1

(-4 + 2x l + I/X l)]

1 .
o

(3.2.52)

The location of x = x' such that g(x') = 0 is now an iterative procedure. If
the initial guess for the starting x(O) is sufficiently close to x', then a finite
second-order Taylor series as in equation (3.2.42) represents the function
reasonably well and convergence to x' can be expected. Program C3-4
(LAGRANGE) can be merged with program MATRIX to perform a sequence
of calculations for X(k+l) = X(k) + dx(k). This calculation is started by select
ing menu command 13 and giving the requested initial guess for x (0), say
(2 2 2)T. This Newton process has second-order convergence and in just two
iterations the solution x' = (2.06545 1.27037 2.06545)T is obtained. In this
example, Xl happens to equal x, because of the form of g,(x) = O.

146 Functiom 0/ Many Variables

The reason for changing notation (J instead of H) in the preceding example
is that it demonstrates a classical mathematical procedure entirely equivalent
to iterative Newton methods that minimize some scalar function of a vector
F(x). Suppose that instead of F(x) the nonlinear vector function of a vector g(x)
had been given. As the use of the Jacobian matrix in (3.2.51) suggests, this
solution of a set of nonlinear equations, g,(x) = 0, i = Ito n, is obtained by a
sequence of first-order (linear) approximations in E "', namely, dx = - J -lg.

The Jacobian matrix plays an important role in the following paragraphs.
Regardless of how problems are posed, the Hessian matrix of a scalar function
F(x) is equivalent to the Jacobian matrix of the related vector function gEx).
However, note that a given set of equations g(x) might be neither symmetric
nor positive definite. In those cases, the correspondence between Hessian and
Jacobian matrices cannot be made. The methods of Chapter Four are relevant
to that more complicated situation.

3.3. Constraints

In Section 1.2.1 it was noted that the most general optmuzation problem
discussed in this book potentially involves constraints on the main objective
function, that is, the minimization of f(x) subject to h(x) = 0 and c(x) ~ O. If
some of the inequalities are not "binding," that is, some c, > 0, then they can
be ignored, since they are satisfied. The essential part of the constrained
problem is to deal with the equality constraints. Constrained optimization is a
difficult subject and there is so far no completely satisfactory -method. How
ever, it is clear that a student of that facet of optimization must have an
understanding of the implicit function theorem, the Lagrange multiplier
technique, and the Kuhn-Tucker constraint qualification concept.

3.3.1. Implicit Function Theorem. Most of the functions to be minimized are
implicit, being the result of an algorithmic computation. That fact and some
fundamental theoretical principles require a brief description of the implicit
function theorem. For example, suppose that there is an implicit function of
two variables, say h(x, y) = O. Further suppose that the derivative of y with
respect to x is required, under the assumption that y is a function of x,
written y(x). The following two examples illustrate problems usually solved in
an ordinary calculus course.

Example 3.3.1. Given'the implicit function

h(x, y) = 2xy + y2 - 1 = 0,

it is well known from calculus that the derivative of y with respect to x is

dy

dx

Constraints 147

so that

dy
-=
dx

y

x+y

It turns out that the sufficient condition that y is a function of x is that
'Vyh '" O.

Consider the case of m implicit functions in n unknowns (m <: n), say
h(x) ~ 0, where h is in Em and x is in E". Then the number of dependent
variables equals the number of functions, that is, it is possible to solve for m of
the variables in terms of the remaining n - m variables under the condition
that the related m X m Jacobian matrix is not singular;

(3.3.1)

It is convenient to partition the n variables into two subvectors; dependent u
in Em and independent v in En-m:

x=!~]. (3.3.2)

Let each of the m dependent variables in u be functionally related to the
n - m independent variables in v by the single-valued and continuous func
tions

Xi = uj = Yi(V), i~ltom. (3.3.3)

Then the implicit function theorem states that the derivatives of these func
tions, 'V",Y" are solutions to the n - m sets of linear systems

k = 1 to n - m. (3.3.4)

Example 3.3.1. Consider two functions in three variables (m = 2, n = 3);

h, (x) = xl + xi + xl - 27,

h 2 (x) = xl + 2x~ - x, - 24.

The choice of which two of the three variables are dependent is arbitrary; in
general there are n!jm!(n - m)! choices. Level curves of h, are spheres about

148 Functions 0/ Many Variables

the origin, and level curves of h, are paraboloids of revolution about the x,
axis. The solution level curves hl(i) ~ 0 ~ h,(i) pass through the point
i = (3 3 3)T. In this case, u ~ (Xl X,)T and v ~ X" so that (3.3.4) yields

[6 6]["'YI] [-6]
6 12 ",y, = l'

The determinant of the matrix is nonzero, so the matrix is nonsingular and the
system has a solution-the derivative of YI with respect to x, is - 't, and the
derivative of y, with respect to x, is i. In this contrived example, functions
hI = 0 and h, = 0 have been revealed explicit and can be solved for the
relationships of dependent to independent variables. They are:

Xl = Y1(x,) = (30 - x, - 2xn1/',

x, = y,(x,) = (x~ + x, - 3)1/'.

It is easy to obtain the derivatives of these last two equations and evaluate
those at i = (3 3 3jT to verify the solution obtained from (3.3.4). Also, the
definitions of the functions Y1 and y, are valid only in the neighborhoods
- 4.131 ,; x, ,; - 2.3028 and 1.3028 ,; x, ,; 3.6310.

The important properties defined by the implicit function theorem are
summarized in Table 3.3.1. Property (4c) in Table 3.3.1 deserves further
explanation. The differential formula for changes in the dependent variables is

i = 1 to rn. (3.3.5)

However, the partial derivatives of the dependent variable functions, Ui ~ Yi(V),
may be obtained by solving (3.3.4). Therefore, the linear approximation of
dependent variables according to (3.3.5) is always possible if Ju is nonsingular.

There is one additional interpretation of the implicit function theorem.
Note that the ith row of the Jacobian matrix in (3.3.1) is the gradient vector in

Table 3.3.1. Properties of the Implicit Function Theorem

(1) The point i is defined to satisfy h(i) - 0, for h in Em and X in E".
(2) There are m components of x in u that are dependent on the remaining n - m

components of x in v (x is partitioned into u and v).
(3) Each function hi belongs to C' (first derivatives exist), and the Jacobian (3.3.1) is

nonsingular at x = ~.

(4) There is a neighborhood about v where a set of m functions ui = Yi(V) are
single-valued,:are continuous, and have the additional properties that:
a. itj = Yi(V), for s~me unknown function Yi.
b. The various partial derivatives satisfy the n - m systems of linear equations

described by (3.3.4).
c. For any v in this neighborhood of v, the values of ui may be approximated

linearly.

Constraints 149

Em of equation h,(x). Furthermore, each hi(x) = 0 represents a level curve (a
surface of dimension n - 1) in En, so according to (2.2.82) each level curve at
point i has a tangent hyperplane

[Vhi{iWx = [Vhi{iWi, i=ltom. (3.3.6)

The solution of the m equations in (3.3.6) locates the point x that would lie in
all m hyperplanes simultaneously; both v and the dependent u partitions of x
would thus be found. The enabling condition that a solution exists is that
[Vhi(i)f = J. is nonsingular, the same requirement that has already been
assumed for (3.3.4) in the implicit function theorem.

Example 3.3.3. From Kaplan (1959:96), consider the two functions defined in
E 4

:

h2 ~ 2x[- x 2 - 2x,x. ~ O.

Since there are two equations (m = 2), there can be as many as two dependent
variables; choose these to be x,(xl , x 2) and x.(x[, x 2). In other words, the
dependent functions are u(v), where u = (x, X.)T and v = (Xl X2)T The
Jacobian for these choices according to (3.3.1) is

_ [-2X,
J. - 2- x.

2X.]
-2x, .

Dispense with the functional notation Yi' so that V",Y2 ~ Vx,x., for example.
Then the derivatives of x, and x. may be found according to (3.3.4):

and

These two sets of linear equations may be solved by Cramer's rule; in any
event, the reader can verify that the partial derivatives obtained are

x, + 2x.

2x 2 + 2x 2
', .

2x3 .,...... X 4

2x 2 + 2x 2
', .

2x3 - X 4

2x 2 + 2x 2 ', 4

X, + 2x.

2xi + 2xl'

ISO Functions of Many Voriobks

The implicit functions x 3(x 1, x 2) and x 4 (x" X2) will exist as long as x 3 and
x 4 are not simultaneously equal to zero.

3.3.2. Equality Constraints by Lagrange Multiplie.... The classical optimiza
tion problem is the minimization of f(x) subject to the equality constraint
h(x) ~ 0, where one or both functions are implicitly related to the components
of x. The nature of this problem can be seen in Figure 3.3.1, which shows the
locus of the implicit constraint function, h(x);' 0 in £2 (solid line). The
dashed lines are level curves that represent constant values of some objective
function, f(x); these indicate decreasing function values toward the upper
right corner. Because the minimum must occur on the constraint locus, it is
clear that the constrained minimum is at Xl ~ 2.1 and x 2 = 1.3.

In classical mathematics there are several important properties usually
considered in developing solutions to the constrained problem, such as convex
ity, continuity, strong and weak extrema, and so on. Here it will suffice to

3.3
\ \ \

2.8 \ \ \

2.6 \ \ \

\ \ \

2.4 \ \ \

\ \ \

2.2 \ \ \
\ -Vf

\ \ ,
2.3 lex) =\-2 \

\-2.62 , -3.6
\

,
1.8 \

,

t
\ , ...

1.6 \ ...,
1.4

N
X

t.21.3
. 8

hex) = 0 -....

• 6

.4

.2

3.~ '!- ~ '0 '0 ~ '!- ~ '0 <0 ~ '!- ~ '0 <0 ~
~. '!-. 'l/ 'l/ '!-. 'l/ ~•

Xj --;;"

Figure 3.3.1. The minimum of an objective function f(x) (dashed lines) constrained by an
equality h(x) = 0 (solid line) for Example 3.3.4. The negative gradient vector of the objective
function, -vj, is perpendicular to the tangents of both f(x') = -2.62 and h(x') = 0 at the
optimal point.

(3.3.7)

Constraints 151

follow the development by Hadley (1964:61), which proceeds rather directly to
a usable but satisfying explanation. The development is in terms of two
variables and one constraint function as illustrated in Figure 3.1.1. Suppose
that Jacobian Ju (3.3.1) is nonsingular at some point, say x'; in this simple
development assume that the partial derivative of h with respect to, say, X 2 is
not zero, that is, "J2h '" O. Then by the implicit function theorem there is a
neighborhood about x' in which x 2 is some function of Xj, say, X 2 ~ y(x j).

Therefore, the Objective function is a function only of independent variable x j :

1= I[x j , y(x j)] in a neighborhood of x'. If I has a minimum near x', then
dl(x')/dx j ~ 0 is a necessary condition. From the rules for differentiating
compound functions (Kaplan 1959:86),

dh dy "Jjh
-d ~ "Jd + "Jz!-d = "Jd - "J2/-h

~ 0,
Xl Xl '\72

where the implicit function theorem has enabled the substitution

dy

dX j

according to (3.3.4).
The Lagrange multiplier is now defined:

"Jz! "J jl
p=-=-

"J2 h "Jjh'

(3.3.8)

(3.3.9)

evaluated at x'. The identity in (3.3.9) comes from the chain relationships
"Jd = "J21 "J jY and "J jh = "J2h "J jY' Also note that this entire analysis can
be carried out assuming X j is a function of X 2 , which requires "jh '" O.
Therefore, for a minimum of function 1= f[x j , y(x j)] at x', it is necessary to
satisfy three equations in this case:

"Jd - p"Jjh = 0,

"J 21 - p"J 2 h ~ 0,

h ~ o.

(3.3.10)

A convenient form for the necessary conditions in (3.3.10) is to define a
Lagrangian lunction

L(x, p) = I(x) - ph(x). (3.3.11)

Then the necessary conditions for minimizing I(x) subject to h(x) = 0 are the
same for minimizing the unconstrained L(x, p) in the three variables Xj, x 2 ,

and p.

152 Functions of Many Variables

Example 3.3.4. The functions illustrated in Figure 3.3.1 are the objective
function f(x) = -xlx, (dashed lines) and the constraint function h(x) =

- [2 - 4x1 + xf + In(x l) + x,J ~ 0 (solid line). This problem involving the
Lagrange multiplier p has already been solved in E,\ample 3.2.12 using
Newton iterations in the program C3-4, LAGRANGE. The Lagrangian func
tion in (3.3.11) is (3.2.49) in this case, where p was replaced with xJ' The
minimization of the Lagrangian function, which is equivalent to the three
necessary conditions in (3.3.10), was obtained in Example 3.2.12, involving
equations (3.2.49) to (3.2.52). The solution to the constrained problem shown
in Figure 3.1.1 occurs at x' = (2.06545 1.27037)T, and the Lagrangecmultiplier
p = 2.06545 in this case (it is not usually equal to Xl)' The reader can evaluate
the Jacobian (Hessian) matrix in this case, equation (3.2.52), at the optimal
solution. Using MATRIX, DECOMP, and QRITER, its eigenvalues are 3.94,
-1.27, and 0.98, indicating a saddle point. That is typical of solutions
of the Lagrangian function (3.3.11), because, at the optimum solution
xl' Xl' p', F(x, p') is a minimum of x and F(x', p) is a maximum of p.

The case for x in E ' and only one constraint, h(x) = 0, is used to derive a
meaningful interpretation of Lagrange multipliers. Suppose that instead of
h(x) = 0, the equality was changed to h(x) = e or h(x) - e = 0, where e is
some small number. Clearly, the solution to an optimization problem with this
constraint is a function of e, that is, the optimal objective function f(x'), Xl,
and X, are all functions of e. According to the implicit function theorem,
these functions are all differentiable with respect to e in some neighborhood
about x'. In that neighborhood the chain rule yields

(3.3.12)

(3.3.13)

where h(x) - e ~ O. Since (3.3.13) is zero, it can be multiplied by p and the
result subtracted from (3.3.12):

However, both quantities in the brackets, [.J, are zero according to the
necessary conditions for an optimum (3.3.10). Therefore, the Lagrange multi
plier is equal to the partial derivative of the optimal constrained objective function
with respect 10 constraint displacement e:

p = \7J(x'),

where x' is the solution vector for the undisplaced constraint.

(3.3.15)

Constraint.f 153

Example 3.3.5. The previous example is continued by computing the sensitiv
ity of the optimal objective function with respect to the constraint according
to (3.3.15). The constraint was h(x) = -[2 - 4x1 + xl + In(x1) + x 2] = 0;
suppose h(x) = 0.1. This can be. incorporated into program C3-4,
LAGRANGE, by changing 2 to 2.1 in line 7030. Again merging LAGRANGE
into MATRIX and starting at x = (2 2 2)T, the solution obtained is x' =
(2.04469 1.18276 2.04469)T. Since the objective function was f(x) = -X i X 2,

this solution with the perturbed constraint is f(x') ~ - 2.418378 compared to
the unperturbed constraint case of f(x) = - 2.623886. The sensitivity in
(3.3.15) can be interpreted as an approximation for smal1 differentials so that
df = p de to first order. In this case the actual df turned out to be + 0.2055.
An estimate of that change is p de = 2.06545(0.1) = 0.2065, where e = 0.1
represents a 5 percent change in the constant part of h(x). The reader can
verify that e = 0.01 (a 0.5 percent change in the constraint constant) causes
approximation (3.3.15) to agree with the actual change in objective function to
five significant figures.

Although the Lagrangian has been introduced in limited dimensions, its
derivation for larger dimensions proceeds from the same principles but in
volves more general notation. The central concept in the use of Lagrange
multipliers is to convert a constrained problem into an unconstrained prob
lem. The resulting classical Lagrangian function is

L(x, p) = f(x) - pTh(x). (3.3.16)

Again, x is in En; since there are m constraints, h and the Lagrange
multipliers p are in Em. The sensitivity of the optimal objective function is
now with respect to perturbations of· each of the m constraints, typical1y,
h/x) = ej' where the perturbation to the jth constraint is ej • Then the
Lagrange multipliers may be interpreted as

Pj = 'V,/(x'), j = 1 to m. (3.3.17)

To interpret each of the Lagrange multipliers as sensitivity coefficients in this
way, the constraint functions must have been scaled so that similar perturba
tions in x cause similar perturbations in each h/x), j = 1 to m. In the linear
programming art, these sensitivities are cal1ed shadow costs according to
certain economic problems commonly encountered in that field. Readers
interested in the complete derivation and details leading to (3.3.16) and
(3.3.17) are referred to Hadley (1964:64).

3.3.3. Constraint Qualijications- The Kuhn-Tucker Conditions. It is now
app~opriate to consider the case of the general1y constrained optimization
problem previously mentioned: Minimize f(x) such that h(x) = 0 and c(x) ~ 0,
where x is in En, h is in Em, and c is in E t

. In other words, there are n

154 Funcliom oj Many Variables

variables, m equality constraints, and I inequality constraints. Suppose that q
of the inequality constraints are equal to zero at some point in x space, say
c/x) = 0 for j ~ 1 to q < I; then they are indistinguishable from the satisfied
equality constraints. The central question asked in this section is: Under what
conditions is that point x an optimal point for convex functions !(x), h(x), and
c(x)? The answer depends on propositions known as Farka's lemma and the
Kuhn-Tucker conditions. These concepts are rooted in the ideas presented in
Section 2.2.4, especially those concerning normal vectors, hyperplanes, and
polyhedral cones.

It is necessary to define more precisely a convex polyhedral cone generated
by two or more vectors as previously illustrated in Figure 2.2.9. A vector g lies
within a convex polyhedral cone if and only if it can be expressed as

q

g = Nu = L UjO j '
j~l

(3.3.18)

N is an n X q matrix composed of column vectors N ~ (Ot n 2 ... OJ ..•

nq) and vector u = (u, U2 ••• u
J

••• uq)' Then (3.3.18) states that any
vector g that is in the cone is expressible as a posilive linear combination of
the vectors n· that "generate" or "span" the cone. For example, a convex cone

J .
similar to Figure 2.2.9 might be generated by vectors n, ~ (1,2) T and n 2 =
(4,3)' Then g ~ 2n, + 1n2 lies within that convex cone; the reader is urged
to plot this case.

Farka's lemma relates a matrix and vectors, and it is fundamental to the
subject of constrained optimization. Farka's lemma is: Given vectors "1' the
columns of N = [0;1, and vector g, there is no (direction) vector s that satisfies
the conditions

. T 0l.e., DiS ~ , j = 1 to q,

(3.3.19)

(3.3.20)

whenever g is in the convex cone generated by the vectors n j as described by
(3.3.18). It will become apparent that s is a line search direction and that g is a
gradient vector, so that (3.3.19) is a negative (downhill) directional derivative.
First, it is useful to interpret Farka's lemma geometrically.

Recall from (2.2.82) in Section 2.2.4 that a hyperplane is defined by
nTx ~ h. The hyperplane goes through the origin when h ~ 0 and is displaced
from the origin in the direction ° for h > 0 (see Figure 2.2.7). Thus, n"x ~ 0
represents a closed half-space bounded by a hyperplane through the origin and
extending infinitely in the direction n. Figure 3.3.2 illustrates two closed
half-spaces bounded by hyperplanes H, and H 2 and extending in the direc
tions n, and 02' respectively. In the context of set theory, the intersection of
the two half-spaces is indicated by the wavy line in Figure 3.3.2. This

Constraints 155

n/x~o

H,
Figure 3.3.2. An illustration of Farka's lemma. Hyperplanes HI and H2 define closed half-spaces
that include a cone defined by their normal vectors. The directional derivative gTs cannot be
negative for any direction s that is in the intersection of the closed half~spaces when g lies in the
cone.

intersection is described mathematically by (3.3.20). Geometrically, Farka's
lemma states that if direction vector s lies in that intersection, then the
projection of vector g on s is positive, that is, the directional derivative (3.3.19)
cannot be negative.

Farka's lemma is now applied to constraint qualification. The constraints of
interest are those q binding inequality constraints, namely, c/x) = 0, j = 1 to
q. The other t - q constraints are strictly greater than zero and are therefore
satisfied hy some margin. Define the gradients of the constraints as

j=ltoq, (3.3.21)

that is, the gradient vectors of the binding constraints are simply the column
vectors comprising the n x q matrix N = [nJ Matrix N is assumed to be of
full rank. The Kuhn- Tucker constraint qualification condition is: A necessary
condition for x' to minimize f(x) such that c(x) ;;" 0 is that the gradient vector
of the objective function, g(x') = Vf(x'), lies within the cone generated by the
gradients of the binding constraints. Mathematically, the necessary condition
for a constrained minimum is

q

Vf(x') = Nu = L: uJn j ,

)=1
(3.3.22)

I

In words, the objective function gradient must be a positive linear combina-

156 Functions 0/ Many Variables

tion of the gradients of the binding constraints. The requirement for uj;o, 0
stems from inequality constraints c(x) ;0, O. For equality constraints, c(x) = 0,
U j may have either sign.

Furthermore, the gradient operator with respect to x may be applied to
both sides of the Lagrangian, (3.3.16). Since VxL (x') = 0 when f(x') is the
constrained minimum where c(x) = 0, it is concluded that the "j coefficients in
(3.3.22) are in fact the Lagrange multipliers. Thus, Vfx(x') = Np is the sum of
the constraint normals, each scaled or weighted by the respective Lagrange
multiplier.

Example 3.3.6. Suppose that it is desired to minimize the objective function'

subject to

f(x) = - xlx,

gl(X) = x, - xl;o, 0,

.g,(x) = -Xl - X, + 2;0, O.

(3.3.23)

(3.3.24)

(3.3.25)

\
-Vg2

1.5
\
I -VI
\

t \
\
I \

N 1.0 feasible region
x

\
\
\
\
\

\
.5

.. --- -.. ----- ------ -----
IU'~ .,

~
.,

'11''''~
" ----Figure 333. The optimal solution for the two binding constraints in Example 3.3.6. The

Kuhn-Tucker conditions are satisfied, because the negative gradient of the objective function lies
in the cone generated by the two negative gradients of the constraint functions.

Problems IS7

This problem is illustrated in Figure 3.3.3. The feasible region to the left of the
hatched borders represents the set of points x that satisfy both g, :<: 0 and
g2 :<: O. Both these constraints are binding at x' ~ (1 l)T where f(x') = -1,
the optimal constrained objective function value. It is more convenient and
just as valid to employ the Kuhn-Tucker conditions in terms of negative
gradients. Recall that the gradient of a nonlinear equality function (g, = 0) is
simply the normal to a tangent line at that point. Clearly, the two constraint
gradients form a cone that contains the gradient of the objective function.
Therefore, x' ~ (1 l)T fulfilled the necessary conditions for a constrained
minimum.

The essence of the Kuhn-Tucker conditions is seen in Figure 3.3.3: There is
no small step from the optimum into the feasible region that will further
reduce the value of the objective function. Stated another way, if a direction s
pointing into the feasible region such that STg < 0 can be found, then the
point in question is not an optimal solution. It is easy to construct cases
involving nonconvex functions where the Kuhn-Tucker conditions are satisfied,
yet there are other, better minima that are unreachable once a search al
gorithm is "trapped" in a local constrained minimum. Readers interested in
more complete analyses of these situations should consult Hadley (1964:197)
and Powell in Gill (1974b:8).

Problems

3.1. Use forward substitution to solve the equation Ly ~ b, where

L = [-;

0 0 nb= [~n-1 0
-1 1 -3

0 2 4

3.2. Use back substitution to solve the equation Ux ~ y, where

U = [~
3
1
o
o

o
3
1
o

-1]-2
o '
1

~ [-~~]Y -1'
4

3.3. Suppose that matrix Z ~ TTT, and that T is given by (2.1.8).
(a) Compute the Cholesky factorization Z = LDLT ~ UTU where

U ~ LD' /2. Why is this always possible? Is Z positive-definite?
(b) Compute the Gram-Schmidt factorization T ~ QU. Compare this

matrix U with matrix U in part (a).

(c) Discuss the corresponding U matrices in parts (a) and (b) using
equation (3.1.47).

158 Functions of Many VariDbles

3.4. Verify the calculations for the rank 1 update of the LDLT factorization
in Example 3.1.3.

3.5. From the rule for differentiating a product, verify that

where V is defined by (3.1.40) and u and v depend on x. For the
quadratic form Q ~ xTCx, C ~ CT, set u = x and v = Cx to prove
(3.1.44), namely, vQ = 2Cx.

3.6. Convert the nonlinear least-squares fitting function in (1.2.5) to a linear
mathematical model by assigning x. = 0.01287 and x, = 0.02212. Then

f(x, /) = Xl + x 2exp(- 0.01287t) + x,exp(- 0.02212/).

Suppose that the given data are a representative subset of that shown in
Figure 1.2.1:

1 2 3 4 5

/ o

0.844

20

0.932

60 120 320

0.881 0.685 0.406

Solve the linear least-squares (LLS) system in (3.1.53) using three
methods:

(a) The normal equations (3.1.46) using program MATRIX com
mand 9.

(b) The generalized inverse using programs MATRIX and GENINVP
command 10.

(c) Orthogonal decomposition (3.1.47) using programs MATRIX and
GSDECOMP command 10.

Compare your results with those in Table 1.2.1.

3.7. Prove the outer-product singular value decomposition

n

A ~ USV T = "" suvT
i- I I I'

j~l

(3.1.60)

where U ~ [u,], V ~ [v,], and the s, are the singular values.

3.8. Using programs SVD and also MATRIX with GSDECOMP and
QRITER, verify that the eigenvalues of matrix Z ~ TTT are equal to
the respective squared singular values of Z for T given by (2.1.8).

3.9. Are eigenvectors conjugate under any conditions? Prove your answer.

Problems 159

3.10. Using the matrix Z = TTT, T in (2.1.8), numerically test the conjugacy
of some colunm vectors in the U = [u,] and Y ~ [v

J
] matrices associ

ated with the singular value decomposition A ~ USyT. Note from
(3.1.61) that singular values sif = 0 for i * j. For computational con
venience, also note that

where e, is a unit-direction vector such as (2.1.2); storage of the set of e,
on disk mass storage simplifies this computation. Are u1 and v, con
jugate?

3.11. Determine the rank of the following matrices:

-1 0 1 2
-1 1 0 -1

A= 0 -1 1 3
0 1 -1 -3
1 -1 0 1
1 0 -1 -2

[-i
-2

!~J.5B= -3 -1
2 -3 -5

3.12. Solve the linear system of equations in (3.1.36) using singular value
decomposition in conjunction with
(a) Equations (3.1.65) through (3.1.68), and the alternative

(b) Equation (3.1.69b).

3.13. The Rayleigh quotient (3.1.78) gives the extreme values of f(x) = xTBx
such that xTx = 1, where B is symmetric. Form the Lagrangian func
tion (3.3.16) for the constrained problem and show that the necessary
conditions for a minimum or a maximum agree with (3.1.78).

3.14. Section 3.1.2 described overdetermined sets of linear equations, Ax = b,
for A m • n , m > n. Suppose that instead of too many equations, there
are too few, that is, m < n. Form the Lagrangian function to minimize
xTx such that Ax = b. Equating the derivatives of that Lagrangian
function to zero and using the fact that V(pTAx) ~ ATp, show that the
solution for minimum IIxll, when m < n is

Compare this result with (3.1.49). Explain why the case m < n need not
be treated separately from the m > n case.

j

160 Functions 0/ Many Variobks

3.15. Show that the column vectors of U are the eigenvectors of the symmet
ric matrix AAT

, where the singular value decomposition of A ~ USV T

3.16. Consider the quadratic form Q = xTBx, where x is in £2 and BT = B
= [bi)]. Show that

Q(x) = bllxf + 2b12 X 1X 2 + b22 Xi,

3.17. For the quadratic function F(x) = c + bTx + txTBx where c ~ 500,
b=(-94 -67)T andB~[14 2]

, 2 11'

(a) Compute F, "1F, "2F, and the directional derivative in the
direction s ~ (1 - 2f, all at the point x = (3 7)T,

(b) Find the minimum value, F(x') and x'. Obtain the eigensolution
for B and the canonical form of Q = xTBx in new coordinates y.
Sketch the level curves for F(x) ~ 50.5, 60.5, 70.5, and 150.5,

(e) Write the Taylor series in dx about the point x = (3 7)T and find
the dx step from that point to x'.

(d) Locate the minimum F(x') using the conjugate gradient al
gorithm in Table 3.2.3, starting from x ~ (3 7)T Show all values
of x, It, s, and "F = g involved. Show numerically that the
search directions S(k) are B-conjugate and that the gradient at
each turning point is orthogonal to the last search direction.

3.18. Change step 5 in the conjugate gradient algorithm, Table 3.2.3, to read

Incorporate this change in your BASIC program that was suggested in
Example 3.2.7 and rerun the program. It has been shown that this
expression for h k provides better protection against roundoff error and
also ensures that [s(k+l)fDs(k) = 0 even when the other steps have
been computed inaccurately.

3.19. Define dg = g(k+l) - g(k) and dx = X(k+l) - X(k). Then use (3.2.7)
and (3.2.8) to show that there is an invariant mapping of corresponding
differences in gradient and position on quadratic functions called the
secant condition:

dg = Hdx,

assuming constant Hessian matrix H. Show that dx and dg are in the

Problems 161

same direction only if dx is an eigenvector of the Hessian matrix. Also,
use (3.2.48) and (3.2.42) to obtain the "altitude" F(p) at a point p
above that at the minimum F(x'):

F(p) - F(x') ~ t[g(pWW1[g(p)].

Davidon noted that the inverse Hessian matrix is a metric (a measure
of distance); this fact provides a family name for certain variable metric
search methods discussed later. .

3.20. Prove (3.2.35).

3.21. Stationary points of F(x) are points where VF(x) ~ 0; they may
represent maxima, minima, or neither (saddle points). From Fletcher
(1980:30), find the stationary points of the following functions:

(a) F(x) = 2xi - 3xf - 6x1X2(X1 - x 2 - 1).

(b) F(x) = (x2 - Xf)2 + x/.

(c) F(x) ~ 2xf + XI - 2X1X2 + 2xi + xt.

(d) F(x) = (X1X2)2 - 4xfx2 + 4xf + 2X1XI +
xi - 8X1X2 + 8x1 - 4x2·

3.22. Modify the program in Table 1.1.2 to compute Newton steps, dx in
(3.2.48), so that the minima in Table 1.1.1 can be computed from a
nearby starting point x. Note that which minimum is found depends
entirely on the arbitrary starting point and behavior of the Newton-step
algorithm.

3.23. Derive the gradient vectors in Example 3.3.6 and verify that they satisfy
the Kuhn-Tucker conditions at the optimal point.

3.24. From Dixon (1972b:92), consider the constrained optimization prob·
lem:

Minimize [(x) ~ 2xf - 2X1X2 + 2xi - 6x1

such that

and

It is easy to verify that the unconstrained minimum is at x ~ (2 l)T,
which satisfies the second constraint but not the first one. Convert this
problem to the Lagrange format by adding squared slack variables to
each constraint to make them equalities. By this classical ploy, solve the
following problem by creating the Lagrangian funCtion and using a
suitably modified program C3-4, LAGRANGE:

Minimize [(x) = 2xf - 2X1X2 + 2xi - 6x1

162 Functions of Many Variables

such that

3x, + 4x2 + xj - 6 = 0 and -Xl + 4x2 + xi - 2 ~ O.

With the addition of slack variables x, and x. and two Lagrange
multipliers, say x, and x" there are a total of six variables. The'
Newton iteration was started at x ~ (l 1 1 1 1 l)T and converged on
the eighth iteration to the following values:

1

Xi 1.45946

Wi 8.40516

2

0.40541

5.51117

3

ooסס0.0-

0.64865

4

1.35567

-4.90579

5

-0.32432

-2.68335

6

ooסס0.0-

1.67281.

The Wi are the eigenvalues of the Hessian matrix after convergence.
What kind of stationary point is this solution? What is the significance
of the slack variable and Lagrange multiplier values at the solution?
Are any of the original constraints binding? Test the Kuhn-Tucker
condition.

3.25. A circle of fixed diameter D has a rectangle of sides X and y inscribed
within it. Use the Lagrangian function to find the values of X and y
that will maximize the area of the rectangle.

-- -------------

Chapter Four _

Newton Methods

The Newton-Raphson method was applied in Chapter Three for a vector
function of a vector. Newton's method deals with a related scalar function of a
vector and is based on a quadratic approximation to a multidimensional
function. The Taylor series showed that this is reasonable as long as the
starting vector of variables was suitably close to a minimum of the function.
This chapter deals with three pragmatic questions about Newton's method:

1. How large is the neighborhood in which the quadratic model is valid?
2. How can Newton's method be made robust (hardy) when started far

away from the minimum?
3. By what means can explicit expressions for the second derivatives be

avoided?

The last question is answered in this chapter by assuming that exact first
derivatives are available, so that either finite differences can approximate the
second derivatives or the objective function is a sum of squares. The second
question is answered in this chapter as it is for different methods described
later-just start by steepest descent if necessary, and then change at some
point to a method that is better nearer the minimum. The ingredient in the
recipe that differs here from elsewhere is how and when the transition is made.
The first question is of central importance to the subject of this chapter,
namely, the concept of a "trust region" where the quadratic model of the
function is valid. That leads to what Fletcher (1980) has called restricted step
methods-the ones that make sense for a blind man on a mountain, who
would hardly dare to take large, unrestricted steps without some assurance of
avoiding disaster!

4.1. Obtaining and Using the Hessian Matrix

Usually, expressions for second derivatives are not available and creation of an
algorithm for their calculation is complicated. However, it is possible to

163

164 Newton Methods

employ finite differences that use first derivative functions to approximate
second derivatives. Some other alternatives are (1) to assume a useful structure
in the objective function that allows a reasonable approximation of the
Hessian or (2) to build an approximation to the Hessian by a succession of
steps based on the idea of conjugate gradients introduced in Chapter Three.
There is a small chance that a positive-definite Hessian might become indefi
nite in the approximation, but the real risk is that far from a minimum on a
generally nonlinear function, the Hessian is negative definite or, more likely,
indefinite. This problem must be faced when starting far from an unknown
minimum, because all sophisticated search techniques assume a positive
definite Hessian matrix. This section describes the practical details necessary
to approximate and to deal with a Hessian (symmetrical) matrix expressed in
the factored LDLT form and stored in a vector instead of the wasteful
two-dimensional array.

4.1.1. Finite Differences for Second Derivatives. Recall that the mathemati
cally strict definition of a derivative of a scalar function f(x) of a scalar
variable x is

df
j'(x) = - =

dx

. f(x+dx)-f(x)
hm l

dx-O dx
(4.1.1)

where dx is an increment. The same concept applies for a partial derivative of
a scalar f~nction F(x) of a vector x:

. F(x + dx, e,) - F(x)
'ViF(x) = hm ,

dx;-O dx j

(4.1.2)

where dX i is an increment in the ith element of x and ei is the ith unit vector
[e.g., see (2.1.2)]. The notation 'Vi is the del operator (3.1.39).

Not only can first derivatives be computed by the two preceding equations,
but the second partial derivatives can be obtained in a similar way. Suppose
that the gradient vector function g(x) = (vIF 'V 2 F .,. 'ViF ... 'V,F)T is
available, where the elements of g are defined by (4.1.2). Then column vectors
that constitute the Hessian matrix of second partial derivatives, H =

[hI h 2 ••• h,], are defined by

j=lton. (4.1.3)

To see the details of why this is so, examine the first column of the Hessian
matrix defined by (3.2.46). If H = [hi)]' then the elements in the first column
are hn = V[(VIF), h 21 = 'V 1('V 2F), ... , hi! = 'V1('ViF), ... , and h'l =
'V1(V,F). The idea is that the quantities in the parentheses, 'ViF = g,(x), are

~L.- _

Obtaining and Using the Hessian Matrix 165

the elements of the gradient vector, which is presumed to be an available '
function. The same statement can be made for all other columns of H.
Therefore, by perturbing just Xj' it is possible to finite difference each of the gi
elements in the spirit of (4.1.2) and thus obtain the entire jth column of the
Hessian matrix, according to (4.1.3).

Since the Hessian matrix is symmetric, the method described for obtaining
all n columns of the Hessian provides redundant elements that are off the
main diagonal. To reduce the inherent errors described in the next paragraph,
the symmetric approximation of the Hessian ii is used:

(4.1.4)

Derivatives are limit operations that assume that the increment involved
tends to zero. Consider the approximation of the gradient vector in light of the
Taylor series in (3.2.42). The approximation that

F(dx) - F(p) = g(p) T dx (4.1.5)

is valid only if the quadratic form dxTH(p)dx and higher-order terms can be
neglected. According to (3.1.43), quadratic forms contain only second-degree
terms, in this case (dXi)2 ~ (Xi - p,)2, so the neglected higher-order terms do
tend to zero faster than the linear dx term in (4.1.5) as dx --> O. The error in
finite-differenced derivatives (dx, * 0) because 'of the neglected terms in the
Taylor series representation of the function is called truncation error. That is
just one of the two sources of error that is incurred by picking some small
number, dx" and proceeding to calculate partial derivatives according to
(4.1.2) and (4.1.3).

The total error incurred in computing derivatives by finite differences is the
sum of truncation error and cancellation error. Cancellation error results from
subtraction of two very nearly equal numbers on a computer having finite
word length, especially in the mantissa. Table 4.1.1 shows the machine
precision em as obtained by the short algorithm in problem 1.12 in Chapter 1.
Table 4.1.1 shows that 1£-6 is about the smallest value of dx, that would
register a change in Xi when used in (4.1.2) on an IBM 370 in short precision.

Table 4.1.1. Several Machine PrecisiOli Constants in Base 10 and Base 2

Computer

IBM 370
IBM PC
HP 85
IBM PC

Condition

Short Precision
BASICA DEFSNG
HPBASIC
BASICA DEFDBL

em in Base 10

9.50E-7
5.%E-8
3.64E-12
l.:i9D-17

em in Base 2

2- 20

2- 24

2~38

2- 56

,~

166 Newton Methods

According to Gill (1981:128,345), the finite difference increment dX i might
reasonably be about 100-1000 times the machine precision em' Dennis
(1984:1766) noted that a good rule of thumb in finite difference calculations is
to perturb half as many digits in Xi as are accurate in the function, in this case
gj' However, the concern is with the number of digits in the mantissa and not
the exponent, so a relative increment of, say, dXi ~ O.OOOlxi has always been
used by the author, with good results, especially if the termination criterion
has about the same relative magnitude. The case of Xi = 0 must be antic
ipated; in that event, dX i ~ ID-6 is set when working in double precision.

Finite differencing of either first or second partial derivatives requires the
nominal function value without perturbed variables plus n additional evalua·
tions for the set of perturbed variables. So in case of either (4.1.2) or (4.1.3),
there are n extra function evaluations required for derivatives by finite
differences. This can seriously lengthen the optimization program execution
time. The effects of truncation error on first derivatives causes more problems
in optimization algorithms than their effects on second derivatives employed in
Newton's method in the case at hand. However, the idea of finite differencing
both the first derivatives and then the second derivatives is especially bad,
since the compounded truncation error has a severe effect on gradient al
gorithms. A part of the following program C4-1, NEWTON (lines 2420-2680),
finite differences the gradient obtained by formula to provide approximate
second derivatives that are accurate to four or five significant figures.

4.1.2. Forcing Positive·Definite Factorization. It is useful to relate the steep
est·descent method to Newton's method in a special way that ultimately
relates to positive definiteness of the Hessian matrix. Consider a linear model
of a function from the Taylor series in (3.2.42)

F* = F(dx) = F(y) + g(yf dx, (4.1.6)

where dx = x - y, y being the fixed point about which the expansion is
constructed. The first scenario is to mirtimize F * such that the step is
restricted to the unit hypersphere IIdxllz = 1. Lagrangian function (3.3.11) for
constraining the step size is

L(dx, p) = F + gTdx + p(dxTdx -1).

Setting the gradient VL = 0 yields g + 2p dx ~ 0, or

-g
dx=

2p'

(4.1.7)

(4.1.8)

and p is chosen so that Ildxll ~ 1.
It is seen that a linear function model constrained with a two-norm unit

step is in the steepest·descent direction. There is an interesting geometric

Obtaining and Using the Hessian Matrix 167

interpretation for this analysis. Comparing (4.1.6) with (2.2.82), it can be
visualized for x in E 3 that fixed values of F* define a set of planes, some of
which cut the unit sphere centered at x ~ y. The constrained minimum value
of F * determines the unique plane that is tangent to the unit sphere. The
gradient g(x) is normal to the planes.

A second scenario is to retain the constrained linear model but to change
the norm of the unit step to an elliptic norm (see Figure 3.2.1):

(4.1.9)

where H is positive-definite. Thus, the Lagrangian function becomes

Again, setting the gradient VL = 0 yields g + 2pHdx = 0,

Hdx = -g,

(4.1.10)

(4.1.11)

where p has been ignored, because it affects only the step size. Of course,
(4.1.11) is just Newton's step as previously obtained in (3.2.48), so it may be
concluded that Newton's method is equivalent to steepest descent under the
elliptic norm of (4.1.9). Put another way, under the elliptic norm the steepest
descent method is obtained when H = I, the identity matrix. A geometric
interpretation similar to that just given is that H -1 deflects the dx vector from
the normal vector to the hyperplane, thus locating the point where that
particular plane is tangent to the unit ellipsoid.

The descent property is paramount for an optimization algorithm, that is,
each step must proceed downhill. It was shown in Section 3.2.1 that the
directional derivative, F' = gTs evaluated at a point x, is simply the slope of
F(x) in the s direction. In the Newton case, g can be replaced with (4.1.11) so
that the directional derivative becomes

(4.1.12)

which is strictly negative (downhill) for any dx if and only if the Hessian H is
pOSitive-definite. If the Hessian is computed at some point not too close to a
minimum function value, it may not be positive-definite. Then H must be
altered in order to preserve the downhill property.

There are at least a half dozen ways that the Hessian can be forced
positive-definite; two are discussed in this section and another in Section 4.2.2.
According to Gill (1974b), Greenstadt proposed to employ the spectral decom
position of the Hessian as described in (2.2.34):

n

H = L WjVjVr.
;-1

(4.1.13)

168 Newton MethOib

where the w; and v; are the corresponding eigenvalues and eigenvectors of H,
respectively. It has been reported that simply changing all negative eigenval
ues, W; < 0, to positive constants equal to about 10 times the machine
precision constant in the summation of (4.1.13) produces a useful positive
definite matrix, say if. Then H = LDLTcan be used in (4.1.11) to find a dx
which is a somewhat arbitrary step having a length and a downhill direction. A
complete eigensystem analysis of the Hessian would be required for each step,
and that requires between 2n' and 4n' operations; an exorbitant price to pay
in run time and code. The interested reader is referred to Gill (1981:107).

Gill (1981:109) describes a means to detect and correct a negative definite
symmetrical matrix during H = LDI! factorization. The diagonal matrix
D = [d1 d 2 ••• dn] will contain only d; > 0 if H is positive-definite. [This
is proved in (4.1.17).]lf a negatived; is encountered it may be set to some
small positive constant, thus producing a positive-definite H ~ H + E, where
E is a non-negative diagonal matrix. Gill describes a test to select the small
positive constant so that H is disturbed as little as possible. In program C4-1,
NEWTON, described in Section 4.3, the author simply sets any negative d; to
+ 10-6; see lines 2730 and 2920. Otherwise, the LDLT factorization in
NEWTON (lines 2700 to 2960) is exactly that given in program C3-2,
LOLTFAC.

When one or more eigenvalues of the Hessian matrix are negative, then that
point is a saddle point. It is possible to compute a negative curvature descent
direction, that is, a direction s such that when sTHs < 0 then STg < O. Fletcher
(1977) describes Ii successful method for this approach, based on a different
LDLT factorization. It seems to be less desirable than simplY forcing positive
definiteness, using the modified LDLT factorization method just described.

4.1.3. Computing Quadratic Forms and Solutions. As noted in Section 3.1.1,
symmetric matrices that are n X n actually contain only n(n + 1)/2 unique
elements, as opposed to the n 2 elements in general matrices. Therefore, it is
common practice to evolve a given symmetric matrix H as previously given in
(3.1.14):

[h..] [" JLDLT ~ h 21 h 22 121 d2--+
h3l hJ2 h JJ I3l 1'2 d,
h 41 h 42 h 4, h.. 141 142 14,

[H('I
H('OJ

--+
H(2) H(S)

(4.1.14)
H(3) H(6) H(8)
H(4) H(7) H(9)

In the application in this chapter where the Hessian matrix is computed by

Obtaining and Using the Hessian Matrix 169

finite differencing the gradient vector, the resulting symmetrical matrix given
by H in (4.1.4) is first stored as indicated by the top-left matrix in ,<4.1.14).
After factorization, the original hij elements are replaced by elements from
the Land 0 matrices as shown by the upper-rigbt matrix in (4.1.14). The
actual storage of these elements is in the single subscripted array, H(·) as
indicated at the bottom of (4.1.14).

It is necessary to compute quadratic forms, such as eTHe which occurred in
(3.2.19), where e = g in connection with the Cauchy point. Note that

For the n = 4 case, the defined vector t = LTe is

(4.1.15)

121

1

o
o

131

132

1
o

(4.1.16)

Note that L was previously defined by (3.1.12). Once t has been obtained, the
desired quadratic form is

n

Q = eTHe = tTOt = L djt;-.
j~l

(4.1.17)

An important incidental conclusion from (4.1.17) is that 0 is positive definite
if H is, thus all d i > O. These calculations have been coded in program C4-1,
NEWTON, in lines 2100 to 2310.

It should be noted that if e in (4.1.17) is the Newton step, e = ~ H -lg, then

(4.1.18)

This quadratic form for the inverse Hessian is obtained in program C4-1,
NEWTON, line 1920, to predict the expected decrease in function value
(4.2.1).

It is timely to be specific about how the linear system He = u is solved for
e ~H -lU, given u and H ~ LOLT. (This topic was deferred from Section
3.1.1.) Temporary variables t and i can be defined so that

He = LD(LTe) ~ L(Ot) = U ~ u. (4.1.19)

The substitutions that comprise the steps for solution are given in Table 4.1.2.
Step 1 in Table 4.1.2 involves the L matrix defined by (3.1.12). Step 2 is solved
easily, since 0 is a diagonal matrix; the elements of its inverse are simply 1/d i •

Step 3 is the solution of (4.1.16).

170 Newton Methods

Table 4.1.2. Steps for Forward and Back Substitotion witb LDU Factorization

1. Solve Li ~ u for j given u (forward substitution).
2. Solve Ot = i for t, that is, ii = (;ld;, i = 1 to n.
3. Solve LTe ~ t for e (back substitution).

The code for the operations defined in Table 4.1.2 is contained in program
C4-1, NEWTON, lines 2980 to 3200 (equivalent to lines 7800 to 8020 in C3-2,
LDLTFAC). The interested reader can verify the code for the n = 4 case by
observing (3.1.12), (4.1.14), and (4.1.16). Step 1 in Table 4.1.2 occurs in lines
2990 to 3070. Step 2 is accomplished in line 3080 and especially in line 3120.
Step 3 is accomplished in lines 3090 to 3190.

4.2. Trust Neighborhoods

Newton's method converges at a quadratic rate in the immediate vicinity of a
local minimum, but without restrictions On its step size it is often unreliable
elsewhere, even in the single-variable case. On the other hand, when the
starting point is well removed from a minimum, it is usually irue that good
initial progress can be made in the direction of the negative gradient. As
recently remarked by Dennis (1984:1767), "Someone once said that this local
convergence property is not important for Newton's method because most of
the work is expended in getting close enough to be able to take the full step (to
the Newton point) x'. This is somewhat like saying that jet travel is not an
important part of a two-week trip to Europe because it occupies so little of the
time."

Newton's method belongs to the class of optimization strategies that are
Hwithout memory," because there is ordinarily no information carried from
one iteration to the next. In this section, some reasonably simple trust
neighborhoods (regions) are defined to establish when to use and then to
switch from steepest-descent to Newton directions, and when to limit step
lengths to a reasonable maximum. The implementation of these switching
policies in second-order methods is often more important than how Hessian
positive definiteness is forced. Also, line searches in methods employing
second derivatives are less crucial than those methods that employ only first
derivatives (see Chapter Five). Finally, an important classical method for
constraining a Newton search to a neighborhood in which a quadratic model is
valid is explained.

4.2.1. Trust Rad;us. Figure 4.2.1 is an enlarged view of the quadratic
function previously shown in Figure 3.2.5. As in the latter case, the point
where the search is started continues to be xlO) = (1.9 4.5)T. The first leg of a
steepest-descent path from that point terminates at a minimum called the

Trust Neighborhoods 171

6

---,/ ~
~

r ~
5

.... 35---
CP

....
....

"'-
....

....4 \',- ,
\ -

\''''''-l'~............

t
\

\
\ ,""""........ " ,.

\
, ,

N \ \
\ '<"NP

,
x \ \

, \
3 , \ \ \

\
\ \ x' \, , \

\
\,

.... \ \, , \ \, , \ \.... \.... I.... \ \
2

.... , _ F= 5
\.... \....

.... I.... 1:20....
.... /-.... ---

~ 'l- "> ~ <, <0

Xl'~

Figure 4.2.1. Level curves for the function in equation (3.2.11). A trust circle of radius ~ is
centered at x = (1.9 4.5)T, from which point two straight lines join the Cauchy and Newton
points. The dash-dot·dash curve is the Levenberg trajectory.

Cauchy point, CP, which depends on x(°l; this was described in Section 3.2.1.
The Newton point, NP, does not depend on x(O); it was described in Section
3.2.2. A circular neighborhood of radius R about x (0) has been added to
Figure 4.2.1; this might be used to inhibit the zigzagging inherent in the
steepest-descent search.

For example, consider centering that neighborhood of radius R at every
turning point, x(kl, and employing the policy stated in Table 4.2.1. Consider
the effects of this policy. The zigzagging characteristic of steepest descent
(Figure 3.2.5) is avoided well before arriving in the neighborhood of the
minimum. Once the search comes within radius R of the minimum, the rapid
convergence of the Newton method is likely to prevail. In between those two
states, the Newton step is limited to length R, presumably providing a
reasonable rate of progress. By multiplying the step length by a factor as small

172 Newton Methods

Table 4.2.1. A Trust Neighborhood" Policy for Program C4·I, NEWTON

1. If the Cauchy point is outside the neighborhood, then step distance R in the
steepest-descent direction.

2. If the Cauchy point is within the neighborhood, then step to the Newton point if it
is within the neighborhood or to distance R in that direction.

3. If the chosen step fails to reduce the function value, sequentially multiply the step
length by a factor of 4-1 until the step produces a function reduction.

aSee Figure 4.2.1.

as 4 -10 ~ 9.54E-6, a downhill search is assured by (4.1.12).
Of course, general nonlinear surfaces are approximately quadratic only in

the immediate vicinity of a local minimum. The policy in Table 4.2.1 is still
reasonable, assuming that trust radius R is chosen with some wisdom. There
are several indicators that will allow the user to judge the appropriateness of
the trust radius. Certainly the algorithm should report major decisions. These
include when the Hessian matrix is forced to be positive-definite and what
policy decisions in Table 4.2.1 are being taken. There are two more helpful
indicators.

First, Fletcher (1980:78) has suggested comparing the actual function
reduction obtained on each step dx to that which is available from the same
step on an ideal quadratic model (based on data from where the step began).
Problem 3.19 in Chapter Three outlined means for deriving the ideal reduction
in altitude F(p) - F(x'), where p ~ X(k), the starting point, and x' is the
minimum point of a quadratic function based on gradient g[X(k)j and Hessian
"[X(k)]. That ideal reduction in function value corresponding to a Newton step
using (4.1.18) is

Then a quadratic factor r is defined to be the ratio

(4.2.1)

r~

F(p) - F(p + dx)

F(p) - F(x')
(4.2.2)

As defined in (4.2.2), this quadratic· factor r is somewhat less general than
Fletcher contemplated in that the reference step on the quadratic surface is
not arbitrary. However, the trend is the same in the limit: r --. 1 as the
minimum is approached. Fletcher proposed ways to expand and contract the
trust radius R, based on the behavior of quadratic factor r from iteration to
iteration. He also suggested using r in conjunction with the method in Section
4.2.2 that interpolates between the steepest-descent and Newton search direc
tions.

A valuable second indicator for the user of second-order search methods is
the angle between the negative gradient and the Newton search direction. That

Trust Neighborhoods 173

angle at x = (1.9 4.5l in Figure 4.2.1 is about 57 degrees. It is computed
according to (2.1.42):

(4.2.3)

where dx is the Newton step in (4.1.11). It can be seen that if the Hessian
condition number implicit in Figure 4.2.1 were much worse (larger), then the
much more narrow elliptical level curves could cause values of 8 approaching
90 degrees. In fact, there is a definite tendency for that angle to be between 70
and 90 degrees, which results in trajectories nearly tangent to the level curves
(perpendicular to the gradient). Under those conditions the function value will
show little decrease, tending to cause premature termination of the search.

All three indicators discussed in this section are reported by program C4-I,
NEWTON:

1. Forced Hessian positive definiteness.

2. Quadratic factor r for Newton steps other than after report (1).
3. The angle between the negative gradient and the Newton step.

4.22 Levenberg-Marquardt Methods. This section provides a means for
interpolating between a full Newton step and an infinitesimal steepest-descent
step. The classical Levenberg-Marquardt (LM) method is often described in
connection with nonlinear least-squares problems (Section 4.4). That unneces
sarily complicates its exposition because those two topics are in fact separate
subjects. The Levenberg-Marquardt method will not be employed in the
program described next because the Hessian matrix of second partial deriva
tives is obtained by finite differences, an accurate but computationally expen
sive technique. However, the Levenberg-Marquardt method has everything to
do with trust neighborhoods, so it is important to develop this subject at this
time.

As opposed to the preceding considerations of constrained steps on a linear
model (4.1.6), consider such a step on the quadratic model of a function from
the Taylor series in (3.1.6)

F* ~ F(y) + g(y)T dx + ~dxTH(y)dx, (4.2.4)

where dx = x - y, y being the fixed point about which the expansion is
constructed. As earlier, the goal is to minimize F' such that the step is
restricted to the unit hypersphere IIdxl12 ~ 1, The related Lagrangian function
is

(4.2.5)

174 Newton Me/hods

Setting the gradient VL ~ 0 yields g + H dx + 2p dx ~ 0, or

(H + vI) dx = - g, (4.2.6)

where the scalar parameter v ~ 2p has been substituted for convenience.
Equation (4.2.6) is a very famous equation, having been introduced by

Levenberg (1944) and amplified by Marquardt (1963) and countless others
since then. If the parameter v = 0, then (4.2.6) reduces to the Newton
equation in (4.1.11). If v is much larger than the elements of H, then (4.2.6)
describes a small steepest-descent step of length IIgli/v. The Lagrangian
development aside, (4.2.6) specifies a means for dealing with non-positive
definite Hessian matrices, since property (8) in Table 2.2.3 guarantees that
the eigenvalues of H will all be increased by amount v. It is also apparent
from (4.2.6) that the vector dx is a function of v, notationally dx(v), since both
Hand g are evaluated at expansion point y.

Example 4.1.1. Again consider the quadratic function specified by (3.2.11) as
pictured in Figures 3.2.5 and 4.2.1. Expanding that function about point
y = (1'.9 4.5l according to (4.2.4) requires the data that

H= [34 22]
22 26

and ([
-38.4]g y) = b + Hy ~ -7.2' (4.2.7)

Program MATRIX can be used to find the eigenvalues of H: 52.36 and 7.64.
From (4.2.6) and x ~ y + dx, the trajectory xlv) is

(4.2.8)

For this simple system in £2, the algebraic expression for the matrix inverse is

(H+vl)-'= 1 [v+26
v2 + 60v + 400 -22

-22]
v + 34 . (4.2.9)

Notice that the roots of the polynomial are 52.36 and 7.64. Using (4.2.9) in
(4.2.8) generates the dash-dot-dash curved trajectory shown in Figure 4.2.1. It
begins at the Newton point (NP) for v = 0 and approaches x(o>, the center of
the trust circle, as v increases without bound. The arrow in Figure 4.2.1
illustrates a typical step dx for some value of v.

Since x is a function of v, F is a function of v also. Both x, and Fare
shown as functions of v for this case in Figure 4.2.2. Notice that the sensitivity
of these dependent variables ·on v is such that a geometric progression of values
of v is required to scale the abscissa properly. That is a typical requirement for
variations in parameter v. A value of v that corresponds to a given value for
R = Ildxlb can be found by iteratively choosing values of v in (4.2.8), which is
an implicit function vCR). For example, the value v ~ 51.2 corresponds to
R = t as shown in Figurc 4.2.1.

_I

Trust Neighborhoods 175

4.0 "'"- , , ,
3.5 , , , _/,

/-/,
3.0 , , x, /,. /, ,,

2.5
, /, ,, '1,-t

,
2.0 / -,, - - - ~

x /
:;

,
0 1.5 /F/l0
~, ,
~

,
/,

1. 0 /,,
,/,

.5 /
..----/'

,--liI. 0..,
~ ~ 't-

~.'"
'0 '" 't- ~

"'" ,?' '?"'" ~"'. '0' 'IiI~'IiI''" '" '?"

"v _____

Figure 4.2.2. Function value and variable Xl as functions of Levenberg parameter u in Example
4.2.1.

F rom the example and the corresponding Levenberg curved trajectory
shown in Figure 4.2.1, it should be apparent that a given trust radius R
specifies a point on the trajectory. Therefore, any given R < Ilx' - YII de
termines a vector from Y~ x(O) that terminates on the trajectory. That vector,
dx(v), is an interpolation between the Newton vector, -H-'g, and the
steepest descent vector, - g; the interpolation parameter is v. Except for the
n ~ 2 case, the Levenberg interpolation vector is not in the Newton-gradient
plane, that is, points on the curve are not coplanar in the general case.

The function dx(v) is derived to provide the reader with a basis for
understanding the numerous proposed algorithms involving the Levenberg
trajectory. Rewrite (4.2.6):

dx= -(H+vI)-'g. (4.2.10)

r-

176 NeWlon Methods

Then use the spectral decomposition in (2.2.35) to express

n

(H + v I) -, = L (Wi + V) -lVjV,T.

i-I

(4.2.11)

Matrix (H + vI) is assumed to be of full rank since it is invertible and
therefore nonsingular. Therefore, its eigenvalues are linearly independent so
that the orthogonal expansion in (2.2.13) can be used to express gradient g as a
linear combination of the eigenvectors:

n

g = L QjVj ,

i-I

(4.2.12)

where the scalar coefficient OJ = v,Tg according to (2.2.15). Since matrix
(H + v I) is symmetric, its eigenvectors are orthogonal, that is, v,Tvj = 0, i '" j.
If the Vi are also orthonormal, that is, orthogonal and with unit length, then
vrv; = 1, and

n -a.
dx= L --'v·.

;-1 Wi + V I

(4.2.13)

It may not be obvious why (4.2.13) is the product of (4.2.11) and (4.2.12) until
the reader writes down and multiplies the two products for the n = 2 case.
The simplification occurs precisely because of the orthonormal properties of
the eigenvectors.

Equation (4.2.13) more clearly displays the explicit dependency of dx on v
than does the alternative expression (4.2.6). It is a rational function with poles
at v = - Wi' i = 1 to n. Notice in connection with (4.2.11) that there is an
eigensystem (H + WI)v = 0 for specific eigenvalues Wi and corresponding
eigenvectors Vi' Thus, it should be clear why the function (H + vI)-' has poles
(singularities) at v = - Wi' i = 1 to n.

The reader is urged to compute the eigenvalues w, and W2 of H in (4.2.7)
using command 13 in program MATRIX with merged additions GSDECOMP
and QRITER. Those results correspond to the polynomial appearing in the
denominator of (4.2.9). In fact, dx(v) is a finite, continuous function on the
domain - Wn " V " <Xl, where W n is the smallest eigenvalue. (All eigenvalues
are positive for positive definite H.)

The most important task in the Levenberg problem is to select v so that
(H + vI) is positive definite, in case it is not. That fact would be discovered
during LDU factorization (e.g., with program C3-2, LDLTFAC). Other than
the method described in Section 4.1.2 for forcing positive definiteness, the
inverse power method described in Section 3.2.2 could be used to compute
the smallest eigenvalue of H, say W n' Then any value of v greater than the

---------- ---

Trust Neighborhoods 177

magnitude of W n would make (H + vI) posItIve definite. Alternatively, a
conservative upper bound for W n is available from Gerschgorin's theorem
(2.2.40), as noted by Dennis (1983:60).

Suppose that a step dx according to (4.2.10) produces an increase in
function value F[Xlk) + dx] > F[Xlk)]. Then an increase in v would shorten
the step and produce an interpolation as previously discussed. An increase in
H of v I also requires an update to the existing matrix inverse, a task that
would be accomplished using (4.2.11) when the eigensolution was available.
However, the Sherman-Morrison equation (2.1.36) is a more efficient method.

Several ways to select a value of v that is greater than that needed to make
(H + vI) positive definite have been mentioned. When a step taken with a
positive-definite Hessian produces an increase in· function value, then one
common method is to increase v in steps in search of a minimum F(v). That
amounts to a kind of line search from the Newton point (NP) along the curved
Levenberg trajectory toward the current turning point xlV); see Figure 4.2.1. In
contrast to Figure 4.2.2 the function actually encountered may have a larger
value at v = 0 and a smaller value at v = 1000, with an anticipated minimum
in between.

Trial values of v should increase in geometrical progression. There are
several means for making good use of such samples, for instance, polynomial
approximation or systematic placement of samples at strategic intervals.
Regarding interpolation or function fitting, the rational functional form evi
dent in (4.2.13) has provided a number of ways to locate the minimum of an
actual nonlinear function along the Levenberg trajectory. The interested
reader is referred to Hebden (1973). Techniques for line searches are devel
oped in Chapter Five.

Many users undoubtedly feel more comfortable selecting a value for trust
radius R than for parameter v. Unfortunately, the solution of (4.2.10) for a
value of v given a step length IIdxll = R is a highly nonlinear problem. Powell
(1970) suggested a piecewise-linear approximation to the Levenberg trajectory
as illustrated in Figure 4.2.3. Figure 4.2.3 is similar to Figure 4.2.1 except that
the trust neighborhood radius is R ~ 1.2 so that the Cauchy point (CP) is
within the neighborhood and the Newton point is not. It can be shown for
quadratic models that the Cauchy point is always closer to the turning point,
xlV), than is the Newton point (NP). Therefore, the two line segments ("dogleg")
in Figure 4.2.3 that connect the point xlV) to the Cauchy point and thence to
the Newton point approximate the curved Levenberg trajectory shown by
dash-dot-dashed line. As noted by Dennis (1984:1771), the dogleg is exactly
the conjugate gradient algorithm (Section 3.2.1) applied to solve Hdx = -g in
the subspace defined by the Cauchy step vector and the Newton step vector.

It is not difficult to find the intersection of the circle of radius R with the
line segment between CP and NP. The step dx shown in Figure 4.2.3
approximately solves the quadratic minimization problem in (4.2.4) such that
Ildxll, = R; the exact solution is the intersection of the circle with the curved
Levenberg trajectory. Dennis (1979a:456 and 1983:139) proposed a "double

178 Newton Methods

, , , , ,
"-

"-
"-

"-
"-

"- ,,,'~-'"
D \ .~ "-

\ "-
\ '. ,

\ ,
\ \

, NP \, \, \

" \
"- \

" I

CP

,
\

\
\

\
\ ,,

\ ,

\
\
\
\
\

\
\

I
J
I

4

3

5

N
X

i

X,--+-

Figure 4.2.3. An illustration of the "dog-leg" approximate solution for a step of given length R
on the Levenberg trajectory. This case is valid only when the Cauchy point (CP) is within the trust
neighborhood (R).

dogleg" whereby the line segment from CP is brought first to some point such
as D in Figure 4.2.3 on the Newton vector and thence to NP. It was his
opinion that the single dogleg has too much bias toward steepest descent.

The reader should keep firmly in mind that the quadratic basis for all these
analyses is highly suspect at points far from the minimum of a general
nonlinear function. However, there are some who conjecture that the
Levenberg trajectory in some way approximates the curving valleys that exist
in n space. An interesting analysis and graph that suggests that conclusion is
given in Wilde (1967:300). There is abundant evidence that the
Levenberg-Marquardt con~epts have contributed to more efficient algorithms.
These vary from being reasonably straightforward such as Powell's dogleg and
a spiral solution (Jones 1970) to a graphical display of normalized actual
functions along the Levenberg trajectory (Antreich 1984).

_I

-------- --

4.3. Program NEWTON

-- -- -- - -----

Program NEWTON 179

Program C4-1, NEWTON, provides an illustration of Newton's method using
the trust neighborhood policy stated in Table 4.2.1. The program starts with a
short menu to make certain initial choices of parameters and variables. The
objective function and its gradient are calculated in subroutines 5000 and
7000, respectively; these must be merged into NEWTON. One two-variable
and one four-variable problem are furnished as examples. Finally, a simple
means for enforcing upper and lower bounds on optimizer NEWTON is
included for merging with the main program.

4.3.1. The Algorithm and Its Implementation. The listing for program C4-1,
NEWTON, is contained in Appendix C. As noted by the remarks in lines 130
to 230, there are certain major programming names associated with the
mathematics described in this chapter. The vector of variables, x, is contained
in array X(). The objective function F(x) is named F when newly computed
and FI when saved as a preceding value. The gradient vector of first
derivatives, 'i1F ~ g, is contained in GO; that is finite differenced to obtain the
Hessian matrix of second derivatives which is stored in vector form in H().
The last major variable is EO which contains step vector dx. A complete list
of variable names employed in NEWTON is appended to the program listing
so that the user will not violate previous naming assignments when supplying
subroutines 5000 and 7000. In general, subroutines 5000 and 7000 are not
called from loops or involved in current use of integer variables I, J, K, or L,
so that these may be employed by the user. Notice that the BASIC function
FNACS() is defined on line 280 for computing the inverse cosine.

The dimension of arrays of program variables is set to 30 in line 320, so
that up to 30 optimization variables can be accommodated in the merged
objective and gradient subroutines. The exception to this dimension is for the
vector H() that stores the symmetric Hessian matrix in vector form. The

Table 4.3.1. Major Subroutines in Optimizer Program a-I, NEWTON

Name

Enter Number & Value of Variables & Trust R
Enter/Revise Control Parameters
Main Optimization Algorithm (Figure 4.3.1)
Compute Quadratic Form Using H - LDL'
Display Function, Gradient, and Variables
Compute Hessian from Gradient by Differences
LDLT Factorization of Hessian in situ in HO
Solution for dx in Hdx ~ -g (Newton step)
Objective Fnnction F(x) (user supplied)
Gradient Vector VF - g (user supplied)

Lines

1200-1280
1300-1390
1440-2080
2100-2310
2330-2400
2420-2680
2700-2960
2980-3200
5000-6999
7000-8999

9991----l

40

1000

START
OPTIMIZATION 1440

Compute F[lI(OlJ = F
Iteration L7 = 0

148~Ot=~===[===~~
Iter L7 = L7 + 1. Cutback. M = O.

Save last Function F1 = F
Compute gradient GO

Prin1 F, X("), GO.
Compute Hessian HO

Factor H = LOLTpos. del.

~__r:===---~Y'~''<,- llGII~= 0 1580

Compute Cauchy
step EO 1610

<R

> Trust radius R

Compute Newton
step EO

llEl12,

1640

1650

1680

BoundllElI2=R 1700

PRINT "CAUCHYINEWTON/UN/BOUND" 1710
PRINT "NEWTON~TO:GRADIENT DEGREES" 1790

ISO

Figure 4.3.1. Flow chart for optimizer program C4-1, NEWTON.

_J

181

1950

1840

2060

2320

2030

2010 '--__--,__-.1

F
?

X(-)

F

Iter .> Iteration limit
?

Compute
gradient

x;::x+dx
Compute F(x)

Figure 4.3.1. (Continued)

> = Fl (Last F)

Not converged

Not converged

M
?

1480

x=x-dx
dx:;:: dx/4
M::M+l

Print "Step size
too small
terminated"

1860

1880 > 10

-- --- --------

182 Newton Methods

dimension of H() must be equal to n(n + 1)/2; when n = 30, the dimension
of H() is 465 as shown in line 320. Users can reduce the memory required for
execution of NEWTON by reducing these dimensions to fit their particular
application.

A list of major subroutines and their line numbers in program NEWTON is
given in Table 4.3.1. In addition to the preceding structure, program NEWTON
has a menu scheme similar to that in program C2-1, MATRIX.

Table 4.3.2 shows the information displayed on the screen initially and
during menu choices 1 and 2. The "NOTES" are similar to those used in
program MATRIX, especially the recovery method after a (Ctr!) (Break) or
EXIT, when (GOTO 999) (Rtn) will place the program back into menu
selection without resetting any program variables. Menu choice 1 sets the
number and value of optimization variables for the corresponding subroutines
5000 and 7000 supplied by the user. A trust radius value of zero is converted
to 1E6, which means that only NEWTON steps are employed. Menu choice 2

Table 4.3.2. Screen Displays fnr Notes and Menu Operation for Program
NEWTON

*****t*_. NEWTON OPTIMIZER ******_t**_**
NOTES.
!. USE ONLY UPPER CASE LETTERS
2. IF 'BREAK' OCCURS, RESTART WITH 'GOTO qqq'
3. USER MUST PROVIDE SUBROUTINE 5000 FOR FUNCTION EVALUATION

AND SUBROUTINE 7000 FOR GRADIENT EVALUATION
4. ENTER DEFAULT ANSWERS TO QUESTIONS BY <RETURN>.
PRESS <RETURN> KEY TO CONTINUE -- READY?
*****_***.*** COMMAND MENU ********.***
1. ENTER STARTING VARIABLES (AT LEAST ONCE)
2. REVISE CONTROL PARAMETERS (OPTIONAL)'
3. START OPTIMIZATION
4. EXIT (RESUME WITH 'SOTo 999~)

****************************t*******
INPUT COMMAND NUMBER:? 1
NUMBER OF VARIABLES = ? 2
ENTER STARTING VARIABLES X(I):

X(1)=? -1.2
X(2)=?1

TRUST REGION RADIUS =? .5
PRESS <RETURN> KEY TO CONTINUE -- READY?
*t*********** COMMAND MENU *t***t*t*t**
1. ENTER STARTING VARIABLES (AT LEAST ONCE)
2. REVISE CONTROL PARAMETERS (OPTIONAL)~

3. START OPTIMIZATION
4. EXIT <RESUME WITH ~GOTO 999')
it.t.*tt***t**•••***•••••**.*.*••**.
INPUT COMMAND NUMBER:? 2
MAXIMUM # OF ITERATIONS (DEFAULT=50):? 60
STOPPING CRITERION (DEFAULT=.OOOl):? .001
ENTER FINITE DIFF FACTOR (DEFAULT=.OOOl):? .00001
PRINT EVERY Ith ITERATION (DEFAULT=l):? 3
PRESS <RETURN) KEY TO CONTINUE -- READY?

Program NEWTON 183

sets the four program parameters: (1) maximum number of iterations, (2)
stopping criterion, (3) Hessian finite difference factor, and (4) screen printing
interval for iteration results. All four parameters have default values as shown
in the lower lines of Table 4.3.2; these have been set in line 290 so that menu
choice 2 need not be exercised unless changes are desired. Also, after optimiza
tion (menu choice 3), menu choices 1 and 2 are undisturbed. This can be
useful when selecting choice 3 again to continue optimization (with a reset
iteration count).

The flow chart for program NEWTON in Figure 4.3.1 has a structure
similar to the flow chart in Figure 1.3.1 for a generic iterative process. The
four-digit numbers in Figure 4.3.1 correspond to the BASIC line numbers in
the program C4-1 (NEWTON) listing in Appendix C. Reentry balloon 1480 is
the starting point for each iteration or step in a search direction. At that time,
the iteration and cutback (dx = dx/4) counters are incremented or set to zero,
respectively. Also, the function value is saved at the beginning of each
iteration for later comparison to be sure that each iteration actually produces a
decrease in the function value.

There are a number of tests of vector lengths (two-norm). The test at line
1580 is the necessary condition for a minimum, but the real purpose is to
avoid division by zero in subsequent calculations. Lines 1640 to 1700 imple
ment the trust neighborhood policy defined in items 1 and 2 in Table 4.2.1.
Item 3 in Table 4.2.1 is implemented by lines 1860 to 1880; if the attempt to
obtain a reduced function value by decreasing step size exceeds a 106 : 1
reduction, then the optimization is terminated (line 1890).

The normal directional step for each iteration is taken at balloon (line)
1820. If that results in a reduced function value, then the function value and
each of the variables are subjected to the termination tests of (1.3.22). The
algorithm continues if anyone component fails.

4.3.2. Some Examples Using Program NEWTON. Investigators of nonlin
ear optimization have collected a large set of standard test problems over the
years. A number of important references are discussed in Appendix B. In this
section two of the most popular problems have been chosen for illustration of
the NEWTON optimizer: Rosenbrock's function and Wood's function. The
reader should be aware that these results are significant only in the most
general sense, because the myriad of programming decisions, parameter choices,
and computer characteristics will defeat precise comparisons. Also, it is always
possible to construct problems that will cause a particular algorithm to fail.
The criteria employed for the purposes of this book include the number of
function evaluations and freedom from false convergence. Program NEWTON
will not be judged on the number of gradient calculations, especially those
numerous recalculations required to obtain the Hessian matrix by finite
differences. Of course, the user may wish to evaluate analytical expressions for
the second derivatives if they are available; usually, they are not.

184 Newton Methods

Example 4.3.1. Probably the most frequently used test function in nonlinear
optimization is Rosenbrock's function in E2:

F(x) = 100(x 2 - xl)2 + (1 - Xl)"

The first derivatives are:

(4.3.1)

(4.3.2)

(4.3.3)

These three equations are contained in Appendix C. program C4-2, ROSEN,
which should be merged with NEWTON. Since these must be compatible with
optimizer NEWTON, (4.3.1) is programmed in subroutine 5000, and (4.3.2)
and (4.3.3) are programmed in subroutine 7000.

The main feature of the Rosenbrock function is the long curving valley
shown in Figure 4.3.2. The standard starting point is x (0) = (- 1.2 1)T, and the
global (only) optimum point is at x' = (1 l)T for F(x') = 0 as can be seen by
inspection of (4.3.1). The two trajectories shown in Figure 4.3.2 display the
variations in x made by NEWTON for R = 1 (solid line) and R = 0.1 (line
with longer dashes). Although the dashed-line trajectory appears smoother, it

"-
Figure 4.3.2. Trajectories on the Rosenbrock function. The solid trajectory is for trust radius
R = 1 and the dashed trajectory is for R = 0.1.

J

--------------- -- -_._-------------

Program NEWTON 185

lll.m:mll .~

1.ellm~
.-:::--"~...:;;~~. - -. '-.

• UY0Vl . ~ --.. R = 0.1

~\ -.0Hle
,

(\

.1il011il \
\• . mml

\~R= 10

\0
ro \> 1E-05c \0

"t3 1£-06

R=100\ \
\

c \0
~ 1£-D7

\
1£-08 \\ \

I
lE-09 I

1£-10 \

\ I
1£-11

1£-12
~ " ,~ ," ~~ 1;> 4- ~" $>

Iteration number -----

Figure 4.3.3. Descent on Rosenbrock's {unction in £2 at x = (- 1.2 I)T (rom F = 24.2 to
nearly lE-12 for three values of trust radius R.

required 38 iterations, whereas the solid-line trajectory required only 24.
Notice that the smaller trust radius caused the initial steps to proceed in the
direction of the negative gradient, whereas the Newton steps started out a
longer way around.

The effect of choosing different values for the trust radius can be observed
better in Figure 4.3.3, which corresponds to the preceding trajectories. If the
user will run these problems, it is apparent that, barring instability, the
unbounded Newton method (R = 10) requires fewer iterations and fewer
function values. Typical information displayed on the screen during optimiza
tion is shown in Table 4.3.3 for a starting point near the minimum point.
Notice that the printing parameter was set for reporting every third iteration.

These results compare favorably with those for similar algorithms used on
the Rosenbrock n = 2 problem. Some typical results for a discrete Newton
algorithm and a description of the Rosenbrock problem for n > 2 are con
tained in O'Leary (1982).

Example 4.3.2. A second popular test for optimizers is Wood's function in
E 4

;

F(x) = 100(x2 - xl)2 + (1 - X I)2 + 90(x4 - xl)2

+(1 - XJ)2 + 1O.1[(x2 - 1)2 + (x 4 - 1)2]

+ 19.9(x2 - 1)(x4 - 1).

----------------- - -- - -- .- - ------

(4.3.4)

186 Newton Methods

Table 4.3.3. Screen Display for tbe Rosenbrock Function Starting Near
the Minimum (

(BOUNDED>
(BOUNDED>
(BOUNDED>

CAUCHY
CAUCHY
CAUCHY

I
1
2

NUMBER OF VARIABLES = ? 2
ENTER STARTING VARIABLES XCI),

XC 1)=? 1..06
X(2)=7 .96

TRUST REGION RADIUS =? .02
PRESS <RETURN> KEY TO CONTINUE -- READY?
AT START OF ITERATION NUMBER 1

FUNCTION VALUE 2.6B0096
I X(I) Gel)
1 1.060000 69.486336
2 0.960000 -32.720000

.t*.t••••••••••••••••••••••••••

.t•••••••••••••••••••••••••••••
tt*'*at.t•••taa.•••••••••••••
AT START OF ITERATION NUMBER 4

FUNCTION VALUE 6.707251E-02
I XII) GCI>
1 1.00SB91 10.429429
2 0.9B5926 -5. 17B332.

•t*•••••••••••••••••••••••••••• NEWTON (BOUNDED)
NEWTON-TO-GRADIENT DEGREES= 61.4
QUADRATIC BEHAVIOR FACTOR R= 1.40B021

••••••••••••••••••••••••••••••• NEWTON (UNBOUNDED)
NEWTON-TO-GRADIENT DEGREES= 54.1
QUADRATIC BEHAVIOR FACTOR R= 1.003378

*t •••••••• , •••••••••••••••••••• NEWTON (UNBOUNDED)
NEWTON-TO-GRADIENT DEGREES= 76.0
QUADRATIC BEHAVIOR FACTOR R= 1.158249

AT START OF ITERATION NUMBER 7
FUNCTION VALUE 1. 284383E-07

I X<I) 6(1)
1 1.000357 0.002123
2 1.000710 -0.000683

""""'••••a••••••••••••••••• NEWTON <UNBOUNDED)
NEWTON-TO-GRADIENT DEGREES= 81.2

••••••••••••••••••••••••••••••• NEWTON (UNBOUNDED)
NEWTON-TO-GRADIENT DEGREES~ 71.9

CUT BACK STEP SIZE BY FACTOR OF 4
CONVERGED; SOLUTION IS:
AT START OF ITERATION NUMBER 9

FUNCTION VALUE 3. 159744E-10
X<I) 6(1)

0.999982 -0.000013
0.999964 -0.000019

TOTAL NUMBER OF FUNCTION EVALUATIONS = 10
PRESS <RETURN> KEY TO CONTINUE -- READY?

The components of the gradient are:

gj = -400X I (X 2 - xf) - 2(1 - Xl)

g2 = 200(X2 - xf) + 20.2(x 2 - 1) + 19.5(x4 - 1)

g, = -360x,(x4 - xn - 2(1 - x,)

g4 = lS0(x4 - xn + 20.1(x4 - 1) + 19.5(x 2 - 1).

(4.3.5)

Program NEWTON 187

lIaBlJli'l'.OOBa

l- -um. Bam'! -- -IHI. BOOB -- -------."" - - --- ~= 0.1

~
1.0000

~R=lO
,

.,""" ,
\

• R11iU~ \
$ R = 10.0 \ ~, .00IUB-. .1

J> .11I1il1H \10

-I
0

1£-05 .1'n II0
1£-06 J,

~
,

1E-07

\1
I

1£-08 ~
1£-09 II I J

il I 1
1£-\0

1\ I i
1£-11 I' 1

1£-12
I

~ ,~ ,,~ 4> $> ,,~ ~ ,~ .~ .~ ~~ ,,~ <~ ,4>,
Iteration number -------

Figure 4.3.4. Descent on Wood's function in £4 at x = (- 3 -1 - 3 _l)T from F = 19192 to
nearly lE-12 for three values of trust radius R.

These equations are programmed in C4-3, WOODS, for merging with
NEWTON. Figure 4.3.4 again shows that unbounded Newton steps give more
rapid convergence when they are stable.

Wood's function is distinguished by a part of the trajectory where the
Hessian is indefinite; that accounts for the flat region between iterations 10
and 40. The standard starting point is x lO) = (- 3 -1 - 3 _1)T and the
global minimum is at x' = (1 1 1 I)T as seen by inspection of (4.3.4). The
reader is urged to run program NEWTON with WOODS (C4-3) merged, using
the standard starting point, trust radius R = 1; and stopping criterion 0.000001.
At about iteration 10 in the vicinity of x = (-1 1 -1 I)T, a series of forced
positive definiteness and cutbacks from uphill steps begin. That lasts until
about iteration 40 in the vicinity of x = (1.4 2 -0.15 ol. These obstacles
should remind designers of algorithms that the implementation of an opti
mizer is often as important as the underlying convergence theory that is valid
only in the neighborhood of a minimum.

Unfortunately, numerical tests are not totally reliable indicators of robust
ness. Table 4.3.4 shows the number of function evaluations for four starting
points for both Rosenbrock's and Wood's functions. A trust radius of unity
was chosen. These data compare favorably with some published earlier [e.g.,
Dennis (1979a)].

4.3.3. Simple Lower and Upper Bounds on Variables. Most constraints en
countered in practice are lower and upper bounds on variables; of those,

188 Newton Method>

Table 4.3.4. Number of Iterations and Function Evaluations for Four Starting Points
Using Program NEWTON"

Rosenbrock's Function Wood's Function

Starting Point

(-1.2 1)
(2 - 2)
(- 3.635 5.621)
(6.39 - 0.221)
(1.489 - 2.547)

Iter/Feval

24/31
22/28
43/48
26/40
16/20

Starting Point

(-3 -1 -3 -1)
(-1.2 1 1.2 1)
(- 3 1 - 3 1)
(-1.2 1 -1.2 1)

Iter/Feval

54/79
24/28
52/75
44/64

<I Number of function evaluations does not include those for finite differences_

bounds to keep variables positive are most frequently required. In this section,
program C4-4, NBOUNDS, is described as an addition to the NEWTON
optimizer. The purpose is to start the reader thinking about the constraint
requirement and some of the difficulties that arise.

When merged with NEWTON, NBOUNDS causes a new menu item to
appear: "5. SEE &/OR RESET LOWER/UPPER BOUNDS ON VARI
ABLES". As seen in the listing in Appendix C for C4-4, line 325 dimensions
an integer array L5(30) to contain as or Is that indicate which variables have
no bounds or one or both bounds set, respectively. Array P5(30,2) contains
any pairs of bounds defined; P5(l,I) and P5(l,2) are the lower and upper
bounds for the Ith variable, respectively. Default values selected by command
5 are -10,000 to +10,000.

Referring to the flow chart for NEWTON in Figure 4.3.1, balloon (circle)
1820 is the point where step dx in array EO has been determined. Before that
step is taken, NBOUNDS adds a test to see if that step would violate any
bounds. If so, the offending components of dx = (dx l dx, ... dXn)T are
set sO that the subsequent step willterrninate on that boundary (see subroutine
3510 in NBOUNDS). Also, "flag" variable L6 = 1 is set to force the next step
to be steepest descent (Cauchy). Flag variable L6 is tested in the new line 1635
of NBOUNDS; if L6 ~ 1 the Newton step is bypassed.

A typical screen display is shown in Table 4.3.5. Level curves of quadratic
function (3.2.11) are shown in Figure 4.3.5 where the unconstrained global
minimum is at x' = (4 3)T. Table 4.3.5 shows that a lower bound of x, :2: 3.9
was set and that the optimizer was started at x(O) = (1.9 4.5)T with a trust
radius of R = 1. Results from every second iteration were printed. Note that
iteration 3 started with x, binding at its lower limit, and thereafter only
Cauchy steps were taken. The reason for this strategy can be seen in Figure
4.3.5. At the start of iteration 3, the function value was approximately on the
F = 5 level curve, and a normalized negative gradient vector is shown at that
point in Figure 4.3.5. The Newton step to the unconstrained minimum is also
shown.

Table 4.3.5. Screen Display for NEWTON witb NBOVNDS on
Quadratic Function (3.2.11)

(BOUNDED)
OF 4 #:ft#*.
<BOUNDED)

OF 4 :ft:lt:ft##

IBOUNDED)

OF 4 *****
(BOUNDED)
OF 4 •••••

CAUCHY
FACTOR
CAUCHY
FACTOR

I
1
2

TOTAL
PRESS

BOUNDS NOW SET ARE.
I LOWER UPPER

NONE. SET OR RESET ANV BlJUNDS lV/NI? V
ENTER 0 TO RETURN TO ~. ELSE ENTER VARIABLE • =? 2
PRESS <RETURN> IF NO BOUND DESIRED

LOWER BOUND =7 3.9
UPPER BOUND =7

ENTER 0 TO RET~N TO MENU, ELSE ENTER VARI ABLE • =? 0
PRESS <RETURN> KEV TO CONTINUE -- READV?
NUMBER OF VARIABLES = ? 2
ENTER STARTING VARIABLES XCII.

X(1)==? 1.9
X(2)=? 4.5

TRUST REGION RADIUS =? 1
PRESS <RETURN> KEV TO CONTINUE -- READV?
AT START OF ITERATION NUMBER 1

FUNCTION VALUE 34.92
I XCI) GIl)
1 1.900000 -38.400000
2 4.500000 -7.200000.....tal....................... NEWTON (BOUNDED)

NEWTON-TO-GRADIENT DEGREES= 46.2
QUADRATIC BEHAVIOR FACTOR R= 4.161398

••••••••••••••••••••••••••••••• NEWTON (BOUNDED)
NEWTON-TO-GRADIENT DEGREES= 46.2
QUADRATIC BEHAVIOR FACTOR R= .7442283

AT START OF ITERATION NUMBER 3
FUNCTION VALUE 4.969744

I XCI) GIl)
1 3.527467 3.733879
2 3.900000 13.004276

••••••••••••••••••••••••••••••• CAUCHY
•••••• CUT BACK STEP SIZE BY FACTOR

••• , ••••••••••••••••••••••••". CAUCHY
•••••• CUT BACK STEP SIZE BY FACTOR

AT START OF ITERATION NUMBER 5
FUNCTION VALUE 4.766693

I XCI> G(I)
1" 3.428480 0.368313
2 3.900000 10.826556

t ••••••••••••••••••••••••••••••
•••••• CUT BACK STEP SIZE BY............................._.
##D### CUT BACK STEP SIZE BY

AT START OF ITERATION NUMBER 7
FUNCTION VALUE 4.764701

I XCI) SII)
1 3.418116 0.015952
2 3.900000 10.598558.t*_.•••.t ••••••••••••••••••_,. CAUCHY <BOUNDED)

#D##D# CUT BACK STEP SIZE BY FACTOR OF 4 #D###
CONVERGED; SOLUTION IS:
AT START OF ITERATION NUMBER 8

FUNCTION VALUE 4.764692
XCI) GIl)

3.417740 0.003159
3~900000 10.590280

NUMBER OF FUNCTION EVALUATIONS ~ 13
<RETURN> KEY TO CONTINUE -- READY?

189

c- ._-

190 Newton Methods

4.5 ,
"- ,, ,30, ,, ,,

"- , ,
4. ~ "- 20

x2 = 3.9
,

... ~ -+- ,
/

,
I ... ,...

\ I "-
\ \ "-

"-

t
\ \ "-

3.5 \ \
, ,

\ \ Newton ,
N \ \ step ,5~

\ \
,

\ ,
\ \ \

\ \
\

\
\ \3. ~

\ \ \
\ \ \

\ \ \
\ \ \

\
\ \

\ \ \

\
, ,, ,

2. ~~~~--->-""'~~""""'~~-",-:,--~~~'---f~~~~~-,J",
~ ~ ~ ~ ~

X1-

Figure 4.3.S. Level curves for (3.2.11) and two search directions at x = (3.527 3.900)T.

If downhill progress is to be made at a point where one or more constraints
are binding, then the projection of the unconstrained step vector onto the
subspace of the unconstrained coordinates must be downhill. In this case, the
unconstrained subspace is simply the Xl coordinate direction, since x 2 is
binding. In Figure 4.3.5 the projection of the Newton step onto the line
x, = 3.9 goes off to the right, but the projection of the Cauchy step (negative
gradient) onto x, = 3.9 goes off to the left. The constrained optimum is to the
left at the point marked "+" in Figure 4.3.5 at x' = (3.4177 3.9)T according
to Table 4.3.5. Note that \71F(x') '" O. The important point to be observed is
that not just any satisfactory unconstrained descent direction is suitable for
projection onto the unconstrained subspace. Figure 4.3.5 clearly shows that no
fraction of the projected Newton direction would be downhill, no matter how
small. As described in Section 3.3.3, the Kuhn- Tucker conditions require that
the gradient of the function must lie within the polyhedral cone formed by the
constraint normal vectors. In this simple case the gradients of the function and

Gauss-Newton Methods 191

the constraint coincide. At points in a neighborhood of the constrained optimum,
the negative gradient projection onto the unconstrained subspace always points
toward the constrained optimum.

One well-known method for incorporating linear constraints (not just
bounds) is the gradient projection method by Rosen (1960); also see Hadley
(1964:315). However, there are much more effective search strategies than
steepest descent, especially some that retain the descent property in uncon
strained subspaces. These more effective methods are described in Section
5.4.1. Program NBOUNDS will not be effective in cases where steepest
descent is not effective, namely, where the function has curved valleys in the
unconstrained subspace.

4.4. Gauss-Newton Methods

Second derivatives of functions subject to optimization are relatively difficult
to obtain. It has been demonstrated that computed first derivatives (the
gradient) may be perturbed in order to obtain reasonably accurate approxima
tions of the second derivatives, but at a high price: n additional evaluations of
the gradient, where there are n variables.

Remarkably, objective functions with the least-squares structure enable a
positive-definite approximation to second derivatives that constitute the
Hessian matrix. Least-squares objective functions are ideally suited to curve
fitting applications, including optimization of electrical networks and analo
gous scientific problems (Aaron 1956). Happily, there are extremely efficient
means for computing the response functions and their first derivatives for
electrical networks.

The positive-definite approximation of the Hessian matrix associated with
optimization of least-squares objective functions is the essence of the
Gauss-Newton method. This section describes nonlinear least squares (NLLS)
and how it differs from linear least squares (LLS). Weighting coefficients may
be employed to emphasize certain residual sampled errors in the objective
function, and it is shown that the least-pth objective function that generalizes
the LLS formulation (p = 2) is a way to emphasize automatically the larger
residual errors. Also, in the limit as p -> 00, minimization of the least-pth
objective objective function approaches the infinity or minimax norm.

The formulation of the positive-definite approximation of the Hessian
matrix is derived, and the additional considerations necessary to apply the
Levenberg-Marquardt (LM) techniques are developed for effective use of
approximate Newton optimization steps.

4.4.1. Nonlinear Least-pth Objective and Gradient Functions. The develop
ment begins with a precise basis for forming the nonlinear least-squares
objective function and its gradient. The weighted least squares and the
unweighted least-pth cases are formed later as extensions of this case and then

192 Newton Melhoth

del)

dtl,)=d'\-l .

x rk (Residual)

x

x ftx, I)

Fitting function

Sample spa~e

o t1 t2 tk tm_ 1 tm

Figure 4.4.1. A curve-fitting example where a function d(t) known by m given data pairs is to
be approximated by a nonlinear function I(x, t) that is the sum of given nonlinear basis
functions. The problem is to minimize the errors or residuals, rk' at each point in the sample
space.

compared with each other. This definition of the nonlinear least-squares
objective function is a vital step in applying optimization to many practical
problems, and the reader is encouraged to recognize the problem that it solves,

Recall the previous mention of least-squares objective functions, especially
the graphical description in Figure 3,1.3 which is repeated in Figure 4.4,1.
Most recently, the mathematical model in (3.1.52) was linear in the coefficients
xi' even though the functions Jj were nonlinear in the independent variable I,
For example, lex, I) = x,cos(21) + x2exP(- 31) + X 3(t2 - 1)'/2 is linear in x,
This is in contrast to the nonlinear mathematical model described in (1.2.5),
where some elements of x are also involved in the basis functions; that is the
present case. Figure 4.4,1 shows the m data pairs at the" x" points in the
sample space I, The relevant nonlinear malhemalical model is;

!(x, I) ~ xtf,(x, I) + ." +xjJj(x, I) + ", xJn(x, I). (4.4.1)

The nonlinear mathematical model in (4.4.1) "fits" the data within some
residual error rk at each kth sample point as shown in Figure 4.4,1. Writing
the equations for each sample point as if each residual were equal to zero (for
m = 5 and n ~ 3 without loss of generality);

xtf,(x, I,) + X2!2(X, I,) + X3!3(X, I,) = d"

xtf,(x, 12) + X'/2(X, 12) + X'/3(X, 12) = d 2 ,

xtf,(x, 13) + X2!2(X, 13) + x3!3(X, 13) = d 3 ,

xtf, (x, 14) + X2!2(X, 14) + ;'3!3(X, 14) = d 4 ,

xtf,(x, I,) + X'/2(X, I,) + x3!3(x, I,) = d"

(4.4.2)

These equations may be written as Ax ~ d; they are overdetermined and

Gauss-Newton Melhods 193

therefore inconsistent. Even worse, they are nonlinear in the variables x, since
A = Ukj] = [.fj(x, Ik)]·

The classical approach to fitting the nonlinear function f(x, t) to the given
data vector d = (d1 d 2 ••• d k ... dm)T for m data pairs (tk' d k) shown
in Figure 4.4.1 is to minimize the two-norm of the residual vector

r = Ax - d. (4.4.3)

Thus the function to minimize is

1 m

F(x, t) = trTr = - L r}.
2 k-I

(4.4.4)

The factor of t in (4.4.4) is for notational simplicity in subsequent expressions.
Comparing (4.4.2) to the right-hand side of (4.4.3), it is convenient to define

A=[ff ... f ... f]1 2 J " ,
(4.4.5)

where the typical column of nonlinear basis functions is the ,:ector

(4.4.6)

Then the k th row of (4.4.3) for that residual or sampled error is

k = 1 to m. (4.4.7)

Consider the first partial derivative of F as defined by the summation in
(4.4.4). The gradient of the least-squares objective function F with respect to
x j is

m

VjF = L rk(V/k),
k=l

j=lton,

m

VF = L rk(vrk)·
k=l

In turn, the first partial derivative of the kth residual with respect to x j may
be obtained by differentiating (4.4.7):

k = 1 to m, j = 1 to n.
n

= fkj + L Xq(Vjfkq),
q-I

vjrk = fkj + XI(V/kl) + ... +Xj(VjfkJ + ... +xn(v/mn),

(4.4.9)

Note that the first term in (4.4.9) results from the differentiation rule for a

194 Newton Methods

product, d(uv) = v(du) + u(dv), as applied to the term xjlk} in (4.4.7). It is
again emphasized that design matrix A in the LLS problem was not a function
of x. See (3.1.53); there A = [a k) ~ Uk}] in comparison to (4.4.2). Matrix A
in the NLLS problem is a function of both x and sample parameter t.

Example 4.4.1. Consider the previous illustration of nonlinear curve fitting
from Section 1.2.2, namely, the function in (1.2.5) which is repeated:

I(x, t) = x, + x,exp(-x,1) + x,exp(-X,I).

The k th residual is

(4.4.10)

(4.4.11)

and the gradient of the kth residual is composed of the following elements:

V',rk = 1, V',rk = exp(-X,lk), V',rk = exp(-x,lk),
(4.4.12)

V',rk ;'" -Ikx,exp(-x,lk), V',rk ~ -Ikx,exp(-x,lk)·

Example 4.4.2. The Rosenbrock function introduced in Section 4.3.2 can be
recast as a least-squares problem by rewriting (4.3.1) in terms of residuals:

r, = lO(x, - xl),

(4.4.13)

so that

Note that a factor of ~ has been introduced, according to (4.4.4). In this case
the residuals are not a function of the sample space parameter. Even if they
had been, there are no identifiable basis functions as defined by the structure
in (4.4.7). Thus, starting with the given residuals, the gradient vectors of the
respective residuals are:

[-20X,]V'r, ~
10 '

(4.4.14)

Example 4.4.1 is a classical function-fitting problem. Example 4.4.2 often
arises in an attempt to find a solution for several nonlinear functions implied
by the vector function r(x) ~ O. In many practical problems only a set of
residual functions are known that are nonlinear functions of both x and I.

Furthermore, the residual functions and their gradients may not be known
explicitly, but by the results of an algorithmic process. All of these cases are
candidates for the following Gauss-Newton formulation.

(4.4.15)

Gauss-Newton Methods 195

To make those developments easier to express, define the Jacobian matrix:

Jrn , = [I;'Jrd for row k = 1 to mand column j = 1 to n,

Consider the following example of the Jacobian for m = 5 samples and n = 3
variables:

v} '1 '\72'1 "\73'1

'\71'2 '\72'2 "V 3'2

J= I;', r, '12 '3 '\73'3 (4.4.16)

'\71'4 \7'2'4 'V'3'4

V 1'5 \7'2'5 '73'5

This is the same Jacobian matrix described in (3.2.51), except that it is not
square in this NLLS case, since there are more equations than variables.

The Jacobian provides immediate simplification, since it is easy to verify
from (4.4.8) that the gradient of the least-squares objective function in (4.4.4)
is

(4.4.17)

4.4.2. Positive-Definite Hessian Approximation. The Hessian matrix H is
composed of all second partial derivatives of F(x, t); see (3.2.46). Using the
vector del operator V from (3.1.40) and the fact that the order of partial
differentiation is arbitrary, a valid expression for the Hessian is

(4.4.18)

(4.4.19)

The notation V ' F is a symbol for a matrix of second partial derivatives of F,
the important defining operations being the middle part of (4.4.18). Thus,
(4.4.18) and (4.4.8) yield

H = V [f: r,(vr,)]T
'~I

rn
= r [(vrk)(vrk)T + r.iV'r,)].

,-I
This result can be stated in equivalent matrix notation:

(4.4.20)

where the n X n matrix M containing the residuals and their second deriva-

196 Newton Me/hods

tives is

(4.4.21)

It is usually argued that (4.4.20) can be approximated by only its first term, the
positive-definite matrix JTJ, since the second term, M, is nearly zero if the
residuals, 'k' are nearly zero. Of course, lhe residuals may approach zero near
a solution, but whether that happens or not depends on particular cases.

Example 4.4.3. Example 4.4.2 for the Rosenbrock function is continued by
forming the gradient and Hessian functions. Using (4.4.17), the gradient is

T [-20X,g=J r ~
10

-1][10(X2 - xn]
o 1 - Xl

(4.4.22)

The two components of the Hessian from (4.4.20) are •

and

JTJ = [400x~ + 1
- 200x l

-200x,]
100

(4.4.23)

(4.4.24)

It is easily confirmed that H ~ JTJ + M and that M 0 as the solution
x' = (1 l)T is approached.

It is now possible to compare these results for solving the NLLS problem
with those obtained for the LLS problem. It will also become apparent that
the Hessian expression in (4.2.20) bears an interesting resemblance to the
Levenberg-Marquardt formulation. Begin by recalling that the Newton step in
the search for a solution x' that minimizes an objective function F(x) has
always been

(4.4.25)

as first defined in (3.2.48), where p is some point where Hand g are evaluated.
Of course that only works exactly when F(x) is a quadratic function; other
wise there is a sequence of such steps. Earlier in this chapter, methods for
reducing that step length and/or interpolating between that step direction and
the negative gradient direction were described.

J

(4.4.29)

Gauss-Newton Methods 197

The solution to the linear least-squares (LLS) problem was to solve the
normal equations ATAx = ATb, or according to (3.1.49):

x = (ATA) -lATb. (4.4.26)

In the LLS case, p was not involved because the design matrix A was
comprised of basis functions that did not involve x. According to (4.4.15) and
(3.1.37), Jacobian J = -A. Then equating the gradient expression in (4.4.17)
to zero also leads to the normal equations.

The solution to the nonlinear least-squares (NLLS) problem is to use
(4.4.20) in (4.4.25):

dx = _(JTJ + M)-lJ Tr . (4.4.27)

The assumption that the second partial derivatives V'rk = O· in M according
to (4.4.21) is equivalent to assuming that the residuals in (4.4.7) are linear. In
that case, (4.4.27) reduces to (4.4.26), so that the NLLS method can be viewed
as a sequence of LLS solutions in small neighborhoods. A nice feature is that
JTJ will always be positive-definite. in relation to Newton's method,
Gauss-Newton avoids computing the most expensive part of the Hessian (M)
without having to worry about indefinite matrices.

In the Levenberg-Marquardt (LM) method, interpolated directions and
reduced step length were both affected by solving (4.2.10), namely,

dx= _(H+vl)-lg, (4.4.28)

where v is the LM parameter. Comparison of (4.4.28) and (4.4.27) shows that
in some sense the second-order term M has been replaced by the LM term v I.
It is shown in Section 4.4.5 that replacing I by a special diagonal matrix Dean
potentially improve the Gauss-Newton algorithm.

4.4.3. Weighted Least Squares and the Least-pth Method. Each squared
residual in the least-squares formulation can receive a unique multiplier or
"weight" to emphasize that sample. It is shown that this process amounts to
premultiplying both the the design matrix A and the data vector d by a
diagonal matrix, similar to the matrix scaling Example 3.1.7 in Section 3.1.3.
Then the least-pth method is derived by modifying the least-squares deriva
tion. Finally, it is shown that the least-pth method can be viewed as a way to
emphasize the larger errors automatically.

Suppose that the unweighted least-squares objective function (4.4.4) is
revised to include weighting coefficients wk :

- 1 ~ 2
F~"2 ... wkrk ·

k-1

Inspection of (4.4.2) shows that the addition of weights in this way is
equivalent to multiplying each row of the nonlinear mathematical model by
the square root of the weighting coefficient. It is straightforward to review the
preceding derivations for both the LLS and NLLS problems to see that the

198 Newton Melhods

revised normal equations in the linearized case (M = 0) lead to

(4.4.30)

where the weighling matrix W = diag(WI w2 ... wm). These wk are not
related to the eigenvalues previously designated by Wi'

Setting the weighting issue aside for now, consider the least-pth objection
function

(4.4.31)p an even integer.
1 m

F~ - L rl,
p k-I

A glance at (4.4.8) shows that the differentiation for the gradient now yields

m

VF = L rrl(Vrk)·

k-1

Similarly, the differentiation for the Hessian in (4.4.19) produces

(4.4.32)

m

H = L [(p -1)rr 2(Vrk)(vrk)T + rr l (v 2rk)].

k-I

(4.4.33)

Now it can be expected that the second term in (4.4.33) will decay more
rapidly for small residuals and higher values of p.

The Gauss-Newton step for the least-pth formulation thus becomes

(4.4.34)

where

_I)T. .. r P
m '

(4.4.35)

and the diagonal matrix B is

B = diag(r{-2 rr 2 ... r':;-2). (4.4.36)

As Breen (1973:688) noted, (4.4.34) may be considered the normal equations
for the overdetermined system of linear equations

(p - l)RJ dx = diag(r{/2 rl/2 . .. r P / 2)m . (4.4.37)

where

R ~ diag(r{/2-1 r1/2 - 1 . .. rP/ 2 - 1)m . (4.4.38)

Comparison of (4.4.30) for weighted least squares and (4.4.34) for un
weighted least-pth suggests a strong similarity so that the least-pth method
tends automatically to emphasize the larger residuals. However, for values of p
in excess of 10, very large and very small numbers may cause over/underflow
problems in computations. This aspect of the least-pth method is discussed in
Section 4.5 for program LEASTP.

Gauss-Newton Methods 199

4.4.4. Numerical Integration As a Sampling Strategy. Any user of optimiza
tion routines for curve- or model-fitting purposes such as illustrated in Figure
4.4.1 is faced with selecting a number of sample points and perhaps weights at
those points. A generally recommended rule of thumb is ·that at least 2n
samples be employed, where n is the number of variables. As valid as that
advice may be, it is vitally important to understand a few key points concern
ing numerical integration or quadralure. Referring to Figure 4.4.1, the ideal
measure of error between model function f(x, I) and data function d(l) is the
continuous residual function

r(x, I) = f(x, I) - d(I). (4.4.39)

The scalar value best representing that error is the classical integral p-norrn:

[]

I/P

Ilr(x,I)llp = f1r(X,I)l'dI , (4.4.40)

where the approximation is over the closed continuum I in one or many
variables. The discrete representation of (4.4.40) has been considered previ
ously in (2.1.39), the p norm of an n vector. The exponent lip is sometimes
omitted in mathematical analysis, since the minimum of the norm in (4.4.40) is
unaffected without it. Also, exponent p is taken to be even so that absolute
values are not required in the integrand. A further simplification is to take
p = 2, the least-squares case.

Example 4.4.4. As explained by Forsythe (1970), consider the integral error
function

T(x) = {It(x, I) - q(I)]2 dl,
o

(4.4.41)

where

f(x, I) = Xl + x 21 + .. , +Xnl
n

- I , (4.4.42)

(4.4.43)for i, j = 1,2, ... , n,

and q(l) is a given continuous function. The minimum of T(x) with respect to
all n of the x} may be found simply by equating to zero each of the n first
derivatives of T with respect to xl" (Recall that Leibnitz' rule states that the
order of differentiation and integration may be interchanged.) That leads to a
system of normal equations Ax = b, A = [ail]' where

ail = f[li-II}-I] dl,

(. . 1)-1= l + J - ,

and

for i = 1,2, ... , n. (4.4.44)

200 Newton Melhods

Matrix A in (4.4.43) is the notorious Hilbert malrix:

1 1 1 1
- - -
1 2 3 n
1 1 1 1

A= - - - (4.4.45)2 3 4 n + 1

1 1 1 1

n n + 1 n+2 2n - 1

The use of this result appears simple: Given a function q(I), use some
method for numerically integrating (4.4.44) and then solve x = A-lb. How
ever, the Hilbert matrix is notorious because it is illconditioned. Program
C2-1 , MATRIX, can be used to invert the 6 x 6 Hilbert matrix by entering
nine significant digits for the matrix elements. Also, the exact inverse of the
Hilbert matrix can be derived; see Knuth (1968:37). The fifth rows of the exact
and computed Hilbert inverse are shown by the respective lines in Table 4.4.1.
Of course, there is roundoff error in entering the rational values in the Hilbert
matrix. That adds to the illconditioning to produce the differences in the exact
and computed matrix inverse values. Values as small as 36 are also in the
matrix inverse, so there is a huge range of element values represented. Since
the fifth row of A multiplies the respective elements of b to yield x" a change
in b, of only 10-6 would change x, by 4.41\

There is a clear message in this example: avoid forming illconditioned
problems. There are alternatives; for example, the approximating function
could be a linear sum of Chebyshev functions of the first kind instead of a
linear sum of exponentials. The interested reader is referred to Cuthbert
(1983:20).

Numerical integration formulas estimate the value of definite integrals as a
linear sum of function values obtained at certain samples:

I rn
T = i 1(1) dl '" L: wJ(lk } = Wdl + Wd2 + .. , +wrnfm· (4.4.46)

o k-l

.
The wk coefficients are called weights in the sense used in the preceding
section. The Newton-Cotes integration formulas employ evenly spaced sam
ples. The Irapezoidal rule has m ~ 2, WI = w2 = 1, 11 = 0, and t2 = 1; it is

Table 4.4.1. Fifth Row of the Exact and Computed Hilbert Matrix Inverse

7560
7489.99

-220500
- 218591.15

1512000
1499500.29

-3969000
- 3937278.02

ooסס441

4375654.71
-1746360
-1733035.70

Gauss-Newlon Melhods 201

exact only for functions /(1) that are linear on the interval 1~ 0 to 1.
Similarly, Simpson's rule has m = 3, WI = W3 = i. W2 = 1. 11 = 0, 12 = t,
and I, = 1; it is exact only for functions /(1) that are quadratic on the interval
I=Otol.

As seen from the above rules, a polynomial function of degree m - 1 or
less can be integrated exactly by m evenly spaced sample points, I k' It turns
out that polynomial functions of degree 2m - 1 or less can be integrated
exactly by only m unevenly spaced sample poinls, using certain unique weight
ing coefficients. Since this is the best that can be obtained, those interested in
curve- and model-fitting applications should be able to determine these unique
sample points and their respective weights. Consider the Gaussian integration
formulation of a squared residual function on the interval I ~ - 1 to +1:

By making (4.4.47) exact for the 2m - 1 function values r 2
(/) = I,

1,1 2, I', ... , 12m -I, 2m equations are obtained. Each equation has m sample
points:

f +1
W t k-l + w t k - 1 + ... +w ,k-l = t k - 1 dt,

11 22 mm
-1

k = 1 to 2 m. (4.4.48)

The definite integral on the right-hand side of (4.4.48) has the value zero if
k is even and the value 21k if k is odd. It is assumed that equal importance is
assigned the symmetric intervals about zero, namely, I = [-I, 0] and I =

[0, + 1]. Therefore, the samples and weights are assigned as illustrated in
Figure 4.4.2; note that the sample I = 0 is used when there are an odd number
of samples. Because of the assumed symmetry, only the odd-numbered equa
tions are required. Two sets of m nonlinear equations that define the Gaussian
integration method according to (4.4.48) are shown in Table 4.4.2 for m = 2
and m ~ 3. These equations are written in terms of variable x j for the
corresponding Wi and Ii values shown in Figure 4.4.2.

Each set of nonlinear equations in Table 4.4.2 can be solved by treating the
defined residuals as those in a least-squares problem according to (4.4.4), at
least in principle. The required first partial derivatives are also shown in Table
4.4.2. This is accomplished in Section 4.5.2, using program LEASTP. However,
in practice the solutions are usually obtained by an entirely different method.
Ralston (1965:87) described an analytic approach that shows that the m
sample points for Gaussian integration are the roots of the Legendre poly
nomial of degree m. Wilf (1962:69) gives an elementary expression for the
corresponding weights in terms of the first derivative of the same polynomial.
However these Gaussian integration parameters are calculated, it need only be
accomplished once. Table 4.4.3 shows these values that satisfy the sets of
nonlinear equations in (4.4.48) for two to six samples. Tables are available for

Wm W, WI
I

WI W, Wm II I I I I I I
- 1 -t", - /, -II 0 II I, 1m +1

Xm 73 fl Xl X, fm-lI I I I I I

- 1 -xm -X, -X, 0 X, X, x m +1

(a) m even

I
w

m
_

1 w, WI 1m Ifl W, W
m

_
1

I I I , I I I
-1 -/",_1 - /, -II 0 II I, Im _ 1 +1

I
X

m
_

2 X, Xl Xm Xl X, X m _ 1
I I I I I I i

- 1 -X
m

_
1 -X, -X, 0 X, X, X

m
_

l +1

(b) m odd

Figure 4.4.2. Unevenly spaced, symmetric sample points and weights for Gaussian integration.

Table 4.4.2. The Nonlinear Equations That Define Gaussian Integration
for Two and Three Sample Points

k Equations

1 r l - 2xI - 21k = 0
3 r, = 2x l xj - 21k - 0

1 r l ~ 2xI + x, - 21k ~. 0
3 r, - 2x l xj - 21k - 0
5 r, - 2x l xj - 21k ~ 0

Derivatives

VI'I = 2, V'2'1 = 0
"\71'2 = 2xL V'lTZ == 4X1X 2

V'"t'l = 2, '1'2'1 = 0, 'V3'1 = 1
V' J f 2 = 2xi, V'l'2 = 4X1X 2 • V'3'2 = 0
V 1'3 = 2x~, V"2'3 = 8x1xi, '\73'3 = 0

202

Table 4.4.3. Gaussian Integration Sample Points and Weights for m = 2 to 6

m Sample ±/; Weight Wi m Sample ±I; Weight W;

2 (3)-1/' 1 5 0.906179846 0.236926885
0.538469310 0.478628670

3 (0.6)1/' 5/9 0 0.568888889
0 8/9

6 0.932469514 0.171324492
4 0.861136312 0.347854845 0.661209386 0.360761573

0.339981044 0.652145155 0.238619186 0.467913935

- - - - --------------

Gauss-Newton Methods 203

up to 24 sample points with as many as 21 significant figures in Abramowitz
(1972:916). Notice that no samples are placed at the ends of the sample
domain, that is, at t = - 1 or t = - 1.

To employ Gaussian integration over an interval x = [a, b1 instead of
t = [-1, + 1], a linear change of variables is required:

x=
t(b-a)+(b+a)

2
(4.4.49)

Therefore, (4.4.47) can be expressed in terms of independent variable x as:

b b-a
T= !.f(x) dx = -2-[w,j(x,) + w,f(x,) + ... +wmf(xm)]. (4.4.50)

Example 4.4.5. Gaussian integration (quadrature) is employed to evaluate the
definite integral

An arbitrary decision is to use three sample points, implying that the Gaussian
integration is exact for a fifth-degree polynomial that approximates the
function 1/x. Using the data for m ~ 3 from Table 4.4.3 in (4.4.49), the
normalized and translated samples and weights are:

- (0.6)'/' 1.112701666

+(0.6)'/' 1.887298335

o 1.5

W;

;
9

;.
9

Then the estimated value of the definite integral is found from (4.4.50):

T~ t[Hl.l1270l66W' + H1.5)-l + W.887298335)-I]

~ 0.693121693.

It is well known by integral calculus that the exact answer to this problem is
In(2) - In(1) = 0.693147181 to nine significant figures. Thus, only three sam
ple points obtained agreement for four significant figures. In general, Gaussian
integration obtains a given accuracy with about half as many unevenly spaced,
weighted sample points than by the more elementary Newton-Cotes formulas.
Readers interested in a more detailed derivation of Gauss quadrature are
referred to McCalla (1967:280).

204 Newton Methods

The main points of this discussion about weights and sampling are now
summarized. Optimization that seeks to fit a set of data points with the results
of some nonlinear model function of many variables requires that the number
and location of sample points be selected whenever possible. The objective is
accurately to approximate the integral of the residual function over the entire
sample domain so that it can be minimized. In fact, the sampling scheme is in
itself a modeling process.

A rule of thumb is that at least twice as many sample points as there are
variables should be employed; otherwise, the approximating model function
may misbehave between sample points. If that occurs, the sampled error may
be very low but the actual approximation overall may be terrible. Excessive
sampling can lead to an illconditioned system of equations and extended
computing time.

There is much to be gained by systematically spacing the samples unevenly
according to Gaussian constants that may easily be stored in the computer. It
is not optimal to place samples at the ends of the sample domain, and it is
about half as effective to space sample points evenly as it is to space them
according to Gaussian integration rules. However, the model may be intrin
sically illconditioned so that more sophisticated sampling and weight choices
won't help.

Adaptive integration methods (Forsythe 1977:92) use one or two basic rules
(such as the trapezoidal rule) to determine dynamically the subinterval sam
ples so that some specified accuracy can be obtained in the result. That
method is not recommended for optimization because it tends to confuse
gradient optimization algorithms, where smoothness is more important than
accuracy when far from the minimum. The interested reader is referred to
Lyness (1976).

A new and interesting method has been suggested by Davidon (1976) in
which the variables are adjusted after each sample instead of after all samples.
This method fluctuates about the minimum without ultimately converging to
it. However, solutions of linear systems are not required as with Newton
methods, and linear bounds on variables may be included even when the
Hessian is singular.

Section 4.5.3 will provide more information about the properties of least-pth
objective functions and how equivalent results may be obtained by other
means, especially as p Ci), which is equivalent to the minimax case.

4.4.5. Controlling the Levenberg-Marquardt Parameter. This section ex
tends considerations for the Levenberg-Marquardt (LM) parameter for the
Gauss-Newton method, where an approximate positive-definite Hessian ma
trix is available. Certain of these considerations have been implemented in
program LEASTP, which are described in Section 4.5.1. By using a diagonal
matrix instead of the unit matrix in conjunction with the LM parameter, the
basis of a scaling method for the variables is available as a valuable feature.

--------- _. - - - -------------------------

Gauss-Newton Methods 205

Fletcher (1971a) discussed a number of considerations for a Gauss-Newton
computer program based on ideas from Levenberg (1944) and Marquardt
(1963). Equation (4.2.6) gave the set of linear equations to be solved in
determining a Newton step dx to be taken from a point where the Hessian
matrix H and gradient vector g had been evaluated; that is repeated here for
convenience:

(H + vl)dx = -g. (4.4.51)

In the Gauss-Newton case, H = JrJ is a positive-definite matrix (except for
roundoff error) that approximates the true Hessian according to (4.4.20), when
certain second-derivative terms are omitted. As described in Section 4.2.2, the
LM parameter v interpolates between the Newton step (v = 0) and an
infinitesimal steepest descent step (v ... 00).

Levenberg suggested that dx should be treated as a search direction and
that D should be used as a search parameter to estimate a minimum along that
trajectory; see Figure 4.2.1. To the contrary, Fletcher stated that it is more
efficient to obtain a reasonable decrease in function value on the tr'\iectory
and then begin a new iteration with more current values of Hand g.

Marquardt was concerned that Levenberg's method overemphasized the
steepest-descent direction; Fletcher agreed. Let F' = F(x + dx), the function
value at a trial step, and F = F(x) be the function value at the current turning
or iteration point. Marquardt suggested increasing v by a factor of 10 after
unsuccessful (F' > F) steps and decreasing v by the same factor after
successful (F' < F) steps. It was noted in Section 4.2.2 that adjustments in v
needed to be made in some geometric progression to be significant. Fletcher
concedes that Marquardt's parameter adjustment scheme is relatively effective
in practice but suggests the following three desirable actions discussed here;
(1) select a reasonable choice for the initial value of D, (2) decide if the factor
10 is a reasonable adjustment under all conditions, and (3) set v = 0 near a
solution, since convergence is then quadratic instead of superlinear.

Actions (1) and (3) are related in that a value of v greater than zero must be
chosen, preferably not arbitrarily. Recall that near the solution point, the
function appears quadratic, H - J TJ approaches the true Hessian if the
residuals are all negligibly small, and full steps with D = 0 are appropriate.
Therefore, the question arises as to what value of v > 0 would cause a
significant decrease in step size relative to v = 0, say, a halving of the step
length. The answer is available from (4.2.13), where that sum of terms is
dominated by the term containing the smallest eigenvalue, W" when v =' O.
Referring to (2.1.48), the magnitude of the largest eigenvalue of H is equal to
the spectral norm IIHlb and that should have the same order of magnitude as
the other matrix norms. But the smallest eigenvalue of H is equal to the largest
eigenvalue of H - " so it follows that if v is not equal to zero, then it must be
about as large as some norm IIH-111. Fletcher noted that both the II . 1100 and

206 NeW/on Methods

II 'IIF norms overestimate the 11'11, norm and are convenient to compute.
However, it requires on the order of n'/3 operations to compute "-1, so that
this approach is feasible only for initially choosing the starting value of v and
for occasionally· computing a value of v below which v is simply set equal to
zero (so that quadratic convergence is possible).

The issue of increasing v depends on whether v is small or large. Let this
factor be q, so that the new value of v would be qv. If v is small, then Fletcher
argues that a factor of q = 2 is adequate except during early iterations far
from a minimum where v might be far too small and a factor q = 10 would be
much more appropriate (see Figure 4.2.2). For large values of v, (4.2.13) and
(4.4.51) both show that increasing v to qv decreases dx to dXlq. Fletcher
(l971a:4) makes this decision for 2 :;; q:;; 10 based on the step length to a
minimum in an arbitrary direction s on a quadratic surface. That has already
been derived with the result as t* in (3.2.19) and is repeated for convenience:

t* = (4.4.52)

In the present application, suppose that a sum of squares F = F(x) and a
gradient g(x) have been obtained at a turning point. Further suppose that
a trial step dx has been computed with some value v and that step taken with
the unsuccessful result that F' = F(x + dx) > F. Rather than compute the
quadratic form in the denominator, Fletcher noted that 1* can be computed
using s = dx, F, and F', all of which have been computed. To obtain that
expression, note that a three-term Taylor series approximation of F about
x + dx is

(4.4.53)

Therefore, the denominator of (4.4.52) may be replaced by the right-hand term
of (4.4.53) with the result that

(4.4.54)

where F is defined by (4.4.4) and g = VF by (4.4.17). Fletcher computes the
factor q = 1/1 *; if it is greater than 10 it is set equal to 10, and if less than 2 it
is set equal to 2.

Instead of deciding whether a step is ~uccessful based on a simple increase
or decrease in function value as employed in the preceding analyses, Fletcher
used the criterion similar to that described by (4.2.2), in this case the ratio

(4.4.55)

----_. - - _. - - - - - ------- - - - _._------ -- ---

Gauss-Ne..1on Methods 207

The denominator of (4.4.55) is clearly the ideal change in function value
according to (4.4.53), whereas the numerator of (4.4.55) is the actual change
obtained by the step dx. Near convergence, r = 1 is expected. Clearly, r » 1
is good news and r « 1 is bad news. Fletcher left the value of v unchanged if
0.25 5, r 5, 0.75. If r > 0.75, then he reduced v to v/2, and if the new v was
less than 1/IIH-1112, then it was equated to zero for quadratic convergence. If
r < 0.25, then v was increased to qv, 2 5, q 5, 10 as described earlier.

There is still the problem of solving the augmented normal equations for
step dx:

(jTJ + vl)dx = -g. (4.4.56)

These equations are likely to be very illconditioned. In fact, since g = J Tr,
where J is the Jacobian and r the residuals, it can be seen that at a minimum
where the gradient g = 0, if r '" 0 then J must be singular! Therefore, as a
minimum is approached, the steps theoretically become more and more
accurate but the Jacobian matrix deteriorates progressively. Since the condi
tion number of JTJ is equal to the square of the condition number of Jacobian
J alone, it is highly desirable to obtain a solution for dx in (4.4.56) that uses
only J. One way to do this is to employ orthogonal decomposition as
described by (3.1.47).

An even better approach for computing the Newton step dx in (4.4.56) is to
use singular value decomposition (SVD). As described in Section 3.1.3, it is
always possible to decompose the Jacobian matrix as

J = USV T, (4.4.57)

where U and V are orthogonal matrices and S contains the singular values of J
on a diagonal. Since UTU = 1 and VTV = I, JTJ = VSTSV T, so that

(4.4.58)

Matrix W defined by (4.4.58) is clearly diagonal. Therefore, step dx is

(4.4.59)

It is easy to obtain W- 1 and to update W using different values of LM
parameter v. As Forsythe (1977) noted, "If J has full rank, then the solution
x' is' unique and can be reliably computed by several different algorithms,
some of which are faster than the SVD. But the SVD also handles the
rank-deficient case and, except for some very large problems, is not much
more costly than the other reliable methods. (It is less costly than a fast
algorithm which may give the wrong answer.)"

There is one additional consideration for the LM parameter method that
involves implicit scaling of the variables in x. Suppose that there is diagonal

208 Newton Methods

matrix 0nn = [djjJ having all positive elements. Then a linear transformation
of the variable space is

x= Dx or (4.4.60)

Recall that the Jacobian matrix contains all first partial derivatives of the
residuals evaluated at each sample point, t k :

By the chain rule,

where

rowk= 1 to m, column j= 1 ton. (4.4.61)

(4.4.62)

(4.4.63)

Therefore, the Jacobian matrix of partial derivatives in the new variable space
i is

(4.4.64)

In the new variable space, consider the Gauss-Newton step dx defined by

[Fi + vI] dx = -Fr.

Substituting from (4.4.64) and (4.4.60) into (4.4.65):

[(JO-1f(JD-1) + vl]OdX = -(JO-1)Tr ,

which reduces to

(4.4.65)

(4.4.66)

(4.4.67)

The Gauss-Newton step differs from the original definition only in the
substitution of a diagonal matrix 0 2 for the unit matrix I. However, the
preceding development shows that (4.4.67) represents an implicit scaling of
variables. This development is very important in connection with the trust
neighborhood interpretation of the Levenberg method developed in Section
4.2.2, because it deals with a prediction dx on an ideal quadratic function
model such that IIdxll2 ,; R, R a constant. This used the two-norm or vector
length, which depends on the scales chosen in the x space.

The use of (4.4.67) instead of (4.4.56) with g = JTr, has proved beneficial in
practice. Many algorithms employ Marquardt's suggestion that a good choice

Program LEA STP 209

of D 2 is to equate it to the diagonal values of JTJ at the initial choice of
variables, x(O); see Fletcher (l971a:7). For the linear transformation of varia·
bles in (4.4.60), that choice means that the elements of D = [djjl are the root
mean square values of the first derivatives of the residuals:

(4.4.68)

This can be verified from (4.4.19) and (4.4.20).
Within a constant, (4.4.68) is the root mean square of the derivatives "J'k'

taken over the sample points k = 1 to m. Marquardt (1963:437) has noted the
statistical significance of this choice; in fact, the LLS problem often has been
described as a statistical tool. In the present context the use of an average
derivative or slope in each coordinate direction according to (4.4.68) as a
scaling factor makes sense. Consider the linear transformation x = Dx in
(4.4.60): If the function is changing very rapidly in the x j direction, the l"jFI
is large and the level curves are bunched together. Then increasing the number
of units in xj is the appropriate scaling action necessary to increase the
spacing between level curves or contours.

4.5. Program LEASTP

Program C4-5, LEASTP, provides an illustration of both the Gauss-Newton
approximation to the Hessian and the implementation of a particular
Levenberg-Marquardt policy. The menu choices are similar to those in
program NEWTON. However, subroutines 5000 and 7000 supply only the
necessary ingredients of the objective function and its gradient, respectively,
because of the different Gauss-Newton formulation. Program LEASTP in
eludes a simple implementation of the least.pth objective function. Section
4.5.2 illustrates some of its limitations, and Section 4.5.3 contains brief
discussions of more sophisticated least-pth techniques and their relationships
to the minimax problem.

4.5.1. The Algorithm and Its Implementation. The listing for program C4-5,
LEASTP, is contained in Appendix C. The major variable names are shown in
the remarks contained in lines 130 to 180; there is also a complete list of all
variable names used at the end of the program listing. As in the preceding
program NEWTON, the programming variables are contained .in the single.
subscripted array X(), and the gradient of objective function F with respect to
the variables is contained in G(). In this Gauss-Newton implementation, it is
necessary to store the residuals in the array R() in order to compute both F
and the gradient g. Similarly, the modified Gauss-Newton approximation to
the Hessian matrix is stored in vector form in array HO, dimensioned
n(n + 1)/2, where n is the number of problem variables.

210 Newton Methods

Variables in program LEASTP are dimensioned in line 320; problems may
involve as many as n = 20 variables and m = 40 sample points (see Figure
4.4.1). The user can change these dimensions, of course. There are several large
arrays required in the Gauss-Newton method, indicative of the usual tradeoff
hetween computation and memory in the choice of algorithms. Array A(,)
contains the m X n Jacobian matrix of first partial derivatives, and array S(,)
contains the m sample points and their respective data values.

A list of the major subroutines and their line numbers in program LEASTP
is given in Table 4.5.1. Program LEASTP is similar in structure and flow to
program NEWTON that was described earlier in this chapter. However, no
explicit trust neighborhood radius must be entered into LEASTP, since the
Levenberg parameter v controls both the step direction and its length. Also,
control parameters do not include the finite difference factor, since the second
partial derivatives are approximated using the structure inherent in the'
Gauss-Newton least-pth objective function.

Because LEASTP is a curve-fitting program, the user must supply the
sample values and their respective data values. This must be furnished by the
user in program lines 400 to 600; an illustration is included in the program
C4-5 listing, lines 400 to 430. These data are read by lines 340 to 370 whenever
the program is run and may be reviewed at any time using menu command 6.
Of course, the program can be modified to read data from disk files as in
program C2-1, MATRIX. However, lines 400 to 600 can easily be created by
an editor such as IBM's EDLIN, saved on disk, and then MERGE'd into
LEASTP before it is run. In fact, both subroutines 5000 and 7000 also must be
merged into LEASTP, so it makes sense to combine both subroutines and the
data statements all into the same file to be merged. Of course, all three sets of
information are unique to the particular problem at hand.

Table 4.5.1. Major Subroutines in Optimizer Program C4·5, LEASlP

Name

Enter Number and Value of Variables
Enter/Revise Control Parameters
Main Optimization Algorithm
Display Function, Gradient, and Variables
Calculate and Store Normal matrix in NO
Calculate Gradient and Its Length
Add Levenberg Parameter to Normal Matrix
Display Sample Data from Lines 400-600
LDLT Factorization of Hessian in situ
Solution for Step dx in (JTJ + vD')dx ~ -g
Residuals r for F and g (user supplied)
Jacobian Matrix J - ['V/, 1(user supplied)

Lines

1200-1270
1280-1360
1400-2490
2500-2580
2590-2730
2740-2850
2860-2970
2980-3080
3090-3360
3370-3600
5000-6999
7000-8999

-~-~---------------------~~----.

ProgramLEASTP 211

The flow chart for program C4-5, LEASTP, is shown in Figure 4.5.1. It
starts in the same way as the preceding m~or programs, namely, with some
notes and then a command menu. Command 5 has been reserved as a "spare"
for later use as suggested by Problem 4.14. Command 1 must be used to input
the number and values of problem variables before the first optimization cycle
is started, using command 3. Command 2 to revise the program parameters is
optional, since default values have been set by the program. (Use command 2
to review these default values.) Several initial tasks are performed before
iterations can begin.

Upon selection of command 3, the user is asked to select a value for p, the
exponent for the residuals in the least-pth objective function. This allows the
user to optimize with p = 2, then use command 3 again to optimize for p > 2,
starting from the variable values obtained from the preceding minimization.
Next, subroutine 5000 is called to obtain the residuals and to check the
number of residuals the user has programmed there, set by the BASIC variable
named "M". This should correspond to the same number of samples indi
cated by the user as "M7" in the DATA statement on line 350. The program
pauses to let the user ascertain that M = M7 (i.e., that this value is consistent
with the problem at hand), LEASTP then computes the exact gradient g = 'i1F
using the residuals from subroutine 5000 and the Jacobian from subroutine
7000; see (4.4.17).

The root mean square values of the gradient are then placed in diagonal
matrix D', appearing in the program as BASIC variable DO. These are not
changed afterward. Then the program obtains the approximate gradient by
finite differences and displays these alongside the exact values. This is an
important feature, because it at least checks the programming the user
furnished in subroutine 7000 for the Jacobian. To the extent that either set of
values make any sense, it also provides a check on the programming in
subroutine 5000 for the residuals.

Reentry point 1890 in Figure 4.5.1 marks the beginning of the iteration
loop for the sequential search directions in E". The first order of business on
any iteration is to adjust the value of LM parameter v. It is simply started at
v ~ 0.001 in line 290, as opposed to IIH -'II, as proposed by Fletcher and
described in Section 4.4.5. The policy implemented in program LEASTP for
increasing or decreasing v is programmed in lines 1900 to 1930 and 2020 and
listed in Table 4.5.2,

This policy for the Levenberg-Marquardt parameter v is considerably more
elementary than Fletcher's policy described in Section 4.4.5. However, this
policy works reasonably well and its implementation does not lengthen the
program code to the point of obscuring more essential concepts. One price
paid for this policy is that the user will often see v oscillate by a factor of 10
up and down for several iterations. Fletcher's policy stops that, but so does a
policy of decreasing v by say 2.5 while increasing v by 10. There is some
question as to whether the total number of function evaluations is seriously

START
lEASTP

Display notes

999 ~---;>----l

Display menu

START
OPTIMIZATION

I

/ EnterP=2.4. /
6,80r10

0 •
GOSUB for residuals ICheck compatibility

Compute F[x(O)] = F
Calculate Jacobian and

store JTJ in HO
Put lM scaling
factors in DO

I
~lculate/compare finite-

a difference gr;dient to Exact

1890

Increment Iter L7; Fl = F
Test cutback flag M3

and increase/decrease
LM parameter v

I
Compute Jacobian and
gradient. Store normal

matrix in HO.
Print F, XO, and GO

(0 •
0 •

Add LM param v to HO
Factor (JTJ + yO) = lOLT

e

40

1000

1400

1450

1510

1590

1630

1750

1890

1950

1990

Figure 4.5.1. Flow chart of optimizer program C4-5, LEASTP. Note: @- ® apply to variable
bounds. See Table 6.2.3.

212

LDLT
OK!

No

Increase LM v = 100 v
Calculate and store

normal in HC')
Revise and refactor HO

2020

Set right-hand side =- 8
Compute step dll in EO
Print step-gradient deg

II =I + dll
Compute F(lI)

> :: F1 (Last f)

2060

2230
x=x-dx
dx = dx/4

M3 = M3 + 1

F

Downhill

2210

> 10 M3,
2270

2170

Not converged

Not converged

ITER
X'

F

X()

> lteration limit

2270

Print "Stopped at
iteration limit"

2320

2340

Print "Step size
100 small
terminated

1890

Compute
gradient

Figure 4.5.1. Continued

213

214 Newton Methods

Table 4.5.2. LEASTP Policy for Increasing / Decreasing LM Parameter v

At the beginning of each iteration:
L If there were no step length cutbacks in the preceding iteration, then v = v/10.
2. If v < 10-20 then v = 10- 2°, since v = 0 is not allowed.
3. If there were cutbacks in the preceding iteration, then v = lOu.
4. Anytime the approximate Hessian is not positive~dcfinite or its

determinant < lO~6, then v = 1oov.

affected by the brief number of oscillations in v that may be observed. It is
assumed that generally it is much more expensive to recompute the function
and its gradient than it is to perform the LOLT factorization and solution. In
any event, downhill progress is obtained with or without oscillation.

The flow chart for LEASTP in Figure 4.5.1 shows the modification of the
approximate Hessian (JTJ + vO') according to (4.4.67). The implicit-scaling,
diagonal matrix 0' is fixed at the root mean square values of the gradient as
previously mentioned. If the factorization of the Hessian in subroutine 3110
returns with BASIC variable N5 ~ 1, then v is increased to 100v, and the
Hessian is recreated and refactored before proceeding; see case 4 in Table
4.5.2. The remainder of the flow chart in Figure 4.5.1 is essentially the same as
Figure 4.3.1 for optimizer NEWTON, that is, the steps, cutback, and conver
gence tests are similar. Program LEASTP does require a few more steps to
assemble the objective function and the gradient, since the user is only
burdened with providing the residuals and their derivatives in subroutines
5000 and 7000, respectively. Typical user subroutines are described by the
examples.

4.5.2. Some Examples Using Program LEASTP. Some previous examples
are reconsidered in order to highlight differences between the least-pth
Gauss-Newton method and previous optimization techniques. A new example
will illustrate some of the pitfalls awaiting the careless user of p > 2.

Example 4.5.1. The first example recasts the Rosenbrock function with two
variables as previously defined by (4.3.1) into a form employing two explicit
residuals. This is the solution of two nonlinear equations from (4.4.13):

" = 10(x, - xf),

so that the objective function is to be minimized

F(x) = t h' + ,,'].

(4.5.1)

(4.5.2)

(4.5.3)

Notice that a factor of t has been added to (4.5.3) so that it is now consistent

Program LEA STP 215

with the defined least-squares objective function (4.4.4). The user will have to
program subroutine 5000 for the residuals defined by (4.5.1) and (4.5.2). Also,
the Jacobian matrix containing the first partial derivatives of the residuals
must be programmed in subroutine 7000 by the user. Great care is required to
ensure that the row-column convention in (4.4.15) is proper(y related to the
BASIC array: A(K, J) = ['Vjrd. The expressions for these are:

(4.5.4)
'V ,r, = O.

Program LEASTP uses subroutine 5000 to calculate F(x) according to (4.5.3);
it also computes the gradient using subroutine 7000:

[
-20xg=JTr = I
-I

lO]T[IO(X, - xn]
o 1 - XI

(4.5.5)

Subroutines for this form of the Rosenbrock problem are contained in
Appendix C, program C4-6, ROSENPTH. In this case no DATA statements
for lines 400 to 600 in LEASTP are required. It is important to note that the
number of residuals must be set in subroutine 5000, in this case M = 2 on line
5020.

Variable LI ~ 0 is included in subroutine 5000 to indicate to LEASTP that
variables in array X() are mathematically feasible for the problem, for
example, negative variable values are not involved in root or logarithm
calculations. This is checked at line 1560 of LEASTP only on the first call; it
may be a good idea to check Llat every call of both subroutines 5000 and
7000. In any event, Ll = 1 must be set dynamically in subroutine 5000 if the
calculation cannot accept some value of X() passed to it. Any such program
ming details in both LEASTP and the subroutines 5000 and 7000 are left to
the user as required. In the case of ROSENPTH, LI = 0 is set since there can
be no problems of this sort. The concept of a flag variable in optimization
subroutines to avoid misuse of variables assigned by the optimizer was
suggested by Fletcher (1971a).

Note in subroutine 7000 in ROSENPTH that the Jacobian matrix is in
A(,). The subscripts for each element value are defined by (4.4.16) and must
be correct. In this case, the matrix is composed as positioned in (4.5.4). The
main reason for checking the gradient computed by using the Jacobian versus
the gradient computed by using finite-differenced residuals is to be certain that
the user correctly programmed subroutine 7000. It is easy to make errors in
subscripts, and the optimizer certainly cannot perform with incorrect gradient
information.

216 Newton Methods

The essential output from LEASTP for the Rosenbrock problem is shown
in Table 4.5.3. The standard start from x(O) = (-1.2 l)T was used with p = 2.
The relative differences between the exact (SUB7000) and finite-differenced
gradient values is typical. These data indicate that (1) subroutine 7000 was
programmed correctly and (2) the magnitudes of the partial derivatives are
reasonable. The latter fact suggests that subroutine 5000 was programmed
correctly and that the problem is reasonably weIl scaled (units of each x j are
reasonably related to each other). Iterations 3 through 22 are not shown in
Table 4.5.3. The behavior of the Levenberg parameter v was typical; it steadily
increased from its starting value of v = 0.001 to v = 10, then oscillated
between v = 10 and v = 1, finaIly decreasing to a relatively small number at
convergence. In this case, the root-mean-square values assigned to scaling
matrix 0' in (4.4.67) were 0.9853 and 0.1708 for x, and x" respectively; these
are easy to obtain after terminating execution by entering keyboard characters
(?D(l); D(2) Rtn}. The gradient value shown for iteration 1 in Table 4.5.3
confirms the proper trend for correcting the scale for this problem and the
particular starting point.

The performance obtained on the Rosenbrock problem from the standard
starting point by LEASTP is comparable to that obtained by NEWTON, but
in this case the Hessian matrix of second derivatives was only approximate.
On the other hand, NEWTON used finite differences of the gradient to
compute the Hessian, requiring n extra function evaluations. For a large
number of variables (say 25 to SO) LEASTP is much more efficient without
any substantial penalty. Other data from LEASTP for other starting points on
the Rosenbrock function show it to be superior to NEWTON; see Table 5.3.3
in Chapter Five.

It is useful in the Rosenbrock case to compare expressions for the exact and
approximate second derivatives. The exact Hessian matrix H from (3.2.46) is

V',g,] = [600xl- 200x, + I
V' ,g, -200x,

- 200X,]
100 '

(4.5.6)

where the elements of the gradient are obtained from (4.5.5). Another exact
expression for the Hessian matrix for least-pth objective functions is H =

JTJ + M, using J from (4.4.16) and M from (4.4.21). In the Rosenbrock case

J = [400x[+ 1 - 200X]]
- 200x, 100'

~ 0·5.7)

M = 10(x, - xn[-2~ ~] + (1 - x])[O].

It can be seen that JTJ in (4.5.7) approaches H in (4.5.6) as x -+ x' = (1 l)T,
that is, M -+ 0, and that the sum JTJ + M in (4.5.7) is equal to H in (4.5.6).

-------- - _. - - --------------------------

Table 4.53. Output from Program LEASTP for the Staodard
Roseubrock Problem

READY? 3

I
1
2

I
1
2

G<I)
-107.80000234
-44.00000095

LM PARAM V= 1.0D-04
STEP-TO-GRADIENT DEGREES~ B7.7591

##•••• CUT BACK STEP SIZE BY FACTOR OF 4 ••••••
••••## CUT BACK STEP SIZE BY FACTOR OF 4 **####

AT START OF ITERATION NUMBER 2
FUNCTION VALUE = 11.43226

X(Il G<I>
-1.06252594 -93.73706397
0.69756230 -43.13990593

NUMBER OF VARIABLES = ? 2
ENTER STARTING VARIABLES XII).

X(1)=7 -1.2
X(2)=?1

PRESS <RETURN> KEV TO CONTINUE
EXPONENT P <2,4,6,8, DR 10> =7 2
USER SET NUMBER OF SAMPLES M = 2 IN SUBROUTINE 5000

IS THIS CONSISTENT WITH THIS PROBLEM IV/N)? V
VIA SUB7000 VIA DIFFERENCES

-107. B0000234 -107.775131B6
-44.00000095 -43.99299622

PRESS <RETURN> KEY TO CONTINUE -- READY?
AT START OF ITERATION NUMBER I

FUNCTION VALUE = 12.1
X (J)

-1. 20000000
1.00000000

.GRADIENT

•
•
•

AT START OF ITERATION NUMBER 23
FUNCTION VALUE = 4.501056E-12

I X(I) 6(1)
1 0.99999890 0.00005471
2 0.99999752 -0.00002791

LM PARAM V= 1.00-04
STEP-TD-GRADIENT DEGREES= 86.9059

CONVERGED; SOLUTION IS:
AT START OF ITERATION NUMBER 24

FUNCT10N VALUE = 1.882328E-20
I X<I> G<I>
1 1.00000000 0.00000000
2 1.00000000 -0.00000000

PRESS <RETURN> KEY TO CONTINUE -- READY?
RESIDUALS ARE:

1 -1.641228819515561D-11
2 1.933318505287218D-10

TOTAL NUMBER OF FUNCTION EVALUATIONS = 39
EXPONENT P = 2
PRESS <RETURN> KEY TO CONTINUE -- READY?

217

218 Newton Me/hods

Table 4.5.4. Output from Program LEASTP for the GAUSS Prohlem
withm=4

AT START OF ITERATION NUMBER 1
FUNCTION VALUE = 8~407742E-02

I X<U 60>
1 0.50000000 -0.12566035
2 0.50000000 -0.35187874
3 0.50000000 -0.12566035
4 0.50000000 -0.35187874

LM PARAM V= 1.0D-04

1.0D-06
6.83490-12
1.00-04
17.1973

4

0_63855212
0.49180462
0.63855212

2
3
4

-O~00000207

-0.00000003
-0 .. 00000207

LM PARAM V=
HESSIAN NOT PD OR TOO SMALL DETERMINANT =

LM PARAM V=
STEP-TD-GRADIENT OEGREES=

CONVERGED; SOLUTION IS:
AT START OF ITERATION NUMBER 4

FUNCTION VALUE = 2.397782E-02
I X(!> 8(1)
1 0.49180450 -0.00000014
2 0 .. 63855252 -0 .. OO(l(lQ056
3 0.49180450 -0.00000014
4 0.63855252 -0.00000056

PRESS <RETURN) kEY TO CONTINUE -- READY?
RESIDUALS ARE:

1 -3.278200371012735D-02
2 .1354650063976287
3 -7. 293138924067746D-02
4 -.1523522776882509

TOTAL NUMBER OF FUNCTION EVALUATIONS
EXPONENT F' =- 2

Example 4.5.2. This example solves the sets of nonlinear equations such as
those in Table 4.4.2 that define Gauss integration. Since the number of sample
points and the number of variables are equal, insight into the structure of the
general case can be obtained by also writing out the equations for m = 4 and
m = 5. The pertinent BASiC subroutines 5000 and 7000 are contained in
Appendix C in program GAUSS (C4-7). Merging that into LEASTP enables
input of the number of variables (and samples) and some starting guess for the
variables. Recall from Figure 4.4.2 that the variables Xl' X 2' X" x 4 , x" ...
correspond to weights and samples WI' t I , W2 , t 2 , w3"", respectively. By fun
ning the program and starting with the reasonable choices x

J
= 0.5, j ~ 1 to

n, the answers for m = 2 and m = 3 in Table 4.4.3 are easily obtained.
The essential results for trying that starting point for m ~ 4 are shown in

Table 4.5.4. The necessary condition for a minimum seems satisfied, namely,
the gradient is nearly equal to zero, but clearly the residuals and their squared
sum are not anywhere near equal to zero. The data represent a local minimum
of the sum of squares hut not a solution to the system of nonlinear equations,
It is easily verified that starting with the first significant digits of the known

- - - - -- -- --------- -- ---

Program LEA STP 219

solution in Table 4.4.3, namely, x (0) = (0.3 0.8 0.6 0.3)T, will converge to the
known solution with zero residuals. The same approach will confirm solutions
for the m = 5 and m = 6 sets of nonlinear equations as well.

Having to start the optimization that close to a valid solution is a severe
limitation. This requirement is why the author calls optimization (nonlinear
programming) computer-aided redesign! Users of optimization can expect
frequent failures when using random guesses for starting points. Not only
must the variables in the problem be well scaled (reasonably related units of
measure), but the starting variable vector must be within a unimodal neighbor
hood of a useful minimum. Sometimes that neighborhood is quite small. This
is an important limitation and one that may be met by the kind of problem
estimation procedures that are in the tool kits of good engineers. The results
from those educated starting points are often astounding and unattainable by
any other means. But problems must be well scaled, formulated to be well
conditioned, and started near a potentially useful solution. Optimization may
appear to be art, but its real power is gained through the insight of an
informed artist.

Regarding illconditioning, the formulation of the Gauss integration solution
as in Table 4.4.2 has the same defect as the integral least squares in Example
4.4.4 and for the same reason. The power series representation is intrinsically
illconditioned; Program LEASTP with GAUSS cannot solve this particular
problem with large numbers of sample points. As mentioned in Section 4.4.4,
there are at least two better means for finding those solutions.

Example 4.5.3. Sargeson's least-squares problem introduced in Chapter One
with fitting function (1.2.5) and results in Table 1.2.1 is solved with program
LEASTP. In this chapter, Example 4.4.1 in Section 4.4.1 provided expressions
for the nonlinear model, residuals, and their first derivatives; see (4.4.10) to
(4.4.12). These have been coded in Appendix C, program C4-8 SARGESON.

The 33 independent sample points are on the domain 0 ~ t ~ 320 at
intervals of 10 as entered by the DATA statements in lines 420 to 450. The
corresponding dependent data are entered in lines 460 to 480. Subroutine 5000
programs the residuals in (4.4.10) to (4.4.11), and subroutine 7000 programs
their partial derivatives according to (4.4.12).

It often happens that certain quantities computed for the residuals are also
required for computing their derivatives. Also, the derivatives are often
computed several times more than the residuals during the course of an
optimization. Therefore, it is important to save the residuals rather than (0

recalculate them in subroutine 7000. In this case two sets of exponentials also
are saved in program variables Y40 and Y50 on lines 5040 and 5050,
respectively. Then they may be used in subroutine 7000 as required, since the
current point in x space will have been used in subroutine 5000 first.

Another important fact concerns IBM BASIC release 2.0. If the user
executes (BASICA /0). then releases 2.0 and subsequent compute the ATN,
COS, EXP, LOG, SIN, SQR, and TAN functions in double precision. This
was not possible in earlier releases. In this example the EXP function is

220 Newton Methods

crucially involved, so the following data were obtained with the /D option
actuated.

This live-variable problem was started with and converged to the values
shown in Table 1.2.1. The diagonal elements in scaling matrix 0 2 were
0.000612, 0.000102, 0.0000562, 0.998, and 0.0579, indicating that the scales of
variables x. and x, were grossly out of balance with the other variables. This
is not unexpected, since both x. and x, appear in the exponents of the
nonlinear model function in (4.4.10).

The before/after curve lit was shown in Figure 1.2.1. Sargeson's input and
performance data have been given in Lootsma (1972:185) in an article by
Osborne. Osborne's algorithm required 27 iterations. Using LEASTP with the'
stopping criterion set equal to 10-6 and p = 2, convergence to a zero gradient
valid to eight decimal places was obtained in 11 .iterations requiring 16
function evaluations. This program was run three ways:

1. IBM Interpreted BASICA: 290 seconds.
2. IBM Compiled BASIC: 42 seconds.
3. IBM/Microway 8087 BASIC: 22 seconds.

The numerical results were nearly identical among the three methods.
The residual error at the sample points cannot be seen in Figure 1.2.1

because of its scale, so it has been plotted in Figure 4.5.2. The uneven error
over the sample space suggests that higher values of exponent p should
automatically emphasize and therefore suppress the higher error peaks.

The reader can try this example with p = 4, starting with the x' value
obtained from p = 2 optimization (in Table 1.2.1). After several futile itera
tions, program LEASTP announces convergence with essentially no change.
The difficulty is that many functions are simply not amenable to an equal-rip
ple error approximation, and apparently this is one of them. The next example
illustrates the careful selection and construction of a problem that is amenable
to an equal-ripple error approximation.

Example 4.5.4. Consider the even polynomial

(4.5.8)

When the coefficients are x = (18 - 48 32)T, this is the Chebyshev function of
the first kind of degree 6. This class of Chebyshev functions is noted for its
equal-ripple approximation of zero over the domain - 1 :$ y:$ +1 with an
error of unity magnitude. The sixth-degree Chebyshev function is shown by
the solid line in Figure 4.5.3. Program C4-9, CHEBY, in Appendix C, has been
written to be merged with program LEASTP to optimize (4.5.8), starting from
an arbitrary x vector. The eleven evenly spaced sample points and the
dependent data "targets" are· determined by lines 420 and 430, respectively.

----- - --

Program LEASTP 221

x

t
og
~

4. 5 .--.-.,.....,."""T"""'....,..............,....,r-r--r-r-.-.-r-~.......,~,...,...-r-r"""T"""'....,...,....,
4.11

3.5

3.11

2.5

2.11

l.5

l.ll

'i:' ~5
~
~ -. g.,.
.g -.5
.~

i5 -l.ll

-l.5

-2.11

-2.5

-3.11

-3.5

-4.11

-4. 5'l>.WL1)-f'l>~~'l>:'-"'<i--!~'-'-qj-f~""""<l,<l,L....'1)-f'l>~~'l>!-''<i-o~'-'-<l)-f~''''''''f!I,'l>L...._o--f'l»~~'l>:'-''fO....,~L.....Ri-,l.~~~'l>!--'-o9>~
~ ~ ~ ~ ~ '1) ·v '1) '1) '1) ~ ~

Figure 4.5.2.

Independent sample data t~

Residual error at the optimal least·squares solution of .Sargeson's fitting problem.

Subroutine 5000 computes the residual errors between the ,approximation in
(4.5.8) and the target data values. Notice that the target at y = 0 is necessarily
-1, since (4.5.8) can assume no other value at that sample. Subroutine 7000
computes the first partial derivatives of the residuals with respect to the three
variables.

Program LEASTP stopping criterion was set to 10- 6 and run in succession
for p = 2, 4, 6, 10, and 20, starting from x = (0 0 O)T first and then from
each preceding minimization x vector. The curves of (4.5.8) for the x vector of
coefficients obtained after minimization with p = 2 and p = 10 are shown in
Figure 4.5.3. Clearly, there is a trend for large values of p to approach the
Chebyshev case.

Consider the graph of each of the three variables versus lip shown in
Figure 4.5.4. The data points obtained with LEASTP are shown by the circles;
the lip ~ 0 (p --. 00) data are the Chebyshev coefficients previously men
tioned. Figure 4.5.4 suggests that these variables are smooth functions of lip

222 Newlon Methods

I I
1 I

I I
I I
1 I

I I
I I

If i
I I
I ,

~ I
I

,
\ '
\\

\ , /
\ ~

\
\
\ (

\ (

, /

I
I

/,
I

/
I

I

I

p= 2
~-

" "/
/

1
/

1
1

1

" 1/ /
" 1'1/

I 1
I /

If',/
'/

.8

.6

.4

• 2
A
I
I
1

l'J. l'J>:
~..
>

'" -.2>
c
a:e

".4c
~

"-

-.6

-.8

y --->

Figure 4.5.3. The sixth·degree Chebyshev polynomial and two least·pth approximations.

and might be extrapolated to lip ~ O. This and other possibilities are
discussed next.

4.5.3. Approaches to Minimax Optimization. The minimax objective junction
is

min max h(x) L
x k

k=ltom. (4.5.9)

As defined by (2.1.39) in Section 2.1.5, the p norm of any vector r in Em is

[

m]'IP
Ilrll p = k~llr.lp (4.5.10)

--- --- - ---- - - - - ------

Program LEASTP 223

t
30

20

10

"
'Go.

- -0-._
--e--_-o-._

-;'1- - - - '- - - -

~-~--"':"----_-----''l-"--~--:'bl-~~--,J~'--~--}.,

~.

lIp~

Figure 4.5.4. The three variables in Example 4.5.4 versus lip.

For p 00, the infinity norm is

Ilrll", = maxhi,
k

k ~ 1 to m. (4.5.11)

It is not possible to use gradient optimizers such as NEWTON and LEASTP
to minimize only the maximum residual at each iteration, because the sample
point for that residual will change between iterations, causing discontinuities
in the gradient. Several alternative methods that will achieve an equivalent
effect are discussed.

Bandler (1974b) and others have suggested extrapolation of results obtained
with increasing values of exponent p in order to predict the minimax result for
p 00. A practical method for doing that is to extrapolate in the new variable
q = lip, as q O.

224 Newton Methods

Example 4.5.5. The usual extrapolation procedure is to fit a polynomial of
low degree to successive subsets of data. Each such polynomial predicts a limit
as the independent variable approaches zero. Consider the quadratic poly
nomial that approximately represents x, from (4.5.8): .

(4.5.12)

This quadratic function can be fit exactly to each of the following two sets of
data:

Set 1 Set 2

k 1 2 3 k 1 2 3

q 0.5 0.25 0.167 q 0.25 0.167 0.100

d 10.209 15.087 18.125 d 15.087 18.125 21.667

Set 1 was obtained from LEASTP optimization with p = 2, 4, and 6; the
values of d shown in the table are the values of variable x,; these are plotted
in Figure 4.5.4. Set 2 was obtained after another optimization using p = 10;
the data for p ~ 2 were discarded and the set for p = 4, 6, and 10 was
employed.

The fitting process involves three equations and three unknowns, as op
posed to the overdetermined system of equations previously applied to this
kind of problem in Example 3.1.5, especially (3.1.55) and (3.1.56). Still, the
Vandermonde matrix A is created for the linear system of equations Ay = d,
where A1 and A2 are created from sets 1 and 2, respectively:

0.5000
0.2500
0.1667

0.250000)
0.062500 ,
0.027789

A, = n0.2500
0.1667
0.1000

0.062500)
0.027789 .
0.010000

(4.5.13)

The d vectors contain the elements shown in the two data sets, so that the
solutions for the coefficients in (4.5.12) may be obtained as y = A-1d, using
program MATRIX. It is seen in Figure 4.5.4 that the only coefficient in
(4.5.12) of interest is Yl, since that equals the predicted value of x, when
q = 0 and p OC). The values are Yl = 26.325 and Y, ~ 28.826 for data sets 1
and 2, respectively. In other words, after minimizations using p = 2, 4, and 6.
it can be predicted that x, ~ 26.325 for p 00, and that value could be used
to start the minimization using p = 10. After minimizing with p = 10, it is
predicted that x, = 28.826 for p OC).

Program LEA STP 225

One difficulty with extrapolation of data obtained by an iterative procedure
with somewhat unpredictable stopping criteria is that the data may be in error.
For example, the ljp = 0.1 data in Figure 4.5.4 appear to be somewhat high.
Data averaging might be considered in the form of a least-squares determina
tion of the fitting polynomial as in Example 3.1.5, but that still might not
avoid risks inherent in extrapolation.

In practice, matrix computations are avoided in the exactly determined
polynomial fitting process by using" repeated linear interpolation." That and
the concept of extrapolation to zero ("Richardson extrapolation") are the
essential components of the highly effective Romberg integration method.
Readers interested in learning more about techniques for extrapolation should
consult McCalla (1967) for the topics just mentioned.

Another problem connected with large values of exponent p is that large
residuals (rk » 1) tend to cause numerical 'overflow in the computer while
small residuals tend to underflow (become zero). Bandler (1975) proposed to
alter slightly the least-pth objective function in (4.4.31); he proposed to
identify the largest residual among the sample points at the start of each
iteration:

R(x) = IIrlloo ~ maxh(x) I, k ~ 1 to m. (4.5.14)

Then, for strictly positive R(x), Bandler's definition of the least-pth objective
function is

[

m 1 rk(x) IP]'/P
F(x, t) = R(x) k~' R(x) , (4.5.15)

so that at least one of the numbers raised to the pth power is unity. Of course,
the value of F(x) and its gradient are not altered by this normalization, but
Bandler reports that values of p as high as 1000 are feasible when using
double-precision computation.

Another way to compute minimax solutions is by solving a sequence of
weighted least-sq~ares problems with an objective function previously defined
by (4.4.29). According to Gill (1981:98), the procedure is to minimize

m

F(x) = L wlJJ(r.)',
k-'

for j ~ 1,2,3, (4.5.16)

Let xU) represent the solution of the jth minimization of (4.5.16). The starting
weights are wL') ~ 11m, k ~ 1 to m. Then the subsequent sets of weights in
the sequence of minimizations must be

W (j+l)
k -

wLj)r,;(xU »)

S
(4.5.17)

226 Newton Methods

where the quantity S is chosen to make the sum of the weights during a
minimization equal to unity:

m

S = I: wFJr[(x(j»).
k~l

(4.5.18)

It has been reported that it is not necessary to obtain each x(j) to high
accuracy, so that only a few iterations are required for each minimization.
That is in contrast to the extrapolation method where accurate minimization is
extremely important. An even more general method along these lines has been
described by Charalambous (1978).

As previously noted, the success of any of the methods in this section
depends on whether the mathematical model allows a close fit to the data.
Generally, if that is true, then the least-squares solution is close to the
least-pth solution in the two-norm sense, and only a small amount of ad
ditional computational is required to go from one solution to the other.

Finally, it is noted that an obvious way to solve the minimax problem
(4.5.9) is to convert it into an equivalent constrained problem that has an
added variable, X"+l:

Minimize X,,+l such that

X n -+- 1 - rf(x) ~ 0, for k = 1 to m, (4.5.19)

While (4.5.19) deals with residuals without regard to sign so that r[(x) ,; X"+l'

the minimization could be constrained without squaring the residuals so that
upper and lower bounds are enforced. The interested reader is referred to
Bandler (1970a). A more generalized Kuhn-Tucker analysis can be applied to
this inequality case.

Conversely, the constrained minimization problem
Minimize F(x) such that

(4.5.20)

can be shown to be equivalent to the minimax problem

min max [F(x), F(x) - qkCk(X)] ,
x k

(4.5.21)

It is necessary to guess the values of the positive coefficients, qk; if they are too
small some of the constraints are violated, and if too large the problem is
badly conditioned. The interested reader is referred to Brayton (1980:322) and
Bandler (l974a). Further discussion of constrained optimization is deferred
until the last part of Chapter Five.

Problems 227

Problems

4.1. Consider a system of nonlinear equations r(x) ~ 0 for x in E" and r in
Em. A well-determined system of equations (m ~ n) is

(a) Compute the Newtan-Raphson step dx from x ~ (1 1 1 1)T using
J dx ~ - r, where J is the Jacobian matrix.

(b) Is J positive-definite at x ~ (1 1 1 1)T? How do you know?
(c) Notice that the Gauss-Newton formula JTJ dx ~ _JTr can be

obtained from the Newton-Raphson formula in the special case
that m ~ n by premultiplying both sides by JT. Is JTJ positive
definite for the system of equations given above? How do you
know? Is the Gauss-Newton step dx the same?

(d) Add an additional equation to the system given above:

Compute the new Gauss-Newton step dx from x ~ (1 1 1 l)T.
Is the new JTJ positive-definite? How do you know?

4.2. From Powell (1967:145), compute the Newton-Raphson step from
x = 0 for

(a) What is the slope in the dx direction at x ~ O? Is it possible to
conduct a normal line search from that point? Why?

(b) Find a negative curvature descent direction s at x ~ 0 such that
STg < 0 when sTHs < O.

(c) Does this function have a minimum? If so, where is it?
(d) At x = 0, what is the range of values of v for which H + vI is

positive-definite?
(e) Verify that the range of values of v for which step dx ~

-(H + UI)-lg reduces F(x) from x = 0 is u?: 0.9, and that the
optimal reduction in F(v) is about v '" 1.2.

228 Newton Methods

4.3. Use the exact gradient expressions for the Rosenbrock functions in
(4.3.2) to (4.3.3) to estimate the Hessian matrix according to (4.1.3); use
dXj = 0.0001 Ix) and x = (-1.2 I)T. Compare the results with the
exact Hessian matrix [twice (4.5.6)]: Carry at least six decimal places in
your calculations.

4.4. For A = H + vI, where

2
4
7
2

1
7
5
6

is A positive-definite for v = O? If not, what is the minimum value of v
that wiJI make A positive-definite?

4.5. For the function

F(x) =xi + hi,

find the point on a unit cirele centered at the origin (i.e., the two-norm)
that minimizes a linear model of the function at the point x = (1 1)T

4.6. For the same linear model of the function in Problem 4.5, find the
minimum on the ~llipsoidal norm (xTHx = 1) about the point x =
(I I)T.

4.7. Apply the modified Gauss-Newton step formula dx = -(H + vI)-lg
to the function

F(x) = xi + 2x~.

(a) What is dx when v = O?

(b) What is dx when v = 4?
(e) Find the eigensolution for H and verify both (4.1.13) and (4.2.13)

for this problem.
(d) Approximately what is the smallest positive value of v that would

halve the step size when v = O?

4.8. Use program NEWTON to find minima of the following functions:

(a) F(x) = xtxI - 4xtx2 + 4xt + 2x ,xi + xi - 8x,x2 + 8x, - 4x2 ·

(b) F(x) = xt + 4xi - 4x j ~ 8x,.

(e) F(x) = xt + 2xi + 4x j + 3x,.

4.9. Use program LEASTP to find minima of the following functions:

(a) F(x) = (Xl + x,)' + [2(xt + xi - I) - tl'.
(b) F(x) = (xl-x~+5xi-2x,-13)'+(XI +x~+xi-14x,-29)'.

(c)

(d)

Problems 229
,2 + ,2
, 'h 4'F(x) = ,were r, ~ x, - x,x, - 52x, + llx, + 23, and
2, 3r, = 51x, - x,x, - 94x, + x, + 325.

Find a minimum for F(x) in part (c), starting from x ~

(- 5 - 5) T Does the minimum obtained indicate a solution for
the nonlinear system of equations r, ~ 0 and r, ~ O?

4.10. Chebyshev (equal weights) m-point quadrature is exact for functions
f(t) of degree m or less. The formula is

,1 mi f(x) dx ~ - I: f(x k)·

a m k=l

The set of sample points x ~ (x, x, ... xk ... Xm)T are in the
open domain 0 < x k < 1. For an arbitrary x, define the residual error
as the difference between the integral and its approximation:

,1 m

r.(x) ~ i T:(x) dx - - I: T:(xJ,
o m)-1

where T:(x) is a polynomial in x. Let there be two samples, m = 2,
and use the polynomials

T,*(x) ~ 2x - 1,

T,'(x) = 2(2x - I)' - 1.

Show that the residuals to be minimized to find samples x, and x, are:

r, ~ (2x, - 1)2 + (2x, - 1)2 - t.

4.11. The Chebyshev quadrature described in Problem 4.10 is the basis for
the well-known Chebyquad optimization test function by Fletcher
(1965:36). The kth degree polynomials T:(x) are the shifted Chebyshev
polynomials of the first kind. They may be generated from the Chebyshev
polynomials of the first kind, T.(x), defined by the recursion:

starting from

and T2(x) ~ 2x'-1.

230 Newton Methods

The shifted Chebyshev polynomials Tt(x) ~ Tk (2x - 1), that is, the
argument x is simply replaced by 2x - 1.
(a) Verify the sixth-degree Chebyshev polynomial is (4.5.8).
(b) Verify the two shifted Chebyshev polynomials given in Problem

4.10.
(c) Starting from x(O) ~ (t nT, minimize the two residuals given in

Problem 4.10 using program LEASTP to find the two sample
points, x ~ (0.21132486 0.78867514)T.

(d) Obtain the residuals associated with three Chebyshev samples
(m ~ 3).

(d) Write a general program to find samples for m ~ 2 through 9.
Note that there is no exact solution (rk ~ 0) for m ~ 8; since the
residuals are not zero, the Jacobian is singular at the minimum.
Elements of the standard starting vector of unknowns is x j ~

}/(n + 1).

4.12. Use program LEASTP with p = 2 to fit the nonlinear model

F(x, t) ~ x,exp(-X,I)
to the following data pairs:

k 1 234

t k -1 0 1 2

dk 2.7 1.0 0.4 0.1

Start with x(O) ~ (1 I)T

4.13. Use program LEASTP with p ~ 2 to solve a fitting problem by Walsh
(1975):

(X,I) [1/(x,')-'1
j(x, t) ~ 1 - - ,x,

where c ~ 96.05. The data set is:

k 1 2 3 4 5 6

t k 2000 5000 10000 20000 30000 50000

dk 0.9427 0.8616 0.7384 0.5362 0.3739 0.3096

Problems 231

4.14. Flag variable Ll in user subroutine 5000 of program LEASTP can be
set to Ll = 1 to indicate that something is wrong in the computations
for the residuals. Often the problem is an unallowable argument of an
intrinsic function, such as the square root of a negative number.
However, Fletcher (1971a) has suggested an elementary way such a flag
variable might indicate a constraint violation. Use spare command 5 in
LEAST to add the ability to branch to a subroutine that tests for
violation of one or more constraints (linear or nonlinear). Assuming
that the optimizer is started in the feasible region (i.e., where x (0)

violates no constraints), then the program LEASTP could pull back
from any dx step that viOlates a constraint. Add this additional test to
the test on line 2210, so that the length of dx is cut back to dx/4
whenever a constraint is violated. Test this on some simple function of
your own.

4.15. Consider the Newton step dx with the Levenberg-Marquardt parame
ter v defined by (4.4.51). For purposes of adjusting the length of that
step to some assigned value, say R, Hebden (1973:8) shows that the
derivative of the step length with respect to v is

Show that by solving the two linear systems of equations (having the
same coefficient matrix)

(H + vI) dx = g,

(H + vI)q ~ dx,

the preceding derivative equation is equivalent to

4.16. Write a general subroutine 7000 for program LEASTP to calculate the
partial derivatives of residuals by finite differences; see (4.1.2). Have
this subroutine call subroutine 5000 as required, but first save the
nominal values of residuals in an array, say RR(l). Be sure to restore
the unperturbed residuals from RR(l) back into R(f) before leaving
subroutine 7000. The use of this routine allows the user to supply only
subroutine 5000 to generate the residuals in R(I) for particular least-pth
optimization problems.

232 Newton Methods

4.17. Run program NEWTON using subroutines 5000 and 7000 in file
ROSEN starting with the four (4) variables, x = (-1.2 1 0 O)T The
fact that x, and x. are not utilized in calculations for the objective
function and its gradient simply increases the overhead for the main
optimizer program, especially the inefficient finite-difference calls to
subroutine 7000. Make a graph of the optimization run time in seconds
for two, four, six, and eight variables. Perform the same tests with
program LEASTP, merging ROSENPTH for the functions. Plot and
compare these results, and comment on the price paid for the finite
differencing technique in NEWTON.

----------- -

Chapter Five _

Quasi-Newton Methods and
Constraints

Quasi-Newton methods are the most effective nonlinear optimization methods
for general problems. The quasi-Newton family and the most successful
technique in that family are described in this chapter. Quasi-Newton methods
are named for the fact that successive estimates of the Hessian matrix are
updated (revised) so as to retain a key Newton property. Several other
important issues are also developed, including various line search methods,
lower and upper bounds on variables, linear constraints, and nonlinear Con
straints. Program QNEWT is introduced to implement the most popular
approach to nonlinear optimization, and program BOXMIN may be merged
with QNEWT to provide for lower and upper bounds on variables. The
multiplier penalty (augmented Lagrangian) method for nonlinear constraints
is implemented _in program segment MULTPEN to be merged into the
QNEWT and BOXMIN combination. Discussions of the underlying theory
illustrate both the basis of these methods and the more complicated methods
that also address nonlinearly constrained optimization problems.

Readers should be able to appreciate the evolution of these powerful
methods as well as to apply programs QNEWT and BOXMIN to a wide
variety of practical problems. Like some other methods, only the objective
function and its first partial derivatives are generally required for quasi
Newton methods. However, the particular quasi-Newton method and one
of several optional line searches implemented in program QNEWT retain
their desirable properties when first derivatives are approximated by finite
differences, so this method can easily be adapted to work without any explicit
derivatives.

5.1. Updating Approximations to the Hessian

Like Newton methods, quasi-Newton methods are based on the assumption
that the function being optimized is quadratic. The conjugate gradient method

233

234 Quasj·Newtoll Methods and Constraints

described in Section 3.2.1 utilized first partial derivatives and was based on
that assumption and two others: (1) the initial line search was in the direction
of steepest descent (negative gradient), and (2) exact line searches were
accomplished in each direction. Conjugate gradient methods have the property
of quadratic termination: The minimum of a quadratic surface will be found in
n exact line searches, where the function involves n variables.

Newton's method (Chapter Four) utilized the vector of first partial deriva
tives and the Hessian matrix of second partial derivatives to determine the
exact single step to the mirtimum from any point on a quadratic surface. One
way to estimate the Hessian matrix is to perturb each variable in each of the n
coordinate directions and then to utilize the n different perturbed gradient
vectors. The Gauss-Newton method was a variation for objective functions
with a specific structure that utilized first partial derivatives efficiently to
provide a positive-definite estimate of the Hessian matrix that converged to
exact values for ideal problems.

Quasi-Newton methods do not require a steepest-descent start or exact line
searches, although these may be employed. They start with some positive
definite estimate of the Hessian matrix, B(O) and employ rank 1 or rank 2
updates to successive estimates B(k) following each line search in a sequence
of search directions. On quadratic surfaces, quasi-Newton methods that em
ploy exact line searches also possess the quadratic termination property, be
cause the estimate of the Hessian matrix becomes exact after n line searches,
enabling a Newton step if required. On quadratic surfaces, quasi-Newton
methods that employ exact line searches and are started in the steepest-de
scent direction [B(O) = I] are equivalent to the conjugate gradient method,
Table 3.2.3 in Section 3.2.1.

Members of the quasi-Newton family of learning or adaptive methods are
also called variable metric methods, modification methods, and update meth
ods. They are reasonably efficient and very robust (hardy) optimizers of
nonquadratic functions, requiring about 5n to SOn iterations to converge in
typical cases, depending on the proximity of the starting point to a minimum.
Their origins and important properties are developed.

5.1.1. General Secant Methods. Quasi-Newton optimization algorithms are
an extension of the Newton-Raphson and secant search methods commonly
encountered in problems of a single variable. The Newton-Raphson algorithm
in one variable was previously encountered in Example 1.3.1 in Section 1.3.1.
The iteration formula to search for a root of function g(x) is

_ g(k)
x(k+l) _ X(k) = _

g'(k) , (5.1.1)

as illustrated in Figure 5.1.1a. The formula employs the function value g(k) at
x = x(k) and predicts a zero of g(x) at x = x(k+I) based on linear extrapola
tion of the slope g' = dgjdx evaluated at X(k). The process is repeated for
k = 0,1,2, ... , and it is known to converge at a quadratic rate.

Updating Approximations to the Hessian 235

g(x)

ol------*,.--......,~~,-----------x

ia)

g(x)

g(k-l)

g(k)

I----,;L-,-,----""""'*~~"""--------x

ib)

Figure 5.1.1. Second-order zero-finding algorithms for one variable. (a) Newton-Raphson.
(b) Secant method.

Safeguards on step length t>x are necessary, since the slope may approach
zero, causing long, diverging steps. A commonly employed variation on the
Newton-Raphson method employs a small "damping factor" 1 multiplying
the right-hand side of (5.1.1) to shorten the step length. It is more interesting,
however, if both sides of (5.1.1) are then divided by I, so that 1 appears in the
denominator of the left-hand side of (5.1.1). When 1 is allowed to approach

236 QlUl$i-Newton Methods and Constraints

zero, (5.1.1) becomes a differential equation: dx/dt ~ -g(x)/g'(x). This
approach is called Davidenko's method, a widely convergent algorithm that
will approach the solution g(x) ~ °at t --> 00. This approach may be gener
alized to form a system of n initial-value ordinary differential equations that
can be integrated. Davidenko's method has been the basis of nonlinear
optimization as wen as a means for solution of nonlinear differential equa
tions. The interested reader is referred to Talisa (1985:967), Branin (1972), and
Zirini (1982).

The secant algorithm fonows the Newton-Raphson concept closely, except
the derivative is approximated by differencing. The secant recursion is

X(k+l) _ X(k) = (5.1.2)

where the divisor is the approximation to the slope:

g(k) _ g(k-l)

x(k) _ X(k-l)'
(5.1.3)

In (5.1.2), the term g(k+l) = °is always assumed in search of a zero of g(x);
however, this divided-difference form is retained for comparison with the
fonowing quasi-Newton expressions. The secant algorithm must be started
with two points, X(-l) and x(O), as apparent in Figure S.1.Ib; then it proceeds
with k = 0, 1,2, . .. , in the same fashion as the Newton-Raphson algorithm
for one variable.

For more than one variable, n > 1, the quasi-Newton algorithm or gener
alized secant search seeks a zero of the vector function g(x) and consists of the
steps shown in Table 5.1.1. Compared to the Newton method, the quasi
Newton method does not require second partial derivatives of F(x), and the
estimated Hessian matrix B is always positive definite so that each search

Table 5.1.1. Steps in tbe Quasi-Newton Algoritbm for Nonlinear Functions

1. x(Ol is an arbitrary starting point and V F[x(O)] = g(O) is the related gradient vector.
For k - 0:

2. Solve the system of linear equations (Newton step) B(k)S(k) = - g{k) for search
direction S(k), where B{k) is a special positive-definite estimate of the Hessian
matrix,

3. Perform a line search x{k+ 1) = x(k) + tkS(k) by varying tk so that objective
function F[(x('+l)j < Flx("],

4. Terminate if converged; or else
5. Perform one or two rank: 1 updates to B(k), giving a positive-definite estimate

B(k+ ll ,

6. Increment k - k + 1 'and go to step 2.

Updating Approximation.f to the Hessian 237

direction is a descent direction. The behavior of quasi-Newton search methods
on general nonlinear functions far from a minimum is robust, which is to say
that the algorithm adapts to nonquadratic surfaces to produce a controlled
descent toward the minimum. The main feature of the method is in the nature
of the family of formulas that update the sequential estimates of the Hessian
matrix.

The general secant method for one variable is now related to the same
process in many variables. Repeating (3.2.7) to (3.2.9), a quadratic model is
assumed for the function:

with linear gradient equations

VF(x) = g = b + Hx.

(5.104)

(5.1.5)

The Hessian matrix H is a constant for quadratic functions, so consideration
of two points x(k) and X(k+l), in (5.1.5) yields the linear mapping between
changes of gradient and corresponding changes in position:

(5.1.6)

For convenience and historical reasons, (5.1.6) can be expressed as

where the following definitions have been employed:

d(k) = X(k+l) _ X(k),

(5.1.7)

(5.1.8)

(5.1.9)

Now consider a nonquadratic function and define matrix B(k) to be the
estimate of the Hessian matrix H at x = X(k), where k is the iteration number.
Since d(k) and y(k) can be computed only after the line search (step 3 in Table
5.1.1), the estimated Hessian matrix B(k) does not represent this mapping
correctly in the sense of (5.1.7). To force that, the quasi-Newton condition is
assumed:

(5.1.10)

The quasi-Newton condition merits emphasis: it maintains the linear mapping
between corresponding changes in gradient and position that underlie Newton's
method.

Notice that quasi·Newton condition (5.1.10) corresponds exactly to the
divided-difference relationship, (5.1.2), in the secant algorithm for the kth

238 Quasi-Newton Method" and Constraints

iteration. In fact, (5.UO) is simply the finite-difference approximation to
B(k+l)d(k) computed in the d(k) direction; see Gill (1974b:68). The name
"quasi-Newton" has been assigned because Blk+ 1) in (5.1.10) is analogous to
the approximate derivative in (5.1.3) and the exact derivative in (5.U). The
reader interested in· a more sophisticated mathematical treatment of the
relationships between secant methods and quasi-Newton methods is referred
to Rheinboldt (1974:25-54). It is next shown that the quasi-Newton condition
may be enforced in several ways, leading to families of formulas for updating
the sequential estimates B(k) for the Hessian matrix H.

5.1.2. Fami/ies of Quasi-Newton Matrix Updates. A general definition of a
matrix update is

B(k+l) ~ B<k) + boB(k) or B* = B + boB. (5.1.11)

The right-hand representation for B* is used to avoid excessive notation, since
the concern here is only with changes that occur during each iteration.
(B* does not denote complex conjugation in this chapter). The Sherman
Morrison-Woodbury formula (2.1.36) applies to this case and can provide an
explicit expression for the update term, boB, showing that its rank may be as
great as n, the number of variables. However, in practice the updates are
usually only of rank 1 or 2.

A rank 1 update simply adds a scaled outer product as defined by (2.1.22):

B* = B + qzZT.

If the quasi-Newton condition in (5.1.10) is to be satisfied, then

Bd + qzzTd = y.

(5.1.12)

(5.1.13)

Note that zTd in the second term is a scalar, so that z must be proportional to
y - Bd. A simple choice for z and a consequent value for q are:

z = y - Bd,

1
q=

zTd'

(5.1.14)

(5.1.15)

Therefore, the unique symmetric rank 1 update formula (SRI) that satisfies the
quasi-Newton condition in (5.1.10) is

B* ~ B +
(y _ Bd)(y - Bd) T

(y - Bd)Td
(5.1.16)

Update formula (5.1.16) has been attributed to several investigators, espe
cially Broyden (1965). It has two major deficiencies. It does not maintain

Updating Approximations to the Hessian 239

positive definiteness, even when employed on a quadratic function; therefore,
it may not result in a downhill search direction. Also, the denominator in
(5.1.16) may approach zero, requiring various safeguards in the algorithm.
However, Fletcher (1980:41) showed that this rank 1 method terminates on a
quadratic surface in at most n + 1 searches with B('+I) = H without exact line
searches. The fact that the SRI formula in (5.1.16) does not force the
approximation B* to be positive-definite has been viewed as an advantage in
certain optimization programs. See Brayton (1977).

Rank 2 updates can be written as the sum of two rank 1 updates:

(5.1.17)

The quasi-Newton condition in (5.1.10) must be satisfied in this case also,
leading to

(5.1.18)

Now vectors Zl and Z2 are not unique, but useful choices for these two free
parameters are

Z, = y, (5.1.19)

z, = Bd. (5.1.20)

Use of these two choices in (5.1.18) requires the scalar equalities q,z;d = 1
and Q2zId = -1.

The resulting rank 2 update formula is

(Bd)(Bd) T

(Bd)Td .
(5.1.21)

(5.1.22)

The name BFGS formula is commonly used to indicate that it was indepen
dently discovered by Broyden, Fletcher, Goldfarb, and Shanno, all in 1970. In
computations, (5.1.21) is more conveniently arranged as

yyT ggT
B;FGS = B + -T- + ----r,

ty s g s

since d = ts and Bs = - g according to steps 2 and 3 in Table 5.1.1 and
(5.1.8). Notice that no matrix-vector products are required for the BFGS
formula in (5.1.22), as opposed to the formula in (5.1.16) and others to be
considered. Therefore, the condition of the old approximate Hessian matrix B
does not affect either of the two rank 1 updates in (5.1.22). The BFGS formula
is the one used in program QNEWT later in this chapter.

So far, direct update formulas have been considered, that is, those where
matrix B is an approximation of the exact Hessian matrix H. The Broyden

240 Quasi-Newton Methods and Constraints

family of direct updates that satisfy (5.1.10) may be expressed by

(5.1.23)

Generally, the mathematical properties to be discussed for any member of this
family apply to the entire family. There are also several unique values of r that
make B* singular. It can be shown that the SRI formula in (5.1.16) is in the
Broyden family and that its value of r in (5.1.23) is not in the closed range
[0,1], assuming that dTy > 0 and B* is positive-definite.

There is a corresponding Broyden family of inverse update formulas based
on a matrix, say R, that approximates the inverse of the exact Hessian matrix,
H- 1. Observe that the quasi-Newton condition in (5.1.10) might just as well
have been expressed in the form

(5.1.24)

The preceding development leading to (5.1.21) would simply have inter
changed R for B, y for d, and d for y. The result is the famous and first
quasi-Newton formula introduced by Davidon (1959) and simplified by
Fletcher and Powell (1963):

(5.1.25)

Formulas related by interchanges of variables as appropriate for (5.1.24) are
said to be duals. The SRI formula in (5.1.16) is self dual. Furthermore, if the
inverse of the dual is obtained by the Sherman-Morrison-Woodbury formula
(2.1.36), the result is called the complementary formula. See Problem 5.4. The
direct approximation of the Hessian BDFP that corresponds to the indirect
DFP formula in (5.1.25) is described for r = 1 in the Broyden family expres
sion in (5.1.23).

To summarize, the Broyden family of rank 2 formulas update either the
estimated Hessian or the estimated inverse Hessian. The DFP inverse formula
(5.1.25) was discovered first; many years later it was concluded that it did not
perform as well with inexact line searches as either the inverse or direct BFGS
formula (5.1.22). The BFGS and DFP formulas anchor the ends of the
Broyden family with r ~ 0 and r ~ 1 in (5.1.23), respectively; clearly, the
difference between any two formulas in the family is rank 1. Because the DFP
update formula (5.1.25) was discovered first, the BFGS update formula
(5.1.21) was and sometimes still is called the complementary DFP formula
(CDFP).

Updating Approximations to the Hes.,ian 241

After many years of improved results claimed for a variety of new formulas
in the Broyden family, Dixon (1972a) published an incredible theorem that
applied to the behavior of all family formulas on any continuous nonlinear
function: Assuming exact line searches, the search directions for all Broyden
formulas vary only in length, not direction. In theory, there should be no
difference in the performance of any of the Broyden formulas! Interested
readers are referred to Fletcher (1980:50-53).

In practice, the direct BFGS update (5.1.22) has consistently performed
much better than other members of the Broyden family, especially when
inexact line searches are employed. So far, there has been no convincing
explanation of why this is the case. The BFGS direct update requires no
matrix-vector products. However, any inverse update only requires about n2

operations to solve for the search direction, step 2 in Table 5.1.1, since the
inverse is already on hand. But the ability to perform two rank 1 updates to an
LDLT matrix factorization (see Section 3.1.1) using about 3n 2 operations
eliminates any serious differences between direct and inverse update formulas.
Also, the LDLT method enables a guarantee of positive-definite estimates;
even though that is theoretically accounted for, roundoff errors and inaccurate
line searches can produce violations.

There are two other quasi-Newton families that deserve mention. Huang
(1970) has suggested a modification to the quasi-Newton condition in (5.1.10):

(5.1.26)

Parameter p(k) is a scalar and p ~ 1 for all k is the Broyden family, which is
by far the most important subset. The Huang family thus has three parame
ters, and the direct or inverse estimates of the Hessian matrix may be
unsymmetric.

Fletcher (1980:50) has shown that search directions that belong to the
Broyden family possess quadratic termination and two other special properties
when employed on quadratic functions using exact line searches:

B(k+l)dU) ~ yU), j ~ 1,2, ... , k, k ~ 1 to n,

S(k)THs(J) ~ 0, j = 1,2, ... , k -1, k = 1 to n.

(5.1.27)

(5.1.28)

The hereditary property is expressed by (5.1.27), which is an extension of the
quasi-Newton condition (5.1.10) to span all the iterations. The conjugacy
condition in (5.1.28) also applies to the Broyden family when exact line
searches are used on quadratic functions. Thus the quasi-Newton methods are
conjugate gradient methods when exact line searches are used on quadratic
surfaces. Recall that the latter methods are equivalent to exact line searches in
eigenvector directions, that is, on the canonical form (3.2.5).

One reason for mentioning the hereditary property is that Davidon (1975)
has defined a family of formulas that preserve the hereditary property when

242 Quasi-Newton Methods and Constraints

inexact line searches are used. The SRI formula in (5.1.16) is a member of that
family, but other more important members do not degenerate in that way and
do maintain positive definiteness of the updated matrices that estimate the
Hessian. Davidon's new method is substantially more complicated and will
not be described here. In spite of the promising formulation of his approach,
numerical comparisons have not indicated that Davidon's new concepts pro
vide better performance than the BFGS formulas.

5.1.3. lnvariance af Newton-Like Methods to Linear Scaling. The purpose of
this section is to show that search methods that are derived from the Newton
step d = - H-lg possess an important independence or invariance property
with respect to a general linear transformation of variables. A more compre
hensive alteration of scale for each variable is contemplated than was accom
plished by the diagonal matrix employed in the linear transformation of
(4.4.60) in connection with the Levenberg modification of the Gauss-Newton
method. The significance of the invariance property is that a quasi-Newton
method becomes invariant to the scales chosen for the variables as the search
progresses, which implies a robustness that algorithms like steepest descent do
not have. There are differing viewpoints on this matter, and the reader is
referred to Dennis (1983:155, 203), Fletcher (1980:45), and Fletcher (1969:342).

The concept of scaling of variables arises in the choice of units for the
variables. Optimization of components in an electrical network may require
capacitor values in the range 10- 10 to 10- 14 farads and inductor values in the
range 10 -7 to 10 -11 henrys. A natural choice of units might be picofarads
(10- 12 farad) and nanohenrys (10- 9 henry), respectively, so that both scales
would be in the range 0.01 to 100. However, the choice of millihenrys (10- 3

henry) as the unit of inductance would cause the scales to differ by 106,

certainly a gross distortion of the function surface and a great impediment to
algorithms on finite-word-length computers that must take discrete steps in the
variable space.

Bad scaling impacts optimization algorithms that depend on the two-norm
IIxll2 for measuring Euclidean distance:

(5.1.29)

If Xl = 1O- 6x 2 , then Xl certainly would not effect the Euclidean length of x.
The most general linear transformation from one variable space to another is
accomplished by an unrestricted real matrix T:

i = Tx. (5.1.30)

If the Euclidean length of a vector is to remain constant in variables spaces x
and i, then

(5.1.31)

Updating Approxl'matl'ons to the Hessian '243

which implies that TTT = I, that is, T must be an orthonormal matrix as
described in Section 2.2.2. Notice that a simple diagonal matrix T ~

diag(ln 122 ••• , I"") cannot satisfy (5.1.31).
Of greater consequence is the effect of linear transformations on the

quadratic function model that is the basis for all effective search algorithms:

(5.1.32)

Hessian matrix H is symmetric and positive definite. To study this problem,
recall that the similarity transformation P in (2.2.46) was defined by

p- 1HP = W, (5.1.33)

and that matrix W is diagonal if H is symmetric. Recall that a special
similarity transformation in Section 3.2.1 employed the orthonormal matrix

y = (VI V2 ••• v") (5.1.34)

having columns that are the normalized eigenvectors, Vj' of matrix H. It was
shown in (3.2.2) that a similarity transformation is

yTHV = W,

where W is diagonal with elements that are the eigenvalues of H.
The most important consequence is that the linear transformation

transforms F(x) in (5.1.32) to the equivalent function

(5.1.35)

(5.1.36)

(5.1.37)

The function (5.1.37) in i space is in canonical form since the axes of its
elliptical contours are aligned with the coordinate axes. Therefore, only n
exact linear searches are required from any starting point in order to locate the
minimum in the i space. The only other improvement would be if matrix
W = I in (5.1.37) so that the elliptical contours are in fact circles. Then only
one exact line search in the steepest descent (negative gradient) direction
would locate the minimum.

To aid in further analysis of the impact of the linear transformation i ~ Tx
on a quadratic model, it is necessary to relate the gradient vectors and Hessian
matrices in the x and i spaces. Consider matrix T"." = [tij] and the linear
transformation of (5.1.30). By writing a few of those equations, it can be seen
that the kth equation is

n

xk = L fkjXjo

)=1
(5.1.38)

244 Quasi-Newton Meth0d5 and Constraints

Then the first partial derivative of some Xk with respect to any xi is

aX k-a- ~ tki ·
xi

(5.1.39)

Function F in (5.1.32) is a function of x and is also a function of xaccording
to (5.1.30). Therefore, the chain rule yields

aF ~ aXk aF
-='------~

ax} k~l ax} aXk
(5.1.40)

where (5.1.39) has been substituted. Since the left-hand side of (5.1.40)
describes the elements of VF(x) and the right-hand side describes the ele
ments of VF(x), subscripts are used with V to indicate these spaces:

(5.1.41)

An expression for the Hessian from (4.4.18) is H = V(VF)T; this yields

H x ~ Vx(VxF)T ~ TTV,(TTV,F)T

= TT(V,VIF)T.

Therefore, the relationship between Hessian matrices in x and xis

(5.1.42)

(5.1.43)

It is now possible to show that many forms of Newton's method with line
searches on a quadratic model are invariant with respect to a linear transfor
mation of variables. Recall from (5.1.8) that x· and x represent the turning
points X(k+l) and x Ck) in line search k. Thus the Newton step in the x space is

x· = x - tH-lg
x x' (5.1.44)

where Hessian H is both symmetric and positive defirute. Line search metric
parameter t assumes a value that obtains at least a function decrease if not an
approximate minimum in the Newton direction. Line searches are more fully
described in Section 5.2.

Consider a Newton step in the x space:

x· = x- tH~lg_x x'

Substituting (5.1.30), (5.1.43), and (5.1.42) into (5.1.45),

x· = Tx - t(TH~lTT)(T-Tgx) ~ T(x - tH~lgx)'

(5.1.45)

(5.1.46)

Updating Approximations to the Hessian 245

It is seen from the left and rightmost expressions in (5.1.46) and (5.1.44) that

i* = Tx*, that is, (5.1.47)

The important conclusion is that the corresponding line searches in either
space x or xarrive at the same corresponding turning points so that Newton
line searches on a quadratic model are invariant with respect to the general
linear transformation x = Tx. It is left to problem 5.5 to show in a similar way
that derivatives (slopes) in corresponding directions Sx and s. are equal:

(5.1.48)

The fact that the corresponding function, gradient, and directional derivative
values in the two spaces are equal means that line search algorithms that
employ those values will obtain identical results in either x or xspace.

The significance of the invariance property of Newton methods is that those
algorithms should perform just as well with or without scaling of the variable
space (within the numerical capability of the computer). The Hessian matrix
may be quite illconditioned, but the implication of the invariance property is
that it is not necessary to introduce scaling so that H. ~ I.

It is left to problem 5.5 to show that the steepest descent method is not
invariant, and it is known to perform badly when the Hessian is illconditioned.
The Gauss-Newton step does not have the invariance property because
J TJ only approximates the Hessian except when all residuals are zero. The
Levenberg step d ~ _(JTJ + Vl)-lg and the modification of replacing I by
diagonal scaling matrix D' do not have the invariant property. Perhaps it is
intuitively reasonable that non-Newton methods do not have the invariance
property: A perfect Newton step always goes to the global (only) minimum on
a quadratic surface. A single line search in any other direction will find only a
minimum in that direction.

Quasi-Newton methods that employ updated estimates to the Hessian are
often started with the estimate B(O) ~ I. In cases such as this the initial
searches are not invariant, but tend to become so as the estimate B(k) --> H as
k --> n. For that malter, the general nonlinear function only tends to the
quadratic model in a neighborhood of a minimum, so this particular limitation
of quasi-Newton searches should be of only limited concern.,Furthermore, it is
straightforward to show that the BFGS updating formula in (5.1.21) preserves
the linear transformation x = Tx, that is, B: = B:; see problem 5.5. In fact, a
similar result may be obtained for any updating formula from the Broyden
family that is a sum of rank 1 corrections (5.1.11) that utilize vectors y and Bd.

There is still motivation for using the analysis of this section for scaling
when the invariance property does not apply to the search algorithm. The
equivalence for Hessian matrices in x and x given by (5.1.43) shows that
perfect scaling (condition) in the xspace, H. = I, requires that

when H. ~ I. (5.1.49)

246 Quasi-Newton Methods and Constraints

Thus transformation matrix T might assume an upper triangular form U, so
that UrU = HX' which is the Cholesky factorization of a positive-definite H
matrix described in Section 3.1.1. It is left to problem 5.5 to show that the
scaling transformation x = Ux simply converts steepest descent into Newton's
method. Notice that this corresponds exactly to the result from the Lagrangian
function in (4.1.10) that obtained the minimum on a linear model constrained
by an assigned value of the elliptic norm

(5.1.50)

The same conclusion is obtained either way: a Newton step in x is equivalent
to a unit steepest descent step in the transformed space x = Ux. It is easily
shown that IIxllH = IlxIIH.; see problem 5.5. The elliptic norm in quasi
Newton methods 'is IIx II 0: where B is the current updated estimate of the
Hessian matrix. This is why quasi-Newton methods are often called variable
metric methods.

For simple scaling of variables using a diagonal matrix, x ~ Dx, (5.1.49)
indicates that D 2 should approximate the main diagonal of Hessian matrix H
in some way. This has been considered for tbe Gauss-Newton-Levenberg
case in (4.4.68), where the elements d" were equated to the root mean square
value of the first derivatives of the corresponding residuals. Regardless of how
a simple scaling matrix D is obtained, both the steepest descent and quasi
Newton methods benefit from starting with an initial estimate B(O) = D 2

instead of I.
Usually, a linear translation of variables should be added to any diagonal

scaling employed in order to preserve relative precision. The conventional rule
of thumb is that values of variables should be transformed so that they have a
magnitude of approximately unity. Therefore, the elements of diagonal matrix
D in x = Dx should be set to the inverse of the related nominal variable value.
It is easy to show that this is insufficient by itself. Consider a variable x with a
small expected range of values, say, 900.1234 S x S 900.4321. Simple trans
formation (normalization) that divides by the lower value produces a new
range 1.000000 S x S 1.000343 on a computer carrying seven significant
figures. In this case only the three least significant figures are available to
indicate any changes in the variable.

Linear transformation and translation of variables are easily accom
plished by

x= Dx + c, (5.1.51)

which retains all the properties of transformation (5.1.30) with respect to
Newton-like methods. Usually lower and upper bounds on the variables can
be anticipated for the problem at hand; suppose that these are

i=lton. (5.1.52)

line Searches 247

Then the transformation and translation indicated by (5.1.51) is

... 2x; q; + p;
X·= --- - ---

I q; _ p; qi - Pi
i=lton. (5.1.53)

It is seen that (5.1.53) maps each variable to the range -1 :5: Xi :5: +1. In
general, the ith elements of the respective transformation matrix D and
translation vector care

Pi + qi
c;= ---.

Pi - qi
(5.1.54)

The range of the variable previously considered will map to the range
-1.000000 to + 1.000000 from the values 900.1234 to 900.4321, respectively,
using d ii = 6.478782 and Ci ~ - 5832.703 as obtained by computing with
seven significant digits. Clearly, the result of translation as well as transforma
tion is a substantial improvement over transformation alone. Of course, the
first derivatives and any explicit second derivatives must be rescaled according
to (5.1.41) and (5.1.43), respectively. The squared effect of scaling on the
Hessian indicated by (5.1.43) shows that even moderate scaling factors can
produce drastic changes in the convergence rate of Newton-like optimization
algorithms.

Simple nonlinear transformations that change the nature of the problem
(from bounded variables to unconstrained) or that equalize partial derivatives
may be employed. For example, the transformation v ~ x 2 for optimization in
the x space will maintain v ;,; O. Similarly, v = sin(x) maintains - 1 :5: v :5:
+ 1. Transformations of variables and derivatives are required at all interfaces
between the optimization algorithm and the subroutines that define the
objective function and its derivatives. Details and a concrete example of this
procedure in a BASIC program have been given by Cuthbert (1983:73). Some
graphic illustrations of distortion in the variable space are contained in Wright
(1976:73); see problem 1.8. In light of the highly developed and successful
treatment of linear constraints by projection as described in Section 5.4.1,
nonlinear transformations that impose bounds on variables are not recom
mended. Nonlinear transformations are easy to incorporate into computer
programs but often cause severe ilIconditioning in the resulting unconstrained
minimization that is totally unnecessary.

5.2. Line Searches

Line searches are required because general nonlinear functions are not
quadratic, the variable values are not close to a minimum, and the Hessian
matrix is unknown. There are only a few concerns in line searches once a

248 Quasi.Newton Methods and .Constraints

suitable search direction has been obtained. The early search algorithms
employed conjugate gradient directions so that exact line searches were
required to maintain the theoretical hereditary property and practical perfor
mance. The more recent BFGS update formula has delivered superior results
without exact line searches. In order to compare effects of inaccurate and more
nearly perfect line searches when using the BFGS update formula, cutback
(backtracking), quadratic interpolation, and cubic interpolation line search
strategies are explored.

The cutback strategy is the method employed in both the NEWTON and
LEASTP optimization programs previously developed. It simply tests for a
decrease in function value for a full Newton step, and the step length is
reduced by a factor of 4 whenever that test fails. Its simplicity is attractive
when constraints are present in that the step easily can be modified so that
limits of constraint feasibility are not violated.

Both the quadratic and cubic interpolation line search techniques assume
that a minimum has been bracketed and greater accuracy is desired. The virtue
of quadratic interpolation is that only three function values along the line
allow a quadratic fit and prediction of a minimum without requiring deriva
tives. This is attractive because it has been found that the BFGS update
formula in a quasi-Newton algorithm is as good an optimizer using finite
differencing as any direct-search optimizer that uses no derivatives whatever.

From Davidon's first quasi-Newton optimization algorithm onward, cubic
interpolation has been employed when "exact" line searches were desired. It is
constructed using two points on the line for which both function values and
gradient vectors are available. These line searches also employ the gradient to
bracket the minimum before interpolation, so cubic interpolation makes sense
when the gradient calculation is not too expensive.

The approach in this section is to discuss these three line search possibilities
in the context of the specific optional segments of code in optimizer program
QNEWT to follow. Therefore, comparative test results are presented. Respect
ed line search algorithms that employ quadratic and cubic interpolation
techniques are based on concepts advocated by Fletcher (1972).

The class of direct sequential line search methods, especially the Golden
and Fibonacci search methods, will not be discussed here in spite of their
popularity in the late 1960s. They are based on a systematic accumulation of
function value information, each additional sample narrowing the range of
interest for unimodal (single minimum) line functions. At best, they provide
the accuracy of cubic interpolation without requiring derivatives. Since the
1960 era, however, accurate line searches have become far less important. The
interested reader is referred to Wilde (1967:230).

5.2.1. The Cutback Line Search. All line searches employed in descent
algorithms are based on the negative slope condition existing at the starting
(turning) point x:

(5.2.1)

_I

Line Searches 249

Any point x* along the line in the direction s measured hy scalar tis:

x* = x + (s. (5.2.2)

By the definition of a derivative, there is some small value of t such that the
function value is reduced, that is, F(x*) < F(x). However, Newton-like meth
ods are based on steps d = x* - x = - ts where s satisfies

(5.2.3)

and B approximates the Hessian matrix. Near a minimum the step metric t
equals 1.

The most rudimentary line search is the one used in programs NEWTON
and LEASTP in Chapter Four: An initial step metric t ~ 1 is assumed, and if
F(I) > F(O), then t is divided by 4 until either the function is reduced from its
value at the turning point or this "cutback" has been performed 10 times
(410 = 1.05E6).

The search direction used in this chapter is the quasi-Newton BFGS update
formula (5.1.22). Unless it is known that the line search is conducted over a
range of t where only positive curvature exists, it cannot be guaranteed that
the estimate B* of the Hessian matrix will remain positive definite. In the
present case the LDLT factorization of B* and the two rank 1 updates will test
and force positive definiteness as described in Section 3.1.1. Since B will thus
be positive definite, substitution of (5.2.3) into (5.2.1) shows that the slope at
the beginning of the line search will always be negative, that is, downhill in the
s direction.

Figure 5.2.1 shows the "cutback" algorithm to be used later in optimizer
QNEWT. The four-digit line numbers correspond to the BASIC statements in
the computer code. The information available at the beginning of any line
search includes the variables in x, the function value F(x) at that point, the
gradient vector g at that point, and the search direction vector s.

All update formulas in the Broyden family employ the differences in the x
and g vectors from turning point to turning point; see the definitions for d and
y in (5.1.8) and (5.1.9), respectively. Therefore, the first operations in the
cutback algorithm are to compute the slope and save the turning point and
gradient. Step t = 1 is set initially, and a trial step is taken at line number
1770 in Figure 5.2.1. The line search is ended if the function decreased,
otherwise t is replaced by t/ 4 and a shorter step is again tried from the
beginning turning point. The algorithm is terminated if t < 10- 6 because of
ten successive cutbacks.

The BASIC program code that implements the cutback line search is
contained in lines 1650 to 1870 of program C5-1, QNEWT. Its behavior is
discussed in Section 5.3.2.

5.2.2. Quadratic Interpolation Without Derivatives. Experience has shown
that finding only an approximate minimum along a line in variable space and

Begin with:
X(-) = x

F5 = F(x)
G50=g
EO= s

START
CUTBACK 1650

Calculate G3 = gT s slope
Save W(-) = X(·) turn pI.

Save TO =G50 gradient

G3

Initialize counters
Set step T =1

1770l----'"'

;;,0

STOP

Replace
F5 = Fl

<F5

F decreased

Step XO =
W(·) + T x EO
Calculate F1 =
F(x) function

Fl
;:. F5

F increased
1810

Increment cutback
count: M3 =M3 + 1

1830 0-------<:

Replace XO = WO
Print "Step too small"

M3

<11

Cutback step
T = T/4

Print "Cutback"

Figure 5.2.1. Flow chart for the cutback line search in optim~er QNEWT. Note: ® applies to
BOXMIN. See Table 5.4.2.

250

Line Seart:he.f 251

then updating the estimate of the Hessian matrix (or its inverse) requires fewer
total function evaluations than accomplishing quite precise line searches.
However, it could be argued that the preceding cutback algorithm may be too
crude and ignores some essential characteristics of both the function and the
update formula. A compromise is to use various strategies based on only
functions values and not derivatives except at the initial turning point.
Historically, this kind of line search has employed a quadratic interpolation of
a bounded (bracketed) minimum on the line, using three function values. Since
derivatives are not required except to determine the required negative slope at
the start, optimizers utilizing this line search method are candidates for
minimizing functions whose gradient is not known explicitly.

Fletcher (1972) has developed a surprisingly sophisticated line search based
solely on the assumption that the function along the line is quadratic and that
derivatives along the line are not available except at the start. Thus, it is
worthwhile to derive the three main issues: (1) an initial step size, (2) an
extrapolation procedure when the first step decreases the function value, and
(3) a quadratic interpolation procedure when the first step increases the
function value.

From (5.2.2) and (5.2.3), it was noted that ultimately the line search metric t

is unity for Newton-like optimizers. Also, the function F(x) in the search
direction s is in fact a function F(t) of the scalar line metric t according to
(5.2.2). For analysis the line metric is normalized by defining

t
q = r;' (5.2.4)

where t* is the length of the first step in the line search (5.2.2). An expression
for t* is developed such that t ~ t* is the minimum of a quadratic function
F(t) in the direction s. Thus q ~ 1 is comparable to t = t *, and the quadratic
function to be analyzed is

(5.2.5)

Of course, the actual function will not be quadratic. so Figure 5.2.2 illustrates
the case when the first step (q ~ 1) produces a reduction in function value but
not" a minimum. The point in x space where the current line search starts
corresponds to q ~ 0, q ~ 1 represents the first step, and the actual minimum
along the line occurs at q = qrn'

Previously, (3.2.19) was obtained as an expression for t* in terms of the
gradient vector and the Hessian matrix. Since it is now assumed that these
data are not available, an alternative expression for t* is developed that uses
only function values. The first derivative of f(q) in (5.2.5) is

f'(q) = a1 + 2azq· (5.2.6)

252 Quasi~NewtonMethods and Constraints

leg)

L-_!-----,!:-L-!:-_!-_!-.- Q
o 1 2 Qm 3 4 5

Figure 5.2.2. A general line search function versus normalized line search metric q for the case
when the first step produces a decrease in function value.

Similarly, the second derivative of f(q) is

f"(q) ~ 2a,. (5.2.7)

The necessary and sufficient conditions for a minimum are that f'(q) = 0 and
f"(q) > 0; from (5.2.6) and calling that point q ~ qm'

(5.2.8)

Then the function value at the minimum of a quadratic function is

(5.2.9)

Fletcher observed that the decreases in function values from one iteration
to the next were fairly constant when not close to a minimum. Therefore, it is
assumed that F(k+ll - F(k) ~ F(k) - F(k-l" where F(k-l) was the function
value at the beginning of the previous iteration and F(k) ~ f(O) is the function
value at the beginning of the current (kth) iteration. Using (5.2.5) through
(5.2.9), it may be confirmed that

(5.2.10)

Since q is normalized according to (5.2.4) where q ~ 1 is intended to represent
a minimum on a quadratic function, the unnormalized line search metric

Line Searches 253

1 = 1* that estimates the minimum is

(5.2.11)

The denominator in (5.2.11) is the negative slope F'(O). The initial step size for
the line search that employs quadratic interpolation is 1* with the constraint
that 1* ,; 1.

When the function value at the first step is less than that at the turning
point (/, < fo in Figure 5.2.2), then Fletcher (1972) takes a second step of the
same size. If the related function value increases (/, > f,), then the line search
is terminated at q = 1. That is not the case illustrated in Figure 5.2.2: the
three successive points have decreasing function values, and a quadratic
function can be found that passes through those three points. Fletcher is
willing to double the step size (extrapolate) so that the I)ext sample occurs at
q = 4 unless the minimum predicted by a quadratic function falls in the range
2 ,; q < 4 as shown in Figure 5.2.2.

There is a surprisingly simple test for 2 ,; qm ,; 4. The three consecutively
decreasing function values on a quadratic function indicate that the minimum
qm > 2. Consider the inequality

7f, + 5fo> 12fp (5.2.12)

where the function values f q correspond to f(q) on a quadratic function
defined by (5.2.5) that passes through q = 0, q = 1, and q = 2. For q = 0:

fo = a o· (5.2.13)

Similarly,

fl = a o + a 1 + a" (5.2.14)

and

f, = a o + 2a1 + 4a,. (5.2.15)

Substitution of (5.2.13) through (5.2.15) into (5.2.12) yields

-a1--<4.
2a2

(5.2.16)

However, by (5.2.8), the lefthand side of (5.2.16) is equal to the minimum
predicted by the quadratic. It is concluded that satisfaction of the inequality in
(5.2.12) guarantees that qm < 4, in which case q will not be extrapolated
beyond q = 2.

Summarizing the situation illustrated in Figure 5.2.2, the first step (q = 1)
decreased the function value, so the step was repeated and q = 2 decreased the

254 Quasi-Newton Methods and Constraints

function value again. It was then clear that a quadratic would have its
minimum to the right of q = 2, so the step reference position is moved to
q = 2. If the quadratic prediction is that qm < 4, then the line search is
terminated. Otherwise, q = 4 is tested; if f4 ;,; f2' then the line search is also
terminated. But if f4 < f2' then the same series of tests that involved q = 0, 1,
and 2 is repeated with q = 0, 2, and 4. The result of this strategy is that the
line search is extrapolated just as long as quadratic predictions indicate that
downhill progress is both likely and subsequently confirmed by testing.

The left-hand side of the flow chart for the line search without derivatives
in Figure 5.2.3 implements the decisions just described for the case when the
first step from the turning point produces a decrease in function value Fl. The
interested reader can review the preceding three paragraphs to follow the
programming sequence instead of the analytical development based on
quadratic functions.

The right-hand side of Figure 5.2.3 implements a strategy when the first
step from the turning point increases the function value Fl. The step size is
halved when the first step from the turning point increases the function value,
as illustrated by f, in Figure 5.2.4. Then the function value fs ~ f(.5) is
obtained; if the function value is less than that at the turning point Us < fo),
the line search is terminated. However, if the /s :> /0' then a quadratic
interpolation is considered if the function is convex. Convexity is assured if /s
is less than a linear interpolation between /0 and /,; see the dashed line in
Figure 5.2.4. If the function passing through q = 0, 0.5, and 1 is not convex,
the step size is reduced by a factor of 10 and the next function sample is
obtained.

The prediction of the minimum of a quadratic function passing through
q = 0, 0.5, and 1 can be expressed in terms of the three function values, two of
which are expressed by (5.2.13) and (5.2.14). It is not difficult to verify that the
q coordinate after q is halved turns out to be

(5.2.17)

which is equivalent to (5.2.~). If this value of q is less than 0.1, then the step
size is reduced by a factor of 10.

The right-hand side of the flow chart in Figure 5.2.3 indicates that BASIC
variable I3 counts the number of interpolations. The center of Figure 5.2.3
contains a test so that only three interpolations are allowed because of failures
to obtain a reduction in function value. Usually, this condition is obtained
only a the end of the final iteration when the optimization procedure has
converged. Also, the test of I3 on the lefthand side of Figure 5.2.3 prevents an
extrapolation once an interpolation has occurred. The BASIC program code
that implements the line search without derivatives using quadratic interpola
tion is C5-2, LlNQUAD. Its use is described in Section 5.3.2.

Begin with:
XO = x

F5 =F(x)
G50 =I
EO= s

START NO~

DERIVATIVES SEARCH

Calculate G3 = gT. slope
Save TO = G5(') gradient

Save WO = XO reference point

G3
~o

Calculate T= T*';;; 1
Save F6 = F5 for

next iteration
Initialize Counters

1790)-~=:==:3::::::::::::::::~
StepXO= WO T T x EO

Calculate F1 = F(lI) function

2100;;.F5

1790

Quadratic
interpolation

with lower bound
Print "Interpolated"

13 =13 + 1

Cutback T = T/2
Print "Halve step"

Step XU = W(·) + T)(EO
Calculate F2 =
F(x) Function

~l
13

>2
13

Maximum of 3
interpolations

<F5 ~F51840 Fl 2010
F decreased F increased

StepXO =
WO+TxEO

Print "Repeat step"
Calculate F1 =
F(x) function

Fl >-,~:.:F,,5~ 2lf"O;;-;~;;:;l-J,2!~J2180
X(o) =W(-j

Setl3=2if
might bound
T5=T5+T

Extrapolated T = 2T
Print "Double step"

Figure 5.2.3. Flow chart for the optional quadratic interpolation line search in optimizer

QNEWT.

25S

1-

256 Quasi-Newton Methods and Constraints

f(q)

L-.L..J..l--'---'---'----'-----'---'_'--J-_.q
o ~ N M v ~ ~ ~ 00 ~ 0

o 0 000 0 0 0 0 ~

Figure 5.2.4. A general line search function versus normalized line search metric q for the case
when the first step produces an increase in function value.

5.1.3. Cubic Interpolation Using Derivatives. Finding a ffilmmum of the
nonlinear function F(I) is equivalent' to solving the nonlinear equation F '(t)
= dF/ dt = 0, certainly not a trivial task. Clearly, knowledge of derivative
values at various trial solutions is necessary if such solutions are to be
qualified. Otherwise, fairly simple examples may be constructed to show that
the condition F(k+ 1) < F(k), k = 1,2, ... , does not guarantee convergence to
a minimum, only to an accumulation poinl (limit point of a subsequence). See
Dennis (1983:118) for examples. Several conventional considerations are de
scribed in this section as found in most recent articles and books on this
subject, and an algorithm based on Fletcher (1972) is described.

A general nonlinear function F(I) is shown in Figure 5.2.5. Two important
goals in any linear search are to avoid estimated solutions near the extremes
where F(I) "" F(O), that is, when I"" 0 or at point I"" d in Figure 5.2.5. The
latter trivial solution may be avoided by requiring that the average rate of
decrease from F(O) to F(I) exceed some specified fraction of the initial rate of
decrease:

(5.2.18)

where gradient g = g(O) and 0 < r < 1. The dashed lines passing through F(O)
with slopes zero and F'(O) in Figure 5.2.5 define the limits of (5.2.18) for
r = 0 and r = 1, respectively. For example, r = t in requirement (5.2.18)
would result in I < c.

The trivial solution where step I is nearly zero can be avoided by requiring
that the inequality

F'(I) > F'(O) (5.2.19)

is satisfied by some margin, keeping in mind that F'(O) < O. A point where
F'(I) = F(O) is shown at t = a in Figure 5.2.5.

Line Searches 257

FCt)

F(O)

.... y = F(O) + rF'CO)............

abc d e

Figure 5.2.5. A general line search function.versus line search metric t showing points defined
using derivatives.

A single requirement that avoids both problems just described is

1F'(I)I:5 -hF'(O), O<h<1. (5.2.20)

Figure 5.2.5 illustrates (5.2.20) with h ~ 1 on the range a < I < b, which
defines a "bowl" that necessarily contains a minimum of F(t). An equivalent
statement of (5.2.20) is the convergence test

l[g(k+ll jTsl
I[g(kljTsl

< h, O<h<1. (5.2.21)

Because (5.2.21) enforces the inequality in (5.2.19), it guarantees that

(5.2.22)

where y is defined by (5.1.9) as the difference between the new and the old
gradient values. The significance of (5.2.22) is that it contributes to a positive
definite update in the BFGS search direction formula, where it appears in the
second term of (5.1.22). Small values of h such as h ~ 0.1 will force accurate
line searches; however, h = 0.9 for inexact line searches is often employed
with the especially tolerant BFGS update formula. The line search may be
terminated for any search metric I in (5.2.2) that satisfies (5.2.22).

The search algorithm using derivatives begins with an estimate of I accord
ing to (5.2.11), but limited to I :5 1. The flow chart in Figure 5.2.6 shows that
the convergence test in (5.2.21) is performed if F(I) < F(O). If (5.2.21) fails
and if slope F'(I) > 0 as at point I = e in Figure 5.2.5, then it is assumed that
the minimum has been bounded (bracketed) so that interpolation is required.
Otherwise, the slope is even steeper (more negative) than at the turning point
so that extrapolation is appropriate. Since the model quadratic function has

Begin with:
XO = x

F5 = F(x)
G50 = a
EO = I

START CUBIC
LINE SEARCH

Calculate G3 = gT I slope
Save TO = G5 0 gradient

Save W(-) = X(,) reference point

G3
~o

Calculate i = T' .;; 1
Save G2 = G3 slope

Save F6 = F5 function
Initialize counters

1800r~=:===I====~
StepX(-) = W(-) + T x EO

Calculate Fl = F(x) & G(·) = g(x)
Calculate G6 = new slope

13

1890 <F5 ;;-. F5
F1

"FUNCTION
FAILED"

2140
.,;;; 0.9

l~l\nbowl

T=T5+T
F5 =F1 G6

1920

>0
"SLOPE FAILED"

2010

X(-)=
XO-TxEO

backup

Print "EXTRAPOLATE"
T5=T5+ 1

Bounded extrapolation,,;;; lOT
F5 = F1 update function

G2 :: Go update slope veference

13

2030

>2

1800

Print "INTERPOLATE"
Cubic interpolation protected

against SQR(-#)
13 = 13 + 1

1800

Figure 5.2.6. Flow chart for the optional cubic interpolation line search in optimizer QNEWT.

258

Program QNEWT 259

linear slope, the slope is linearly extrapolated to zero to determine a new step
size t, but t is limited to an increase not greater than a factor of 10.

If the minimum has been bounded by encountering a large positive slope or
by F(t) ;" F(O), then cubic interpolation is employed as indicated on the
right·hand side of Figure 5.2.6. A cubic function

y(t) = y, = bo + bIt + b,t' + b,t' (5.2.23)

can be determined by the four values Yo = y(O), y" Yo' and y:, where
o" t " e and e is some positive upper limit for line search metric t. Davidon
(1959:10) gave a series of equations for the minimum of a cubic interpolating
function. A series of simple substitutions will confirm that the first derivative
of (5.2.23) can be written as

2t(yo + z) t'(yo + y: + 2z)
y' ~ Yo - --"--'e----'- + --"--'-e-'~----'-

where the defined constant z is

(5.2.24)

(5.2.25)

Then the minimum occurs for the zero of (5.2.24) in the range 0 < t < e:

tm~e(l-c),

where a second defined constant is

y: + Q - z
c= y; - Yo + 2Q l

and a third defined constant is

(5.2.26)

(5.2.27)

(5.2.28)

The peculiar forms given were chosen to minimize the effects of roundoff
errors because of subtraction of nearly equal quantities.

The BASIC program code that implements the cubic line search using
derivatives is C5·3, LINCUBIC. Its use is described in Section 5.3.2.

5.3. Program QNEWT

Program C5·1, QNEWT, provides an illustrati.n of a quasi·Newton method
using the rank 2 BFGS update to the estimated Hessian matrix. As with the

260 Quasi-Newton Methods and Constraints

preceding optimizers, program QNEWT starts with a short menu to make
certain initial choices of parameters and variables. The objective function and
its gradient are calculated in subroutines 5000 and 7000, respectively. These
must be merged into QNEWT and are interchangeable with those for program
NEWTON. Therefore, the subroutines in C4-2, ROSEN, and C4-3, WOODS,
may be used with QNEWT without modification. Additional test problems for
QNEWT are introduced in Section 5.3.2. Program QNEWT is an important
vehicle for adding the ability to constrain solutions in all the important ways.

5.3.1. The Algorithm and Its Implementation. The listing for program C5-1,
QNEWT, is contained in Appendix C. As noted by the remarks in lines 120
through 330, there are certain major programming names associated with the
mathematics described in this chapter. The vector of variables x is contained
in array X(). The objective function F(x) is named F when newly computed
and F5 when saved as a preceding value. The gradient vector of first
derivatives, VF = g, is contained in G() when newly computed and saved in
vecior array G50 for later use in computations after a new gradient has been
computed. The updated approximation to the Hessian matrix is stored in
vector form in array H(). This corresponds to the LDLT factorization method
described in Section 3.1.1 and used in programs NEWTON and LEASTP. In
QNEWT, the estimated Hessian is updated with a rank I matrix twice each
iteration using a vector stored in BO. The last major variable is EO, which
contains the quasi-Newton search direction vector s.

A complete list of variable names employed in QNEWT is appended to the
program listing so that the user will not violate previous naming assignments
when supplying subroutines 5000 and 7000. In general, function and gradient
subroutines 5000 and 7000 are not called from loops or involved in current use
of integer variables 1, J, K, or L, so that these may be employed by the user.
Notice that the BASIC function FNACSO is defined on line 370 for comput
ing the inverse cosine.

The dimensions of arrays of program variables and other quantities are set
to 20 in line 410, so that up to 20 optimization variables can be accommodated
in the merged objective and gradient subroutines. The exception to this
dimension is for the vector H() that stores the symmetric Hessian matrix in
vector form as previously described in Section 3.1.1. The dimension of H()
must be equal to n(n + 1)/2; when n = 20, the dimension of HO is 210 as
shown in line 410. There are two arrays WO and TO used to store working
data. Users can reduce the memory required for execution of QNEWT by
reducing these dimensions to fit their particular application.

A list of major subroutines and their line numbers in program QNEWT is
given in Table 5.3.1. In addition to the preceding structure, program QNEWT
has a menu scheme similar to that in program C2-1, MATRIX, and in
optimizers C4-1, NEWTON, and C4-5, LEASTP.

Table 5.3.2 shows the information displayed on the screen initially and
during menu choices 1 and 2. The "NOTES" are similar to those used

Table 5.3.1. Major Subroutines in Optimizer Program C5-1, QNEWT

Name

Enter Number & Value of Variables
Enter/Revise Control Parameters
Main Optimization Algorithm (Figure 5.3.1)
Display Function, Gradient, and Variables
Store Unit Matrix in Hessian H()
LDLT Factorization of Hessian in situ in H()
Solution for s in Hs - -g (Newton step)
RaD.k\ Update of Hessian HO
Objective Function F(x) (user supplied)
Gradient Vector VF ~ g (user supplied)

Lines

1200-1260
1280-1350
1400-2750
2770-2840
2860-2960
2980-3240
3260-3480
3500-3830
5000-6999
7000-8999

Table 5.3.2. Screen Displays for Notes and Menu Operation for Optimizer
QNEWT

tt••, •• QNEWT OPTIMIZER ***.***.**.*~

NOTES'
1~ USE ONLY UPPER CASE LETTERS
2. IF , BREAK" OCCURS. RESTART WITH "SOTO 999'
3. USER MUST PROVIDE SUBROUTINE 5000 FOR FUNCTION VALUE

AND SUBROUTINE 7000 FOR THE GRADIENT VECTOR.
4. ENTER DEFAULT ANSWERS TO QUESTIONS BY <RETURN}.

PRESS <RETURN) KEY TO CONTINUE -- READY?t**.t.,••• _._ COMMAND MENU t**. ._••_
1. ENTER STARTING VARIABLES (AT LEAST ONCE)
2. REVISE CONTROL PARAMETERS <OPTIONAL)
3. START OPTIMIZATION
4. EXIT (RESUME WITH 'GOTO 999')
,J. SPARE
***********••********.*****.********
INPUT COMMAND NUMBER:? 1
NUMBER OF VARIABLES ~ ? 2
ENTER STARTING VARIABLES X<l):

X< t)=7 -1.2
X (2) =? 1

PRESS <RETURN> KEY TO CONTINUE -- READY?
tt****t**t*** COMMAND MENU ****t******.
1. ENTER STARTING VARIABLES <AT LEAST ONCE)
2. REVISE CONTROL PARAMETERS (OPTIONAL)
3. START OPTIMIZATION
4. EXIT (RESUME WITH 'GOTO 999')
5. SPARE
**********************************~*
INPUT COMMAND NUMBER;? 2
MAXIMUM * OF ITERATIONS (DEFAULT=50):? 75
STOPPING CRITERION (DEFAULT=.OOOi):?
PRINT EVERY Ith ITERATION (DEFAULT=1):? 10
PRESS'<RETURN> KEY TO CONTINUE -- READY~

26\

262 Quasi-Newton Methods and Comtraints

previously in major programs, especially the recovery method after a
(Ctrl)(Break) or EXIT, when (GOTO 999)(Rtn) will place the program
back into menu selection without reselling any program variables. Menu
choice 1 sets the number and value of optimization variables for the corre
sponding subroutines 5000 and 7000 supplied by the user. Menu choice 2 sets
the three program parameters: (1) maximum number of iterations, (2) stop
ping criterion, and (3) screen printing interval for iteration results. All three
parameters have default values as shown in the lower lines of Table 5.3.2;
these have been set in line 380 so that menu choice 2 need not be exercised
unless changes are desired. Also, after optimization (menu choice 3), menu
choices 1 and 2 do not have to be executed. This can be useful when selecting
choice 3 again to continue optimization (with a reset iteration count).

The flow chart for program QNEWT in Figure 5.3.1 has a structure similar
to the flow chart in Figure 1.3.1 for a generic iterative process. The four-digit
numbers in Figure. 5.3.1 correspond to the BASIC line numbers in the
program C5-1, QNEWT, listed in Appendix C.

The initial estimate for the Hessian matrix is made before iterations and
updates are made to improve that estimate. As indicated in Table 5.3.1,
program lines 2860 to 2960 simply set the initial Hessian matrix to the unit
matrix, which amounts to selling all mixed second partial derivatives to zero
and the rest to unity. Convergence is obtained much sooner in many cases if a
beller initial estimate of the Hessian is provided. If the objective function has
the least-pth structure, the Gauss-Newton positive-definite approximation to
the Hessian as described in Section 4.4.2 could be furnished as a starting
estimate. Other preliminary work includes LDLT factorization of that estimate
and saving the minimum element of D for use in forcing positive definiteness
of the Hessian during factorization (subroutine 2980).

Reentry balloon 1580 is the starting point for each iteration or step in a
search direction. At that time the iteration counter is incremented, and a status
report is displayed. The major action in each iteration occurs in the line search
portion of the optimizer in line numbers 1650 through 2299. Program C5·1
code contains the "cutback" or backtracking line search method described in
Section 5.2.1 according to the flow chart in Figure 5.2.1. By using the
operating system command MERGE"LINQUAD, the "cutback" line search
algorithm is replaced entirely by that optional line search. Alternatively, the
command MERGE"LINCUBIC will replace the "cutback" algorithm. See
Section 5.2.2 and 5.2.3 and the flow charts in Figures 5.2.3 and 5.2.6,
respectively, for details of these alternate line searches. Comparative test
results will be given in Section 5.3.2.

The termination tests contained in QNEWT are the same as those employed
in both NEWTON and LEASTP; see (1.3.22) and also lines 2660 to 2690 in
program C5-1.

5.3.2. Some Examples Using Program QNEWT. Rosenbrock's function
described in Section 4.3.2 and programmed in subroutines 5000 and 7000 in
C4-2 is used to display typical output from optimizer QNEWT. Figure 5.3.2

START
QNEWT

DISPLAY NOTES

999 \--;0-----1

DISPLAY MENU

40

1000

START 1400OPTIMIZATION

Gr- Initialize Hessian H ;; I 1440
Factor H ;; LOLl 1450

Save minimum dii 1460
Calculate F5 ;; F(x) function 1550

Iteration L7 ;; 0 1570

~
Calculate G50 gradient 1572

1580

Iteration l7 ;; L7 + 1

0- Print F, XO, GO
Calculate Newton direction EO ;;; s

0"- Print step-ta-gradient degrees

Perform line search: 1650
Cutback method standard

Optional: L1NQUAD or L1NCUBIC

2610

d-
231O

No Yes
CONV

Calculate F & GO 2700
E BFGS Update Print F, XO & GO

to LOLl Print no. function
evaluations

Figure 5.3.1. Flow chart for quasi-Newton optimizer featuring three different line searches and
the BFGS update formula. Note: @- ® apply to BOXMIN. See Table 5.4.2.

263

264 Quasi-Newton Methods and Constraints

##:It##
...ft##
#~Ut##

##·1Ut#
#####

OF 4
OF 4
OF 4
OF 4
OF 4

I
t

2

2

I
t
2

AT START OF ITERATION NUMBER 1
FUNCTION VALUE = 24.2

X(1) G(J)

-1.20000000 -215.60006561
1.00000000 -88.00000000

#:It#### CUT BACK STEP SIZE BY FACTOR
CUT BACK STEP SIZE BY FACTOR
###88# CUT BACK STEP SIZE BY FACTOR
CUT BACI< STEP 51 ZE BY FACTOR
CUT BACK STEP SIZE BY FACTOR

AT START OF ITERATION NUMBER 2
FUNCTION VALUE = 5.101115

X{l} Btl}
-0.98945306 38. 3380607i

1 . 08593750 21 ..38402805

•••AT START OF
FUNCTION

ITERATION NUMBER 34
VALUE = 3.845676E-07
X(I) G{P

0.99949366 0.01330447
0.99895177 -0.0071605Q

STEf-TO-GRADIENT DEGREES= 87.5188
AT START OF ITERATION NUMBER 35

FUNCTION VALUE = 8.411157E-10
XCI) G(I)

0.99998::'\04 r.). 00087378
0.99996373 -0.00047052

STEP-TO-GRADIENT DEGREES= 87.51~~

CONVERGED; SOLUTION IS:
tH START OF ITERATION NUMBER 36

FUNCTION VALUE = ::'. 142477E~10
X(I) G<I>

i. O(lO~.)1773 (1.0-.)008649
:2 1. OO(l(13543 _.()~ 0(;(l00346

1"01"AL NUMBER OF FUNCTiON EVALUAT10NS = 48
f-HESS '.:RETURN ~-:F.:Y TO CONTINUE -- REAiYl'"?

Figure 5.3.2. Partial data for QNEWT optimization of ROSEN problem using "cutback" line
search.

shows the first and the lasttwo iterations using IBM interpreted BASICA with
the cutback line search algorithm. Convergence was obtained in 35 iterations
flom the standard stalting point, x = (- 1.2 ll, and 48 function evaluations
were required. Because the gradient vectoI was not required during the line
search, only 35 gradient evaluations were required (equal to the number of
iterations).

Figure 5.3.3 shows similar output when MERGE"LlNQUAD (C5-2) waS
employed to replace the cutback method in QNEWT, C5-1. Only 34 iterations
were required using the line search without derivatives but with quadratic
interpolation. However, 73 function evaluations were required, along with the
3~ evaluations of the gradient used to begin each of the. 3_4 iterations.

Figure 5.3.4 shows comparable output for the Rosenbrock function when
derivatives were used in the line search as well as cubic interpolation (program

Program QNEWT 265

AT START OF ITERATION NUMBER 1
FUNCTION VALUE = 24~2

I X(U G(l>
1 -1.20000000 -215.60006561
2 1.00000000 -88.00000000

STEP-TO-GRADIENT DEGREES= 0.0000
REPEAT STEP
DOUBLE STEP
REPEAT STEP
DOUBLE STEP
STEP= 0.000357

AT START OF ITERATION NUMBER 2
FUNCTION VALUE = 9.786829

1 X(1) 6(1)

1 -1.12302750 -107.46271109
2 1.03141734 -45.95468745

•••
AT START OF ITERATION NUMBER 33

FUNCTION VALUE = 7.034565E-07
I XU) 6<1>
1 1.00012067 0.03338793
2 1.00015836 -0.01659993

STEP-TO-GRADIENT DEGREES= 84.2245
REPEAT STEP
STEP= 1.000000

AT START OF ITERATION NUMBER 34
FUNCTION VALUE = 7.350403E-09

I X(U 6(1)

1 0.99993236 0.00195709
2 0.99985945 -0.00105351

STEP-TO-GRADIENT DEGREES= 87.4670
REPEAT STEP
STEP::: 1 • (100000

CONVERGED; SOLUTION IS:
AT START OF ITERATION NUMBER 35

FUNCTION VALUE = 1.114715£-11
I X<I> 6(1)
1 1.00000072 0.00012145
2 1.00000112 -0.00006519

TOTAL NUMBER OF FUNCTION EvALUATIONS = 73
PRESS <RETURN> KEY TO CONTINUE -- READY?

Figure 5.3.3. Partial data for QNEWT optimization of ROSEN problem using LINQUAD line
search.

segment LINCUBIC merged). In this run, 40 iterations and 51 function and
gradient evaluations were required. The reports from within the line search
section of program QNEWT indicate the extrapolation and interpolation
activity.

No single set of runs gives a valid indication of performance of an
algorithm. A series of runs from 'different starting points is more useful.

0.000089

6(I)

-215~6000b5bl

-88.00000000
STEP=

I
1
2

AT START OF ITERATION NUMBER 1
FUNCTION VALUE = 24.2

XCI)
-1.20000000

1.00000000

•••
STEP-TO-GRADIENT DEGREES= 67.8562

EXTRAPOLATE
FNCN FAILED
INTERPOLATE
STEP= 6.728138

AT START OF ITERATION NUMBER 7
FUNCTION VALUE = 4.093465

I Xtl) Btl)
1 -0.99934996 -16.38834085
2 0.96770605 -6.19886045

STEP-TO-GRADIENT DEGREES= 86.8944
FNCN FAILED
INTERPOLATE

• STEP= 0.324191

••
AT START OF ITERATION NUMBER 39

FUNCTION VALUE = 1.30531E-07
I X(U en)
1 0.999S4479 0.01273622
2 0.99965697 -0.00652502

STEP-TO-GRADIENT DEGREES= 87.1888
STEP= 1.000000

AT START OF ITERATION NUMBER 40
FUNCTION VALUE = 6.255936E-11

I X(l) G(l)

j 0.99999491 0.00025903
2 0.99998922 -0.00012110

STEP-TO-GRADIENT DEGREES= 87.5826
FNCN FAILED
INTERPOLATE
FNCN FAILED
INTERPOLATE
FNCN FAILED
INTERPOLATE
STEP= 0.027644

CONVERGED; SOLUTION IS:
AT START OF ITERATION NUMBER 41

FUNCTION VALUE = 6.255936E-11
I X(U 8(1)
1 0~9q999491 0~00025903

2 0~9999B922 -O~00012110

TOTAL NUMBER OF FUNCTION EVALUATIONS = 51
PRESS <RETURN> KEY TO CONTINUE -- READY?

Figure 5.3.4. Partial data for QNEWT optimization of ROSEN problem using LlNCUBIC line
search.

266

Program QNEWT UJ7

Table 5.3.3. Perfonnance of QNEWT on the Rosenbrock and Wnod Fnnctions
Compared to Other Optimizersb,c

QNEWT

Starting Point NEWTON' LEASTP CUTBACK LINQUAD LINCUBIC

Rosenbrock's Function

-1.2,1.0 24/31" 23/39 34/49 31/68 39/50
2.0, -2.0 22/28 3/4 47/67 32/76 29/35
- 3.635,5.621 43/48 6/10 34/46 53/125 57/73
6.39, ~ 0.221 26/40 4/4 31/47 76/175 62/77
1.489, - 2.547 16/20 4/4 41j56 36/77 21/25

Wood's Function

-3,-1,-3,-1 54/79 d 53/77 76/186 73/96
1.2,1,1.2, 1 24/28 d 38/59 36/81 42/53
-3,1, -3,1 52/75 d 56/81 76/179 84/104
-1.2, I, -1.2,1 44/64 d 73/108 68/164 70/92

U(Number iterations)/(number function evaluations).
"Standard termination (0.0001) except 0.000001 for Wood's function using LINQUAD and
LINCUBIC.
'"These data were obtained using IBM compiled BASIC. Data are somewhat different when using
interpreted BASICA.
dWood's function is not in the least-pth format.
"Number of function evaluation does not include those for finite differences.

Therefore, four more starting points used by several investigators were
employed. Also, similar data for four variables was accumulated for the
performance of QNEWT on Wood's function also described in Section 4.3.2.
The results are tabulated in Table 5.3.3 for the three versions of QNEWT as
well as for NEWTON (Table 4.3.4) and LEASTP (Chapter Four). Table 5.3.3
shows the impressive performance of LEASTP when advantage can be taken
of the special structure of an objective function. Otherwise, Table 5.3.3
indicates that the three types of line searches performed roughly the same on
the two test functions.

In particular, the BFGS search direction does not suffer from the coarse
line searches that simply "cut back" the step length until a decrease in
function value is obtained. The run illustrated in Figure 5.3.2 only "cut back"
11 times, mostly at the beginning as shown, and only sporadically thereafter.
As for all Newton-like methods, the step size that begins each iteration
approaches unity as a minimum is approached.

In fairness to the LINCUBIC line search, its accuracy is much more
important to algorithms using the DFP search direction. Even though both the
LINQUAD and UNCUBIC line search algorithms correspond closely to the
ideas of Fletcher (1972), this particular implementation may be detrimental to
performance in some unknown way.

268 Quasi-Newton Methods and Constraints

5.3.3. Optimization Without Explicit Derivatir:es. There are many situations
where the user either cannot obtain exact values for derivatives or may not
wish to do so. For instance, precision and efficiency may not matter if the
problem to be optimized turns out to be senseless. The user may wish to try an

. initial formulation by providing only an objective function and letting the
optimization program generate the gradient by finite differences; see (4.1.2).

There are some important limitations when using finite differences. The
objective function must be continuous and smooth (at least the first and
second derivatives must be continuous). Finite differences require n more
evaluations of the objective function; this can increase the program execution
time substantially for large values of n, the number of variables. Also, the
finite difference approximations for the e1ementsof the gradient are somewhat
inexact so that final convergence to a minimum is noticeably inferior to the
case using exact gradients.

Program C5-1, QNEWT, has been constructed to accept gradients ap
proximated by finite differences with minimum degradation in overall perfor
mance. The primary consideration is to avoid requiring gradient information
within the line search; both the "cutback" line search in QNEWT and the
optional program C5-2 "LINQUAD" that can be merged with QNEWT do
not require derivatives except at the turning points where the line searches
begin. Program C5-3 "LINCUBIC" does require derivatives at every function
evaluation and is not recommended when using the finite differencing option.
Also, the rank 1 updates to the estimated Hessian matrix of second partial
derivatives may be inexact because of errors caused by differencing so that the
estimated Hessian may not remain positive definite as required for generation
of downhill search directions. However, rank I update subroutine 3500 in
QNEWT tests for positive definiteness and reports and aborts if violated. This
seldom occurs in practice, and the program could easily be modified to
refactorize the Hessian when that occurs, with positive definiteness forced by
LDLT factorizing subroutine 2980.

The means for relieving the user of providing explicitly defined first
derivatives is simply to replace user-supplied subroutine 7000 with a universal
version that performs finite differencing. Program C5-4 "QNEWTGRD", can
be merged into QNEWT after the user's subroutine 5000 that defines the
objective function. As seen from the brief listing of program C5-4 in Appendix

. C, it is only necessary to save the nominal value of the objective function, F,
before performing a sequence of perturbations of each element of the variable
vector x and calling subroutine 5000 for each combination.

The reader is urged to load program QNEWT followed by first merging
ROSEN and then QNEWTGRD to run the standard Rosenbrock example
from Section 4.3.2 using finite differencing for the gradient. Starting from
x = (- 1.2 I)T, the optimization terminates in 35 iterations, the same as when
using exact first derivatives. However, 120 function evaluations are required as
opposed to 48 with exact derivatives. That is not quite an increase of three
times, but tbe optimization with finite differences terminates somewhat prema-

Program QNEWT 269

turely, with an optimum at x' = (0.97236820 0.94545264)T as opposed to
x' = (1 I)T, as obtained to five decimal places with exact derivatives and the
same standard (0.0001) termination criterion.

Fletcher (1972) describes two quasi-Newton algorithms, VA09A similar to
QNEWT and VAI0A that does not require derivatives. VAI0A differs from
VA09A in the line search and the source of derivatives. Particularly, VAI0A
employs the forward difference approXimation of (4.1.2) until near a minimum
when it switches to the more accurate central difference approXimation that
requires both the forward and backward perturbations:

. F(x + dx, e,) - F(x - dx, e,)
I:7,F(x) ~ lim ,

dXi-O 2 dX j

(5.3.1)

where dx, is an increment in the ith element of x and e, is the ith unit vector
[e.g., see (2.1.2)]. According to Maron (1982:285), the truncation error in the
forward difference approXimation is of order (dX)1 while the central difference
approXimation is in error by order (dx)2. Therefore, the minimum is located
quite accurately by VAI0A, again at the expense of even more function
evaluations. It is not easy for the program to know when to switch differencing
formulas; the switch is made in VAI0A when the changes in the x vector are
equal to the user's stopping criterion.

Readers should be aware that there are direct-search algorithms that also do
not require derivatives and usually are not based on the theory of continuous
quadratic functions and their gradients. Instead, many direct-search al
gorithms are based on systematic searches of the variable space (x) using
either patterns or simplexes. Patterns are generated by a sequence of explora
tory moves in the coordinate directions with a set of policies based only on
changes in objective function values. Simplexes in the direct-search context are
,,-dimensional polyhedrons whose size and distorted shape are determined by
function values obtained at selected vertices. The Hooke-Jeeves algorithm is
one of the better pattern optimizers, and the interested reader is referred to
Himmelblau (1972:142) and Kuester (1973:309). The Neider and Mead al
gorithm is one of the better simplex optimizers, also described by Himmelblau
(1972:148) and Kuester (1973:298).

Direct-search algorithms are appropriate when derivatives cannot be de
fined, such as when random error is present in the objective function (due to
measurement errors or to numerical integration in function definition, for
example). Also, it is not difficult to incorporate logic into direct-search
algorithms to accommodate both linear and nonlinear inequality constraints;
see Section 1.2.1. Since derivatives are not required, the program changes are
minimal, but convergence to constrained solutions is often slow and unrelia
ble.

A respected direct-search algorithm by Powell (1964:155 and 1965:303) is
based on a special property of quadratic functions. Consider parallel lines that

270 QUU$i-Newton Methods and Constraints

are tangent to any two elliptical level curves of a quadratic function (see
Figure 3.2.1): Another line through the two points of tangency always passes
through the minimum point, that is, the center of the ellipses. In Figure 3:2.1,
that fact is trivially true for a tangent line parallel to either the Yl or Y2 axis. It
is easy to construct other pairs of parallel lines at other inclinations to see that
the parallel tangency phenomenon is generally true. Powell's direct-search
algorithm does assume continuous and smooth functions, but derivative values
are not required. Without going into further details, Powell's algorithm can be
judged as an improvement on a sequence of one-dimensional line searches.
The interested reader is referred to Dixon (1972b:74), HimmelbIau (1972:167),
and Kuester (1973:331).

Finally, random-search algorithms select trial x vectors based on the theory
of probability; they are the least elegant and most inefficient methods of
optimization. Random searches are especially ineffective in the neighborhood
of a solution; however, they are useful when the objective function is discon
tinuous. Schrack (1972:137) tested three such algorithms that provided no
better than linear convergence. However, hybrid combinations of random- and
gradient-search algorithms have been employed to obtain successful starting
values when only acceptable ranges of variables are known. The interested
reader is referred to Himmelblau (1972:177).

The suggestion of using QNEWT with finite differences by QNEWTGRD
has been dominated by the side issue of alternative direct-search methods.
However, many experienced investigators have lately come to the conclusion
that suitable structured gradient optimizers using finite difference approxima
tions are more reliable and efficient than any of the direct methods. It is
important that there is a substantial analytical basis for the design and use of
gradient optimizers, and that is generally not true for direct-search methods.

5.4. Constrained Optimization

Program QNEWT is an efficient and effective unconstrained mmllllizer of
nonlinear scalar functions of many variables. In the most practical cases those
variables may have lower and/or upper bounds. The variables also may be
related among themselves in a more general linear fashion or often in a
nonlinear fashion. To restate the general nonlinear programming problem
described in Section 1.2.1:

Minimize f(x) s.t. h(x) = 0 and c(x) ~ 0, (5.4.1)

where the symbols "s.t." mean "such that." There are q equality constraint
functions in vector hand m - q inequality constraint functions in vector c.

Methods for dealing with both equality and inequality constraints are
developed. A projection method is derived for linear constraints and then
specialized for simple lower and upper bounds in program segment BOXMIN

--;------- -- --- -

Constrained Optimi:at;on 271

that can be merged into optimizer QNEWT. Then penalty function methods
are reviewed for enforcing all kinds of constraints; some historically important
methods are evolved into the more effective multiplier penalty method. The
program segment MULTPEN may be merged into the QNEWT-BOXMIN
program to implement the powerful multiplier penalty method. Finally, brief
descriptions of more recent but fairly complicated nonlinear constraint meth
ods are provided.

After many years of research, it is now clear that almost all methods for
dealing with constraints depend on the Lagrangian function in several im
portant ways. Repeating some conclusions from Sections 3.3.2 and 3.3.3; The
classical Lagrangian function is

L(x, p) = f(x) - pTh(x). (5.4.2)

There are q equality constraint functions hI (x), h 2(X), ... , hq(x), and q corre
sponding Lagrange multipliers PI' P2"'" Pq• When VL(x, p) = I) with respect
to all components of both x and p, then it is known that there is a minimum of
f(x) with respect to x such that hex) = O. Let those values be x' and p'. Then
L(x, p') is a minimum with respect to x, and L(x', p) is a maximum with
respect to p.

What has just been stated and was shown by Example 3.3.4 in Section 3.3.2
is that the solution of an equality-constrained minimization problem is min
max; that is, it has a saddle point. To see why this is the case, again note that
the necessary condition for a minimum of the Lagrangian function in (5.4.2) is
the solution in n + q variables of the set of nonlinear equations

VL(x,p) = O. (5.4.3)

It is useful in this analysis to consider that x is a function of p, that is, x(p), in
the sense that for any value selected for p the solution of (5.4.3) implicitly
defines a value of x. Assume for now that x(p) is the minimizer of L(x, p) for
all possible values of p. Then the inequality

L[x(p),p] :s; L[x',p] = L[x',p'] (5.4.4)

is true by virtue of hex') = 0 in (5.4.2). Thus, (5.4.4) is a degenerate form of a
saddle point. These are sufficient conditions for (5.4.3) to represent the
constrained minimum. These conditions involve the curvature (second deriva
tives) of both the objective and constraint functions and need to be considered
for the analyses in this chapter.

Furthermore, at the constrained optimum point, the gradient vector of f(x)
is a linear combination of the gradient vectors of the constraint functions;

vf(x', p,) = g(x') ~ g' ~ Np', (5.4.5)

where the Lagrange multipliers in p' may be positive or negative for equality

272 QlUlSi-Newton Methodr ond Constroints

constraints. The n x q matrix N is similar to the matrix of hyperplane
normals in (2.2.88):

(5.4.6)

In this case N has columns that are the gradient vectors of the corresponding
equality constraint functions. When p is strictly positive, (5.4.5) is the
Kuhn-Tucker condition (3.3.22) for inequality constraints: The objective
gradient vector g lies within the cone generated by the gradient vectors of the
constraint functions. Also, Farka's lemma verifies that vf(x', p') = 0 indicates
a minimum of L(x, p') because the slope or directional derivative is positive in
every direction s, that is, gTs > O.

Finally, the sensitivity interpretation of Lagrange multipliers is recalled
from (3.3.15). Instead of the equality constraints in the vector h(x) = 0,
consider perturbing the boundary of the ith constraint in h by the small scalar
amount e:

hi(x) = e.

Then the i th Lagrange multiplier in the vector p is

p, = v.I(x,),

(5.4.7)

(5.4.8)

where x' is the solution vector for the undisplaced constraint (e = 0). The
significance of (5.4.8) is that the sign of p, determines the side of the
constraint on which the objective function decreases. That is very useful for
dealing computationally with inequality constraints.

5.4.1. Linear Constraints by Projection. The linearly constrained problem is

i~ltoq,

Minimize f(x) such that

a~x = bi ,

(5.4.9)

(5.4.10)

i = q + I to m :,; n. (5.4.II)

The objective function f(x) is a nonlinear function, and the linear constraints
are defined by sets of coefficients that are the elements of the vectors a,.
Compared with the more general problem (5.4.1), it is seen that the ith
equality constraint is h,(x) = a~x - hi' I:,; i :,; q, and the ith inequality
constraint is ci(x) = a~x - hi' q + I :,; i :,; m < n, where n is the number of
variables. Recalling (2.2.82), it is seen that each equality constraint in (5.4.10)
is a hyperplane and the coefficient vectors, a" are their respective normal
vectors. Similarly, each inequality constraint in (5.4.II) defines a half-space on
the side of a hyperplane in the direction of its normal vector.

Constrained Optimization 273

It is useful to recognize three realities at this time: (1) computations will
require an assumed quadratic model for the objective function in the neighbor
hood of a current value of x, (2) it can be assumed that q is known, that is, the
binding constraints are known (those for which the equality holds), and (3)
there remain only n - q degrees of freedom. Therefore, a problem that can be
solved is the quadratic programming problem:

Minimize Q(x) = xTd + txTHx such that (5.4.12)

(5.4.13)

where vectors d and x are in E rl, H is the n X n Hessian matrix, and b is in
Eq, q ,;; n. Also, the n X q matrix A has rank q and columns composed of
vectors 3 j :

A ~ (a, a 2 ••• a q). (5.4.14)

As Fletcher (1981a:80) has pointed out, direct elimination is an instructive
way to solve (5.4.12) subject to (5.4.13) by using the q constraints to eliminate
q of the variables. Suppose that the vectors and .matrices are consistently
partitioned for that purpose, using the subscript qto denote relationships for
the first q dependent variables and subscript s for the remaining n - q
independent variables ordered as follows:

x = [::], (5.4.15)

A=[~:],

~J

(5.4.16)

(5.4.17)

Matrix A q is q x q, A, is s x q, H q is q x q, Cis q x s, and H, is s x s,
where s = n - q. Then (5.4.13) can be expanded in terms of the partitions of
A to yield

(5.4.18)

Solving for the dependent variables in x q:

(5.4.19)

where matrices Band D are defined as

(5.4.20)

274 QUQS;.Newton MethOlb ond Constraints

Superscript - T denotes the combined matrix inverse and transpose oper
ations.

The partitioned vectors and matrix in (5.4.15) and (5.4.17) are substituted
into (5.4.12) in order to express Q(x) as the equivalent

(5.4.21)

Dependent x q may be eliminated from (5.4.21) to obtain Q(x,) by sub
stituting (5.4.19) everywhere x q appears in (5.4.21). After a considerable
amount of algebra, the result is:

(5.4.22)

By comparisons in (5.4.22):

(5.4.23)

ii = [(C T
- BH,)D + (d, - Bd,)].

A sufficient condition for a minimum of Q(x,) is that the matrix A in
(5.4.23) is positive-definite. The necessary condition for a minimum is that
vQ(x,) ~ 0, where the gradient of Q(x,) is' VQ(x,) = Ax, + ii from the
definition (3.2.8). This necessary condition i~ a system of linear equations that
can be solved for the minimum, x~. Then the remaining variables, x~, may be
found from (5.4.19).

The Lagrange multiplier vector p' at the minimum of (5.4.21) may be found
from (5.4.5):

p' = A+g', (5.4.24)

where g' = vQ(x') and A is not square. However, those q Lagrange multi
pliers associated with the q binding constraints may be found using the first
partition of A,'namely A q • From (5.4.12), g ~ Hx + d, so that

(5.4.25)

---~~ ~~---- ~-- - ---- -- - ~~-------~----

Constrained Optimization 275

Example 5.4.1. Solve the following problem by eliminating the dependent
variables:

Minimize Q(x) = xTd + ~xTHx such that

(5.4.26)

As in the preceding development, it is assumed that the first two variables are
dependent. since there are two constraints. Since the coefficients of the
respective constraints form the columns of A,

(5.4.27)

Using b = (4 O)T and (5.4.27) in (5.4.20), it is found that

B=(-ll), D = (-} f) T, and (BH q) = (-4 3). (5.4.28)

From (5.4.23), if = 10, which is certainly positive-definite, and d = -15.
Having eliminated the first two (dependent) variables, the remaining task is

to minimize the resulting quadratic, Q(x,) = ~xiifx, + xiii + c= 5xJ
15x, + C, where C is some constant. The necessary condition is that the
gradient of Q(x,) = O. In the general case the solution is a set of linear
equations in the independent variables. In this case there is only one indepen
dent variable in the gradient expression, so lOx, - 15 = O. Therefore, the
constrained minimum is at x; = i. Evaluating (5.4.19), the two dependent
variables are found to be x, = ~ and Xl = t. From (5.4.25) the Lagrange
multiplier vector for the two constraints is p' = (1 - t)T

To summarize, the quadratic function in (5.4.26) had three variables and
two linear, independent equality constraints. Therefore, there is really only one
degree of freedom, so the first two variables were arbitrarily chosen to be
dependent. The dependent variables were eliminated from the quadratic
objective function so that it could be rewritten in terms of the remaining
independent variable, x, in this case. Then the gradient of the reduced
quadratic function was equated to zero, resulting in a set of linear equations to
be solved, but one equation in this case. Finally, the independent variable at
the minimum point was used to find the corresponding dependent variable
values.

276 Quasi.Newton Methods and Constraints

The Lagrange multipliers were calculated according to (5.4.25). However, it
is instructive to check that calculation by using (5.4.24):

p' = A+g'. (5.4.29)

Matrix A+ is the generalized inverse, available from (2.2.97) when A has full
column rank, two in this case. The generalized inverse for the A matrix in
(5.4.27) may be computed using program MATRIX with GENINVP merged
(see Example 2.2.11):

l
3

o (5.4.30)

Since g' ~ VQ(x') ~ Hx' + d and ii ~ 10, d ~ -15, x' = (I; i; DT, then
g' = (t ~ 3)T. The Lagrange multipliers previously computed using (5.4.25)
are thus verified by substitution into (5.4.29), which involves a generalized
Inverse.

The solution of the linearly constrained quadratic minimization problem
(5.4.12) and (5.4.13) by the method of direct elimination of variables is not
necessarily the best method, but it illustrates a very important concept: the
number of degrees of freedom (equal to the number of variables) is reduced by
the q linearly independent constraints. Therefore, the constrained problem is
solved by minimizing an unconstrained quadratic problem in linear subspace
En-q of the variable space En.

A generalized elimination method is now described that will introduce
projections into the subspace and lay the groundwork for ways to deal with all
kinds of constraints. As motivation for this development, note that the
partition of x in (5.4.15) can also be expressed as

q

x = L xjej +
jo=l

(5.4.31)

where ei is the ith unit vector in En similar to (2.1.2). More to the point,
(5.4.31) may be expressed as

x = SX q + Zx"

where x is in E" and

(5.4.32)

... e)n ,

(5.4.33)

Matrix S is n X q and matrix Z is n X s where s = n - q.

Constrained Optimization 277

Recall that the direct elimination method led to an unconstrained optimiza
tion method in the subspace reached by the variables in x " Let that vector in
the subspace be called y and define a new linear transformation of variables
analogous to (5.4.32):

x = Sb + Zy. (5.4.34)

Again the matrices are dimensioned Sn. q and Zn." where s = n - q, and
subspace vector y is in E'. The generalized elimination method also solves the
minimization problem in (5.4.12) subject to the q linear equality constraints in
(5.4.13):

(5.4.35)

where b is in Eq and matrix A is n x q. To define the Sand Z matrices for the
generalized elimination method, substitute (5.4.34) into (5.4.35):

(5.4.36)

which reduces to the identity b = b if

(5.4.37)

(5.4.38)

where I q is the unit matrix in E q. Consider the columns of matrices A
and Z:

A = (a 1 a, a q), (5.4.39)

Z = (ZI z, zJ, s = n - q. (5.4.40)

The columns of transformation matrix Z are basis veclors that span the
subspace containing y; in fact, (5.4.38) defines that subspace to be the null
column space of constraint matrix A.

The geometric significance of the linear transformation in (5.4.36) can be
seen in Figure 5.4.1. In the case illustrated, A = (a l a,) and Z = (ZI)' Then
(5.4.38) states that aIz l = 0 and a~zl ~ 0, which are the conditions for ZI to
be orthogonal to both normal vectors a l and a,. Clearly, ZI must be parallel to
the intersection of the two hyperplanes, that is, the linear manifold known as
the null column space of A.

To develop a procedure for finding transformations Sand Z that appear in
(5.4.36), a partitioned matrix product is simply defined:

[ST][A V] = [S'A
ZT ZTA

(5.4.41)

278 Quasi-Newton Methods and Constraints

Al x;; b

~==-------------X2

Xl

Figure 5.4.1. The null column space of constraint matrix A for three variables and two linear
constraints.

But in light of (5.4.37) and (5.4.38), (5.4.41) is true if

zTV = I"

Then (5.4.41) states that

(5.4.42)

(5.4.43)

The procedure for determining matrices Sand Z for use in (5.4.36) is to
choose any matrix V,. " s = n ~ q, such that [A V] is nonsingular. Then invert
[A VI and partition between rows q and q + 1, thus determining ST and ZT as
indicated in (5.4.43).

The method of direct elimination results from a special choice of V:

(5.4.44)

Using the partition of A in (5.4.16) and the definition of B in (5.4.20), it is not
difficult to verify this special formulation of (5.4.43):

[A
q 0]-1 = [A;l 0] = [ST]

A, I -B I ZT .

Therefore, the special case for direct elimination requires that

(5.4.45)

(5.4.46)

Constrained Optimization 279

For the simple case where one or more variables are held constant, X; = b;,
i = 1 to q, the values of Sand Z are especially elementary:

(5.4.47)

In words, (5.4.47) states that A is composed of the first q columns of the n X n
unit matrix, and Z is composed of the remaining n - q columns. The values in
(5.4.47) satisfy (5.4.41). The case for constant variable values is more useful
later when binding inequality constraints are treated as equality constraints,
specifically when dealing with lower and upper bounds on variables. The
geometric interpretation of the subspace that represents a problem's degrees of
freedom is more easily imagined for fixed variables. For example, equality
constraint x 2 = 0 is seen in Figure 5.4.1 to produce a subspace (constraint
manifold) that is the x,-x, plane.

Rather than select an arbitrary V in (5.4.43) leading to related values for S
and Z, there is a way to compute Z so that S = A+ T and the vector Sb in
(5.4.34) and Figure 5.4.1 is orthogonal to the constraint manifold, which is the
subspace representing the problem's degrees of freedom. The subspace basis
vectors, Z j, will also be mutually orthogonal. The preceding case where some
variables are held constant satisfies these conditions. The computation for Z
given S = A+T requires the QR orthogonal decomposition and is well condi
tioned. Interested readers are referred to Fletcher (1981a:83) and Gill
(l974b:61).

Once S is deterntined by any of the preceding means, the Lagrange
multipliers are available; (5.4.5) gives g' = Ap', which can be premultiplied by
ST. Then use of (5.4.37) leads to .

(5.4.48)

Example 5.4.2. Two choices for matrix V are applied to the data previously
given in Example 5.4.1. There are three variables and two equality constraints
with coefficients appearing as column vectors in A in (5.4.27). First, choose an
arbitrary value of V = (1 2 3l. Then

[A V] = [~
2 n1

-1

the inverse matrix is

[-, 2 -n[A Vr
1

= :

6

_1
3

I-2

(5.4.49)

(5.4.50)

280 Quasi-Newton Methods and Constraints

and (5.4.43) yields

[
_; 2] [1]

S = ~ -~ Z = -~
6 3' 2 •

-t 0 t
(5.4.51)

(5.4.52)

The second case also uses the data from Example 5.4.1 and equations
(5.4.46) and (5.4.47) that are applicable to direct elimination. Applying the
results for A;' and B in (5.4.27) and (5.4.28), respectively,

S=[-! -H z=[-~l
The transformation of y from the subspace E 1 to x in E 3 according to
(5.4.34) is

(5.4.53)

Substitution of (5.4.53) into each of the two linear equality constraints in .
(5.4.26) shows that they are fulfilled regardless of the value of the independent
variable y in the subspace.

For both cases in this example it is easy to verify that (5.4.37) and (5.4.38)
are true.

The generalized elimination method provides the means for converting a
minimization over x in En with q linear constraints to an unconstrained
minimization over y in the subspace E', S = n - q. Repeating (5.4.34), the
linear transformation between variables is

x = Sb + Zy, (5.4.54)

where Sand Z are chosen according to (5.4.43) so that the constraints are
satisfied for all values of y. The quadratic model function assumed valid in a
neighborhood of some X(k) at the start of the kth iteration is repeated from
(5.4.12);

(5.4.55)

where x = X(k) and H is the Hessian matrix evaluated at X(k). Substituting
(5.4.54) into (5.4.55), the quadraticfunction in y space is

(5.4.56)

where c is some constant.

Constrained Optimization 281

The quadratic model has always been used to obtain a direction for a line
search:

(5.4.57)

Comparison of (5.4.57) with (5.4.54) shows that X(k+l) ~ X(k) ~ Sb when
t = 0 and y = O. Furthermore, the gradient of Q(x) in (5.4.55) is g(x) = d + Hx
so that

g(k) = g[X(k)] = g(Sb) = d + HSb. (5.4.58)

Substituting (5.4.58) into (5.4.56) yields the desired quadratic function in the y
space:

(5.4.59)

where both Hessian H and gradient g are evaluated at the turning point X(k>,

which is coincident with y = O.
The necessary condition for a minimum over y in Q(y) in (5.4.59) is that its

gradient is equal to zero, therefore:

(5.4.60)

The solution of the linear system of equations in (5.4.60) is just a Newton
solution for step y; (5.4.54) and (5.4.57) show that the current Newton step is
described by

X(k+l) = X(k) + Zy.

Put another way, the search direction at the kth iteration is

(5.4.61)

(5.4.62)

Compare (5.4.55) for constrained minimization in the x space with (5.4.59)
for unconstrained minimization in the y subspace. The projected or reduced
gradient vector is

(5.4.63)

and the projected or reduced Hessian is

(5.4.64)

Note that (5.4.63) could have been obtained directly from the partial
derivative operation on the linear transformation (5.4.54). Previously, the
V operation on (5.1.30) produced (5.1.41). In the case of (5.4.63), a similar

282 QUQSi~NewtonMethods and Constraints

result is

(5.4.65)

which confirms (5.4.63).
Again, the necessary condition for minimum Q(y) is that the projected

gradient be equal to zero; note that this may be confirmed by premultiplying
(5.4.5), g' = Ap', by ZT Then (5.4.38) can be substituted to show that g' = O.
The additional requirement for a minimum is that the projected Hessian
(5.4.64) is positive definite.

The projection concept comes from the original solution of linearly con
strained objective functions in a subspace by Rosen (1960). His gradient
projection method assumed that H = I in the quadratic model, which is
equivalent to using a search direction - ZTg in the y subspace or, by (5.4.61),

(5.4.66)

However, Gill (1974b:49) shows that

(5.4.67)

Projection matrix P as defined by (2.2.89) is P = zz + that projects vectors
into the column space of Z = (Zl Z, ... Zq)' Projection matrix P as defined
by (2.2.93) projects vectors into the null column space of constraint matrix A,
which is also the column space of Z by design. Note that when Z has been
constructed by QR orthogonal factorization (or for fixed-variable constraints)
that Z is orthogonal. Then ZTZ = I and (5.4.66) is S(k) = - ZZTg(kJ, which is
steepest descent for y = _ZTg in (5.4.62).

The conclusion available from the preceding conversion from a minimiza
tion that has linear equality constraints to an unconstrained minimization with
fewer variables is that all the previous minimization methods described in
Chapters Four and Five can be used in this way with only minor modifica
tions. For the quasi-Newton methods in this chapter, solution of the Newton
equation for y in (5.4.60) at each iteration is actually accomplished using an
approximation to the Hessian matrix, namely, B in (5.1.22). Two rank 1
update terms are required at the end of each iteration. There are two vectors
required for updating the estimated Hessian matrix (called y and d, but
different from those in this section). It can be shown that the operations of
projection by Z and rank 1 updates are commutative: updating an estimated
Hessian matrix B by any Broyden formula using projected differences
ZT[g(k+l) _ g(k)] and [y(k+l) - y(k)] is equivalent to updating ZTBZ by
unprojected differences [g(k+l) - g(k)j and [X(k+l) - X(k)].

When using finite differences for derivatives, there are savings in computa
tion for all linearly constrained minimization methods, since perturbation
need be made only in the subspace representing the degrees of freedom. These

Constrained Optimization 283

perturbations are no longer made in the coordinate directions. For quasi
Newton methods, the ith element of the projected gradient would be esti
mated by

zr -'- j(X(k) + dx z,) - j(X(k1)
g - dx ' (5.4.68)

where z; is the ith column of Z and dx is a small positive number, say lE-4.
In the finite difference Newton method, (4.1.3), which computes a column

of the Hessian matrix, would be replaced by

h == g(X(k) + dx zJ - g(X(k») .

} dx
(5.4.69)

The greater the number of equality (binding) constraints, the less work there is
in estimating derivatives.

Least-pth problems can also be solved by projecting linear equality con
straints. Using (4.4.17) and (5.4.65), the reduced gradient for least-squares
problems is

(5.4.70)

where J is the Jacobian matrix and r is the vector of residuals. Using (4.4.20)
and (5.4.64), the reduced approximate Hessian for least squares problems is

(5.4.71)

This section started with minimization of a nonlinear objective function
subject to both equality and inequality constraints, (5.4.9) through (5.4.11).
The development was restricted to solving only the quadratic function with
linear equality constraints, typically for each iteration. This section ends with
the addition of the linear inequality constraints.

The most elementary approach is simply to convert the ith linear inequality
constraint c;(x) to an equality constraint h;(x) by adding an additional
quadratic slack variable:

(5.4.72)

The concept is to add one more "slack" variable for each inequality con
straint. Because the slack is squared, the added variable(s) will remain positive
and the inequality constraint will remain feasible. In addition to increasing the
number of variables, this approach introduces a distortion that affects the
first-order conditions for convergence according to (5.4.5). Since Fletcher
(1981a:8) mentions bad reports for the quadratic slack method in practice, it
will not be discussed further.

284 Quas!.Newton Methods and Constraints

The most acceptable way to deal with linear inequality constraints is the
active set method. Define set E as containing the indices i = 1 to q of all
equality constraints and those inequality constraints that are binding:

E ~ (i S.t. h,(x) = 0, c,(x) :5 O}. (5.4.73)

Then the constrained quadratic problem (5.4.12) and (5.4.13) may be solved in
the null column space of the active constraints by a line search in the subspace
in direction S(k l , (5.4.62):

X(k+l) = x(k) + IS(k), (5.4.74)

where y ~ 0 corresponds to the point x(k). Unfortunately, some of the
remaining inequality constraints may become active (infeasible), so that the
line search must be terminated with t < 1 and one or more inequality
constraints added to set E (5.4.73). Clearly, only inexact line search al
gorithms are appropriate for use in the active set method.

Whether the line search terminates with t '" 1 or t < 1, the next iteration is
not begun until a test is made on all Lagrange multipliers computed by
(5.4.48); if none are negative, then the Kuhn-Tucker conditions (3.3.22) are
satisfied and a constrained minimum on the set E has been obtained.
Conversely, one or more negative Lagrange multipliers indicate that a decrease
in objective function may be achieved without violating its corresponding
constraint; see (5.4.8). .

The usual practice is to remove the inequality constraint having the most
negative Lagrange multiplier from set E before starting the next iteration.
When more than one constraint is removed between iterations, there is a
tendency for the projected Hessian matrix to become indefinite; however, most
LDLT factorization algorithms force positive definiteness. Also, there is a
possible degenerate condition where the same sets of active constraints will
cycle in and out of iterations, but that is usually ignored in most computer
programs.

When constraints are deleted from active set E, the new (larger) projected
Hessian ZTHZ must have elements added to estimate the related second
partial derivatives. Finite differences (5.4.69) may be used, but affected ele
ment values of unity and zero are often satisfactory. There have been several
exhaustive studies to define the most efficient means for modifying the LDLT

factorization of an estimated Hessian matrix associated with minimization of a
quadratic function subject to linear constraints. Interested readers are referred
to Gill (1981) and to Fletcher (1974b) for simple lower and upper bounds on
variables (" box" constraints).

A serious problem that may occur in the active set method for linear
inequality constraints is zigzagging. For quadratic objective function models
such as in (5.4.12), the test of Lagrange multipliers after each iteration
indicates either that the problem is solved or that a previously inactive

Constrained Optimization 285

r--------',,-------X2

Subspace b

Xl

Figure 5.4.2. Zigzagging between two linear manifolds that define subspaces for two active
constraints in E3.

inequality constraint became active during the line search. This is not the case
for the general nonlinear objective function in (5.4.9), when the solution is
only obtained as the limit of a sequence of iterations with an unchanged active
constraint set E.

Zigzagging is the situation where the set of active constraints does not settle
down during the final iterations, but oscillates between two or more different
constraint manifolds that define the subspace. See Figure 5.4.2. Convergence
then becomes linear at best. The root of the zigzagging problem is that inexact
solutions are obtained during the line searches performed for each iteration.
Otherwise, once an inequality constraint index was removed from the active
set it would not enter again. Various ad hoc measures to prevent zigzagging
have been reviewed by Fletcher in Lootsma (1972:290-291). Perhaps the best
of these was proposed by McCormick (1969), who incorporated "bending"
along the line search ray (5.4.74). If motion ceases (t bounded) because a
previously inactive inequality constraint boundary is encountered, then the
bending policy calls for continuing beyond that boundary along the same
direction vector s, with the appropriate component of s set to zero. The
different gradient values that exist at the points of encountering constraint
boundaries are not utilized.

5.4.2. Program BOXMIN lor Lower and Upper Bounds. Program C5-6,
BOXMIN, is designed to be merged into quasi-Newton optimizer program
C5-1, QNEWT, which employs the "cutback" line search strategy. BOXM1N
adds a command option to set lower and/or upper bounds on variables;
otherwise default values of ±10,000 are assumed. More general linear con
straints, Ax ~ b, are not included in BOXM1N, because of the greater

286 Quasi.Newton Methods and Comtraints

programming complexity, less likelihood of need, and the ability to satisfy all
kinds of constraints by the multiplier penalty method described in Sections
5.4.3 and 5.4.4. Subroutines 5000 and 7000 usually provided for QNEWT
continue to be required to define the problem objective function and its
gradient, respectively. This section begins with an illustration of why confine
ment to a "box" neighborhood is often critical to obtaining a meaningful
solution, followed by description of the algorithm in relation to developments
in the preceding section. Several examples using BOXMIN merged into
QNEWT are provided.

Before describing BOXMIN, an interesting unconstrained optllluzation
problem is described to illustrate the need for providing upper and lower
bounds. Consider the "camelback" function described by Branin (1972:521):

f(x) = ax? + bxt + ext - x,x, + dxi + ex1. (5.4.75)

Various sets of coefficients a to e produce different numbers of extreme
values; in particular, there are six maxima and two minima associated with the
coefficients in Table 5.4.1. The rows labeled x? in Table 5.4.1 are components
of the starting variable vector for an optimization to locate an extreme value
of f. The surface of f(x) in (5.4.75) with the data in Table 5.4.1 is shown in
Figure 5.4.3; the related level curves are shown in Figure 5.4.4. Objective
function (5.4.75) and its gradient are programmed in C5-5, CAMEL, to be
merged into optimizer QNEWT. It is left to ,problem 5.11 for the reader to
verify the maxima as suggested in Table 5.4.1. Computing the minima indi
cated in Table 5.4.1 cannot be performed reliably with QNEWT and CAMEL
from arbitrary starting points; the reader should verify that fact, trying the
starting points, xo, given in Table 5.4.1. The potential problem can be seen in

Table 5.4.1. Extreme Values for a Set of Coefficients in the Camelback Function

Coefficients: a = -4, b = +2, c = -t, d= +4, e = -4

Maxima: C1 f 1.0360 0.2155 -2.1040
x, ±0.0898 ±1.7036 ± 1.6070
x, ±0.7126 ±0.7960 +0.5686
xG ±0.1O ±1.30 ± 1.8I
XO ±0.1O ±0.17 + 1.02

Minima: f - 2.4960

XI ±1.2300
x, ±0.1623
xp ±1.5 ±O.5h ±1.0h

xG ±0.2 ±O.5h Oh
2

uMaxima obtained by reversing signs of a-e and minimizing (5.4.75).
h Diverges and overflows unless 0.5 .:0::;: Xl s: 1.5 and 0 s: X2 s: 0.5.

----------- --

Constrained Optimization 287

2--' -3

Figure 5.4.3. Surface of camelback function described by (5.4.75) and data in Table 5.4.1.

Figure 5.4.3: there is a good possibility that a line search will falloff the side
of the surface and miss the two local minima.

For cases similar to that just cited and because many physical problems
allow only limited ranges of variables, lower and upper" box" bounds on
variables are very desirable. An examination of Figure 5.4.1 shows that such
bounds on variables satisfy the orthogonal factorization conditions for the
linear transformation x ~ Sb + Zy from subspace y to variable space x in a
trivial way. In those cases, the columns of Z are some subset of the coordinate
axes, as seen in (5.4.47).

Example 5.4.3. Generate a matrix description of the subspace representing
the degrees of freedom for box constraints when n = 5 and there are three
active or binding bounds:

(5.4.76)

288 Quasi-Newton Me/hods uruJ Constraints

-2-,-------------------------,

Figure 5.4.4. Level curves for the camelback function described by (5.4.75) and data in Table
5.4.1.

where bi may represent either a lower or upper bound. For this case,
E ~ (I, 2, 3), the subspace is in E', s ~ n - q ~ 2, and (5.4.47) specifies the
A, S, and Z matrices:

A ~ S ~ [! 0

II z~ [I !II
0 (5.4.77)
0
0

By (5.4.34), the x space in E' is composed of fixed and variable subspaces:

b, 0
b2 0

x~ bJ + O. (5.4.78)

0 x.
0 x,

Constrained Optimization 289

According to (5.4.63) and (5.4.64), the projected or reduced gradient and
Hessian are

(5.4.79)

According to (5.4.62), the search direction in the x space is

[
0 0] [0]
° ° h h -1 °

S = - ° ° 44 4, g4 = °~ ~ [h'4 h,,] [g,] . ~; .
(5.4.80)

The BOXMIN additions for QNEWT have not been implemented with
complete generality; to do so would require recording permutations of vari
ables so that the vectors and Hessian matrix illustrated in Example 5.4.3
would have the required structure. Instead, simple modifications to QNEWT
have been made that will satisfactorily contain line searches within feasible
regions and will behave well under most circumstances. In particular, the
entire Hessian in En is updated, but with reduced gradient and variable
differences (some update elements are zero). Since the full Hessian is positive
definite, the reduced Hessian in (5.4.64) will also be positive definite. The
interested reader is referred to Fletcher (I974b:I66) to see the complications
involved in a theoretically correct update of the LDLT factorization of the.
estimated Hessian.

The additions to the QNEWT BASIC code are shown in Table 5.4.2 as
keyed to the flow charts in Figures 5.3.1 (QNEWT) and 5.2.1 (cutback line
search).

Table 5.4.2. Additions to QNEWT to Implement BOXMIN for Bounds

Figure Balloon Line No. Purpose

5.3.1 A 1435 Reset/record binding variables
5.3.1 B 1576 Release all bounds
5.3.1 C 1602 Release all non-K-T bounds
5.3.1 C 1610 Project gradient into subspace
5.3.1 D 1622 Project search direction into

subspace
5.2.1 F 1775 Check/set more bounds in line

search
5.3.1 E 2350 Project new gradient into

subspace

290 QutJsi-Newton Methods and Constraints

Table 5.4.3. Subroutines Iucluded iu Code Segment BOXMIN

Name

Check for Additional Bounds in Subspace
Initialize Flags and Lower/Upper Bounds
See or Reset Lower/Upper Bounds on Variables
Reset and Record Binding Variables

Lines

1880--2000
2020-2070
2090-2350
3850--3960

Program segment BOXMIN also adds command 5 to the menu so that
lower and/or upper bounds on variables may be reviewed, added, or modified.
As seen in the BOXMIN code, program C5-6 in Appendix C, line 415 specifies
arrays L4(20), L5(20), and P5(20,2) for up to 20 lower and upper bound
active flags and the actual bound values, respectively. Array L5() contains O's,
+ I's, and -l's to indicate that each variable has not been set to a bound, is
set to its lower bound, or is set to its upper bound, respectively. The
subroutines required to perform these activities are shown in Table 5.4.3.

It is recommended that the reader run QNEWT with BOXMIN and
CAMEL merged, starting with the x O values subject to footnote b in Table
5.4.1. In addition, the following example from Himmelblau (1972:416) is
provided.

Example 5.4.4. Paviani posed the problem to minimize

W {W }~f(x) = ;~l ([In(x i - 2)]' + [In(10 - x,l]'} - DXi

such that

(5.4.81)

starting from

2.001 ,; Xi S; 9.999, j ~ 1 to 10,

i = 1 to 10.

Note that (5.4.81) is a situation where all evaluations of the objective function
must be feasible, since the computer cannot take the logarithm of a negative
number. Program C5-7, PAV17, is listed in Appendix C; it contains sub
routine 5000 for (5.4.81) and subroutine 7000 for the gradient. Alternatively,
lines 7000- may be deleted after PAV17 is merged and then QNEWTGRD
can be merged so that derivatives are obtained by finite differences. Either
way, the solution is obtained in six iterations: xi = 9.350267 using exact
derivatives and xi = 9.35516 using approximate derivatives, i = 1 to 10.

Program segment BOXMIN is included in all subsequent developments in
this chapter, since lower and upper bounds are frequently required.

Constrained Optimization 291

5.4.3. Nonlinear Constraints by Penalty Functions. The general nonlinear
programming problem from (5.4.1) is modified for convenience:

Minimize f(x) S.t. c(x) ~ o. (5.4.82)

The symbols "s.t.'· mean "sucb that". There are q equality constraints in the
first part of vector c and m - q inequality constraints in last part of vector C,

for a total of m constraints. It makes no sense to have more than n equality
constraints when there are n variables. since in theory the variables could be
determined so that optimization is not possible. See problem 5.23. The
presentation in this section will depend on a simple one-dimensional example
followed by a more comprehensive mathematical description. A powerful
program that solves problems having the structure of (5.4.82) is described in
Section 5.4.4.

The earliest penalty function was suggested by Courant (1943) for equality
constraints:

F(x. s) = f(x) + s{[c(xW[c(x)J)

q

=f(x) + s E [C,(X))2.
i-I

(5.4.83)

The idea is simple enough: if F(x, s) is minimized as values of s -> 00, then
c, -> 0, i = 1 to q, and f(x) is a constrained minimum, assuming that the
constraints can be satisfied. The penalty function name comes from the fact
that any c j '" 0 penalizes the minimization of F. In practice, a nominal value
of s is chosen, then F is minimized with respect to x, a larger value of s is
chosen, F is again minimized, and so on. The sequential nature of the process
has been given the name Sequential Unconstrained Minimization Technique
(SUM1), which was made popular by Fiacco and McCormick (1968). They
have shown that if a minimum F(x, s) occurs at some value x = x' given a
value for s, then x' is a continuous and smooth function of s; that is, x'(s) is
differentiable and may be extrapolated to the limit s -> 00.

Example 5.4.5. Consider the optimization problem in one variable subject to
one linear constraint:

Minimize x ll2 S.t. x = 1. (5.4.84)

Of course, the answer is x ~ 1, but it is instructive to form the penalty
function according to (5.4.83):

F(x, s) ~ x1j2 + s(x - 1)2. (5.4.85)

Figure 5.4.5 shows the penalty function F(x, s) in (5.4.85) for several values of
s; when s = 0, the graph is just the unconstrained objective function f(x).
Note that large values of the penalty multiplier s steepen the descent surface

292 Quasi-Newton Methods and Constraints

1
j
j
j

f(x)

.5 /
I

1.'

1.5

x_

Figure 5.4.5. The penalty function F(x, s) for values of penalty multipliers.

and move the minima closer to x ~ 1, but there are smaller values of s for
which the minimum penalty function value is unrelated to the known solution
at x = 1.

The first and second derivatives are continuous functions of x:

vF = tx-l/2 + 2s(x - 1),

V2F~ -0.25x- 3/ 2 + 2s.

(5.4.86)

(5.4.87)

It is not too obvious in Figure 5.4.5, but the minimum points on loci for
increasing s approach x = 1.0 from the left. Similarly, it is important to
observe from (5.4.86) that a zero value for the gradient of the penalty function
does not produce the correct constrained minimum x ~ 1 unless s --. 00. In
that limit the second derivative in (5.4.87) is infinite. Each sequential minimi
zation for increasingly larger values of multiplier s becomes progressively
more illconditioned. In practice, the sequence of minimizations with fixed,
larger values of s is terminated when the equality constraint, c(x) is suffi
ciently small.

Inequality constraints, c(x) ;" 0, can also be treated by exterior penalty
functions that result from a simple modification of (5.4.83):

m

F(x,s) =f(x) + s L {min[c;(x),O]}1
i=q+l

(5.4.88)

- -- -_.._----------

Constrained Optimization 293

The penalty function F(x, s) in the equality constraint example just given was
shown in Figure 5.4.5, and it would apply to a similar problem, minimize X l/2

such that x :2: I, except that the curves to the right of x ~ 1 in Figure 5.4.5 all
join the s = 0 or f (x) curve.

The first derivative in (5.4.86) for Example 5.4.5 would remain continuous
using (5.4.88), but it is seen from (5.4.87) that there is a finite jump in the
value of the second derivative as x increases through the value x ~ 1.
Unfortunately, this is a defect in the inequality penalty function (5.4.88), since
the second derivative is discontinuous exactly at the solution (s --. (0). Of
course, the inequality and equality penalty functions both have the defect that
the Hessian matrix of second derivatives becomes increasingly illconditioned
as the solution is approached, that is, as s --. 00.

Also note that for a finite value of s when (5.4.86) is equal to zero (a
minimum), the constraint c(x) = x-I < O. This is typical of the inequality
constraint penalty function in (5.4.88). Convergence is always approached
from the infeasible side of the constraint boundary, thus the name exterior
penalty function.

These remarks concerning early formulations of the penalty function apply
to n > 1 as well. Illconditioning as the constrained minimum is approached is
in the form of multidimensional ellipsoids with widely separated eigenvalues.
Contrary to the exterior method described where the approach is from the
infeasible side of the constraint boundaries, there is a barrier function method
that remains feasible during its approach to the constraint boundaries. Barrier
methods will not be described here (see problem 5.16), since they suffer from
the same if not worse illconditioning and other computational difficulties and
do not lead to the more successful multiplier penalty method to be introduced
next. The interested reader is referred to Fletcher (1981a:126) and Gill
(1981:207) for excellent overviews of allihese penalty methods with instructive
contour graphs of typical two-variable problems in those categories.

Considering the difficulties with illconditioning and discontinuous second
derivatives associated with the exterior penalty functions in (5.4.83) and
(5.4.88), it is fortunate that Powell (1969) has described a remedy for the basic
method. His method is described by extending Example 5.4.5 for the one-vari·
able case. Then a more general mathematical analysis is presented, followed
by program segment MULTPEN to be merged into QNEWT as described in
Section 5.4.4.

The multiplier penalty function for equality constraints is a modification of
(5.4.83):

1 q

F(x,S,u) =f(x) + 2 LSi[e;(X) - Ui]2
i-I

= f(x) + Hc(x) - ul TS[C(X) - uj.

(5.4.89)

This penalty function has q separate multipliers, Si, for each of the q equality

294 Qruui-Newton Methods and Constroinu

constraints; these are collected as the elements in the diagonal matrix S =

diag(s,] to provide more compact notation in subsequent analysis. Vector u is
a set of q offset values that shift the origin in the constraint or c space; u ~ 0
makes (5.4.89) essentially the same exterior penalty function as (5.4.83), except
that the latter assumes that the constraints are all equally scaled (so that only
one multiplier is appropriate).

There -are two sets of parameters in (5.4.89): S and u. Suppose that
x = x'(S, u) is the value of x that minimizes F(x, S, u), for arbitrary values of
S and u. Powell (1969:284) showed that the particular values S' and u' that
make c[x'(S', u')] = 0 are those that minimize f(x) such that c(x) ~ 0, that is,
x'(S', u') solves the constrained problem. Stated another way, there are an
infinity of values of x that minimize (5.4.89) given sets of Sl and U I values,
i = 1 to q. If the two sets of Sl and U I that correspond to a minimum of
(5.4.89), say S' and u', and also x = x'(S', u') satisfy c[x', S', u'] ~ 0, then
x'(S', u') is the solution to the minimization of f(x) such that c(x) = O.

The difficulty with the exterior penalty function in (5.4.83) was that the
multipler s had to approach infinity in order to reach a solution, which is a
computational impossibility. In Powell's multiplier penalty method the solu
tion is obtained by satisfying

dx'(S,u)] = 0, i=ltoq, (5.4.90)

for finite S. There is an outer and an inner loop to this process: First, finite
values of multipliers SI are selected. Then for a trial set of U I values, (5.4.89) is
minimized by varying x, and that value of x' is tried in (5.4.90). Since (5.4.90)
usually will not be satisfied, u is adjusted and the process is repeated.
Fortunately, the adjustments to u are not hit or miss; Powell showed that the
proper adjustment is

U(k+ 1) = U~k) _ C<k)
I I I'

i=ltoq, (5.4.91)

where c!k) = cI[x'(S, u)], the values of the constraint functions after the last
(kth) minimization over x.

The multiplier penalty process converges for suitably large but finite values
of SI' and it converges faster for larger values of SI' Also, it is shown that at
convergence the Lagrange multipliers associated with the q constraint func
tions are equal to

i=ltoq. (5.4.92)

This process is clarified by performing the multiplier penalty procedure on the
previous penalty example.

Example 5.4.6. The multiplier penalty function for the simple problem in
(5.4.84) is constructed according to (5.4.89):

F(x, s, u) ~ x1/2 + ~[c(x) - uf, (5.4.93)

Constrained Optimiz.ation 295

where the constraint function is

c(x)=x-l. (5.4.94)

For each minimization with a fixed s and an adjusted value of u, the gradient
of the multiplier penalty function is required:

g = 'VF= !x- 1/2 + sex - 1 - u). (5.4.95)

Those minima are determined when (5.4.95) is zero. From any value of x, the
Newton-Raphson step from (3.2.48) to make (5.4.95) iteratively approach
zero is

dx=
g

g"
(5.4.96)

where g' is the derivative of (5.4.95) with respect to x.
The program in Table 5.4.4 performs the sequence of minimizations, each

of which uses values of u adjusted according to (5.4.91), starting from u ~ O.
The iterative Newton-Raphson search is accomplished in defined variable
y ~ X'/2 because it is convenient (lines 140-220). Output from that program
for a fixed multiplier s ~ 2 and starting from x = 4 is shown in Table 5.4.5.
The values labeled "objective grad." are 'Vf(x), the gradient of the uncon
strained objective function, x '/2. Notice that the estimated value of the
Lagrange multiplier p computed by (5.4.92) rapidly converges to 'VI in this

Table 5.4.4. A BASIC Program for !be Multiplier Penalty Problem in Example 5.4.6

10 REM - ONE-VARIABLE MULTPEN EXAMPLE 5.4.4.
20 CLS : PRINT "INPUT HULT. COEF,. S="; : INPUT S
30 PRINT "INPUT STARTING VARIABLE X="; : INPUT X
40 u=o ; C~X-l : REM - lNIT OFFSET AND CALC CONSTR FNCN
SO F=SQR(X>+(S/Z>* (C-U)* <C-U) ; REM - TOTAL PENALTY FNCN
60 PRINT: PRINT .. x =":X : PRINT "F """;F : PRINT "CONSTR =";C
70 PRINT "U =":U : PRINT "OBJECTIVE GRAD =";1/2/SQRU)
80 PRINT "EST!. LAGRANGE MULT =";3*U
90 PRINT "PRESS <RETURN:> TO CONTINUE"; : INPUT 94$
100 IF 54$<> THEN GOTO 100
110 BoSue 140 : REM - FIND X FOR MIN TOTAL PENALTY FNCN
120 C=X-1 : U=U-C : REM - NEW CONSTR ~ UPDATED OFFSET U
130 GOTO 50 : REM - CLOSE OFFSET U LOOP
140 REM - NEWTON-RAPHSON SUBROUTINE TO FIND MIN FtX)
150 Ul=U+l : Y2=X : V=SQR<X)
160 6=.5+S*Y*(Y2~Ul) : REM - BRAD OF TOTAL PENALTY FNCN WRT X
170 G1=S'<3.V2-Ul) : REM - 2ND DERIV OF TOTAL PENALTY FNCN WRT Y
180 D=-6/61 : REM - NEWTON-RAPHSON STEP IN Y=SQR<X>
190 IF ABSCD)}.OOOOOt THEN GOTO 210
200 X=Y2 : RETURN : REM - CONVERGED
210 Y=Y+D : Y2=yty REM - TAKE NEWTON STEP IN Y
220 GOTQ 160 : REM - CLOSE NEWTON LOOP
230 END
Ok

296 Qumi-Newton Methods and Constraints

Table 5.4.5. Output of Ibe Program in Table 5.4.4 for Example 5.4.6

.5969682
MULT <= .596968
TO CONTINUE?

RUN'
INPUi NULT. COEF. 5:? 2
lNPUT STARTING VARIABLE X=? 4

x = 4
F = 11
CONSTR = 3
U = 0
OBJECTIVE GRAD = .25
ESTI. LAGRANGE MULT = 0
PRESS <RETURN> TO CONTINUE?

x = .701'5161
F = t.19~936

CONSTR =-.298484
U = .298484
OBJECTIVE GRAD
ESTI. LAGRANGE
PRESS <RETURN)

x = 1.0551
F = 1.062632
CONSTR = 5.510009E-02
U = .2433839
OBJECTIVE GRAD = .4867693
ESTl. LAGRANGE MULT ~ .4867678
PRESS <RETURN> TO CONTINUE?

case. That is due to (5.4.5):'

x "" .9924326
F = 1.063041
CONSTR =-7.567466E-03
U = .2509514
OBJECTIVE GRAD = .5019027
ESTI. LAGRANGE MULT = .5019027
PRESS <RETURN> TO CONTINUE?

x: = 1.001087
F = 1.062434
CONSTR = 1. 08695£ -(13

U = .2498644
OBJECTIVE GRAD = .4997285
ESTI. LAGRANGE MULT = .4997288
PRESS <RETURN> TO CONTINUE?

x = .9998462
F "" 1.062509
CDNSTR =-1.5378E-04
U "" .2500182
OBJECTIVE GRAD"" .5000385
EST!. LAGRANGE MULT = .5000364
PRESS <RETURN> TO CONTINUE?

)("" 1.000021
F ::::: 1.062499
CDNSTR "" 2.074242E-05
U = .2499974
OBJECTIVE GRAD = .4999948
ESTI. LAGRANGE MULT = .4999949
PRESS <RETURN> TO CONTINUE?

v[(x', p') = Ap'. (5.4.97)

In this example, A = I according to (5.4.14), since c(x) = x-I.
Figure 5.4.6 shows the first three multiplier penalty function curves on

which a minimum was determined, as well as the curve for near-optimal
u' = 0.249996. The corresponding minimum was at x' = 1.000021, which gave
a constraint function value of 2.1E-5. The most important observation is that
the minimum on the converged multiplier penalty function curve was not at
the solution point and was obtained with a finite value of s = 2 in this case.
Larger values of s, say s = 4, only make the convex curves more steep-sided so
that convergence is more rapid.

Example 5.4.6 could have been worked in a similar way for inequality
constraints by a modification of (5.4.89) that is similar to (5.4.88):

1 m
F(x, S, u) = [(x) + 2" L s, (min[c,(x) - u" oj ((5.4.98)

i=q+l

The locus of F(x) given values of Sand u would appear as in Figure 5.4.6,

Constrained Optimization 297

5=2

"" L! = 0.298484 "

\~: 0 O,,~\ / j/
\, ,....~ u = 0.249997 .'/ / /

" '\.'(converged) , //, , / /'

",~, "~ fix)

'''-, '...:::; -
~-

.5

1.5

1.'

l!I.I3~.'-~~-~--i".--~---c~t---~~~---i,,--~-~--:~
~ v v ~

x_

Figure 5.4.6. The first three and the last minimization curves for multiplier penalty function
Example 5.4.6.

with the important difference that each curve would be identical to the f(x)
locus to the right of the respective points of tangency. Since the second
derivative of F(x) is discontinuous at those points, the multiplier penalty
function has a clear advantage over the original exterior penalty function
(5.4.88) because the point of tangency does not converge to the solution point in
the multiplier penalty method. Fletcher (1981a) made that advantage clear in his
complete analysis of the multiplier penalty method for mixed equality and
inequality nonlinear constraints.

With that introduction to multiplier penalty functions, the theoretical basis
is described more thoroughly by first developing only the equality constraint
case without loss of generality. The reader might be tempted to try solving an
equality-constrained problem by minimizing the Lagrangian function (5.4.2),
treating both x and p as the variables. Of course, that will not work, because
(5.4.4) shows that F(x, p) is a minimum with respect to x and a maximum with
re~pect to p. However, if one knows the values of the Lagrange multipliers at
the solution p', then it is possible to perform an unconstrained optimization to
the constrained minimum over x. The reader may wish to confirm that fact,
using the problem posed in Example 5.4.1 with the optimal Lagrange multi
plier values given there.

In the spirit of the preceding concepts, Hestenes (1969) suggested what he
called the method of multipliers based on the augmented Lagrangian function

p(x,S,p) ~ f(x) - pTC(X) + Hc(xlrS[c(x)]. (5.4.99)

298 QUDSi-Newton Methods and Constraints

This function is the Lagrangian with an added term, and it is used in the
following analysis. The added term can make the Hessian of the augmented
function positive definite, as discussed in Section 5.4.5. For the immediate
purpose, expansion of (5.4.89), use of the important definition from (5.4.92)
and ordinary matrix algebra reveal that

1 m Pt
F(x,S,u) = P(x,S,p) + - L -.

2 i-I Sj
(5.4.100)

The difference between Flx(S, u)] and Plx(S, p)] is thus not a function of x, so
that the trajectory of respective minima are the same. That is, x'es, u) =

x'es, pl. This makes it possible to compute using F(x, S, u) but make the
following analysis using P(x, S, p).

In order to derive a correction for offset vector u in (5.4.89), it is convenient
to treat S as a constant and obtain a correction for Lagrange multiplier p,
knowing that adjustment of p will result in adjustment of u according to
(5.4.92). The point of view that led to (5.4.4) is now taken with respect to P in
(5.4.99): the variables are regarded as functions of the Lagrange multipliers,
x = x(P), so that minimization of Plx(p), p] in (5.4.99) implicitly requires the
solution to the nonlinear set of equations

Vpp[x(p),p] = O. (5.4.101)

By the implicit function theorem (Section 3.3.1), there exists a neighborhood
about a solution point x'(p') of (5.4.101) such that

p[x(p),p] S; p[x',p] = P[x',p'], (5.4.102)

which holds because c(x') = Oin (5.4.99). It has again been shown that p' is a
maximizer of Pcp) or minimizer of - pcp). A Newton step to approach such a
solution in p requires the first and second derivatives of P with respect to p;
from (5.4.99):

VpP(p) = -c(p),

V;P(p) = -[NTW-IN],

where the defined matrices N and Ware

N = [vcI Vc,

W = V;P [x(p), pl.

(5.4.103)

(5.4.104)

(5.4.105)

(5.4.106)

To summarize, the process of minimizing P[x,p] in (5.4.99) is to estimate a
value of p and then minimize P[x, pI with respect to x. Then a correction to p

I

Constrained Optimhation 299

would be

where the Newton step dp is

p(k+ 1) = p(k) + dp, (5.4.107)

(5.4.108)

There are Newton methods to minimize P with respect to x as well as the
separate Newton method to adjust the Lagrange multipliers p to maximize P.
Fletcher (1975) has implemented those, which require both first and second
derivatives with respect to x, as well as alternative quasi-Newton methods,
which require only first derivatives.

Fortunately, both Powell (1969) and Hestenes (1969) employed a more
elementary correction dp that is valid and performs well if S is sufficiently
large but finite. Hessian matrix W in (5.4.106) is a function of multipliers
contained in diagonal matrix S as seen by (5.4.99), that is, W(S). Suppose that
a large diagonal matrix D is added to S. Then, from (5.4.99) when x = x',

W(S + D) = W(S) + NDN T
, (5.4.109)

where the parentheses serve as functional notation. A first application of the
Sherrnan-Morrison-Woodbury identity in (2.1.36) yields an expression for
[W(S + DW" and a second application yields

See Problem 5.25. The left-hand side of (5.4.110) is the main component of the
correction in (5.4.108), and (5.4.110) is dominated by the increase in multi
pliers S if D is large enough. Therefore, for sufficiently large multipliers in
diagonal matrix S, the correction to the estimated Lagrange multipliers is

dp ~ -Sc, (5.4.111)

and the corresponding correction to the offset vector u according to (5.4.92) is

du = -c. (5.4.112)

Regarding the choice of S = diagls1 s2 ... sml, multipliers Sj are increased
from nominal starting values as necessary to force convergence of the con
straints c, at a reasonable linear rate between successive minimizations of
F(x, S, u) with respect to x. Powell has suggested that each Icik)1 should
decrease by a factor of at least 4; otherwise, the corresponding s, multipliers
should be increased by a factor of 10. It is important to note that the
corresponding u, is simultaneously decreased by a factor of 10 so that the
Lagrange multipliers estimated by (5.4.92) are unchanged.

300 Quasi-Newton Methods ond Constroints

Table 5.4.6. Steps in Powell's Multiplier Penalty Algorithm to Minimize (5.4.89)

1. Initialize offset u = 0 and set Si = 1, i = 1 to m, or choose Sj such that the penalty
terms contribute equally nod sum to the magnitude of fix).

2. Minimize F(x, S, u) to find x' (S, u) nod c[x' (S, u)].
3. Stop if IIc(x')lIoo is suitable small, but if IIc(x')lIoo increased, go to step 5.
4. If each Ic;(x')1 decreased by factor 4 or more, set u = u - c(x') nod go to step 2.
5. Corresponding to each Ic;(x')l not decreasing by at least factor 4, adjust Si = lOs;

and U; - u;/lO, then go to step 2.

The steps in Powell's algorithm for this most successful penalty method are
given in Table 5.4.6; compare this to Example 5.4.6, which did not include the
procedure for increasing the multipliers. The algorithm in Table 5.4.6 applies
equally well for the multiplier penalty function (5.4.98) for inequality con·
straints, with some necessary details provided by Fletcher (1975). A precise
flow chart and program segment to be merged with QNEWT and BOXMIN
are described next.

5.4.4. Program MULTPEN lor Nonlinear Constraints. Program segment
C5-8, MULTPEN, is designed to be merged into the program formed first by
quasi·Newton optimizer QNEWT with BOXMIN merged for lower and upper
bounds on variables. MULTPEN implements the algorithm described in Table
5.4.6, treating the optimization routine as a subroutine during the penalty
iterations that adjust the multipliers in S and the offset vector u; see multiplier
penalty objective functions (5.4.89) and (5.4.98). The quasi-Newton optimizer
is started the first time with a Hessian matrix estimate equal to the unit
matrix; subsequent minimizations start with the Hessian matrix from the
preceding minimization. The result is a longer first minimization followed by
noticeably shorter minimizations thereafter. Powell (1969:296) and Fletcher
(1975:333) describe a correction to the Hessian matrix to account for any
changes made to Sand u between iterations, but that refinement was not
found necessary and has not been included in MULTPEN.

. As seen in program listing C5-8 in Appendix C, the MULTPEN algorithm
is accomplished by adding lines 4000 to 4990 as well as a few lines that
overwrite the original QNEWT code. An important change to QNEWT is
provision in MULTPEN of a standard objective function and its gradient
subroutines (5000 and 7000, respectively), so that the optimizer always ad
dresses the multiplier penalty functions described by (5.4.89) or (5.4.98).
Therefore, the user must now describe his Or her unconstrained objective
function fix) in subroutine 5500, and the corresponding gradient, g ~ 'Vf(x),
in subroutine 7500; these are called by subroutines 5000 and 7000, respec
tively. Also the user must supply a description of the generally nonlinear
constraint function(s) in subroutine 8000 and their gradients in a Jacobian
array in subroutine 9000. The details for writing these four subroutines are

_. - _ .. - -------------

Constrained Optimh.ation 301

Table 5.4.7. Subroutines Included or Required for Code Segment MULTPEN

Name

Compute Initial Multiplier Values
Find Maximum Constraint Residual Magnitude
Check User's Gradient by Differencing
Standard Multiplier Penalty Function
User's Unconstrained Objective f(x)
Standard Gradient for Penalty Function
User's Gradient for Objective f(x)
User's (In)equality Constraint Function(s)
User's Jacobian for Constraint Function(s)

Lines

4700~4795

4ROO-4895
4900-4990
5000-5140
5500-6999
7000-7100
7500-7999
8000-8999
9000-9999

given in Example 5.4.7. The various subroutines in MULTPEN are listed in
Table 5.4.7. The flow chart for MULTPEN is shown in Figure 5.4.7. Sub
routine 4700 assigns initial weights by first determining which constraints are
binding; that includes all equality constraints and those inequality constraints
that are not satisfied at the starting value of xo. Then, equal portions of
1[(xo)1 are allocated to each squared constraint, thus determining the value of
its multiplier. All inequality constraints that are initially satisfied start with
unit multipliers. At the end of each minimization (loop), the value of the
constraint having the maximum modulus is displayed so that the user may
decide to continue or not. Experience with MULTPEN used with optimizer
QNEWT suggests that Icil""", < 1E-6 is a satisfactory stopping criterion.

Flag variable K7 plays an important part in the algorithm, indicating when
the offsets have been adjusted. The offset adjustment is made every loop unless
the required (linear) convergence rate is not obtained. Satisfactory conver
gence is indicated when the infinity norm of the constraint vector decreases by
at least a factor of 4 every loop. Otherwise, the multipliers are increased for
the particular constraints whose magnitudes failed to decrease by a factor of 4.
Multiplier increases by a factor of 10 are accompanied by similar decreases in
the corresponding offsets to preserve the Lagrangian multiplier estimates in
the fundamental assumption of (5.4.92).

Example 5.4.7. A problem from Himmelblau (1972:360) is

Minimize [(x) = 4x, - x~ - 12

such that

c, (x) = 25 - xf - x~ = 0,

c2 (x) = lOx, - xf + 10x 2 - x~ - 34 ;,,: 0,

(5.4.113)

Initialize: Offset u = 0;
Offsets reset switch K7 = 0;
Multipliers; 5 =I; loop k =1;

lIe(l)II.., = ""

Compute starting multipliers
Check user gradients

Min F(x. S. u) with H ::: I

4120j----;===1 -.

4020

4050

4092
1573
4100

4140

Continue, No
4150

4310 Converging 4200

Increment loop count k =k + 1
Begin 5 and u adjustments

;. C(k-1)

Diverging
r---L----,

4460

K7

= 1

4170

=0

K7
=0

Just set new Sj

..(k) >-""'O:;K~ 4210

4340 r __-,~=,-,-l_..

Just adjusted
offsets u. "

Restore u = u

L---------1 4350

Increase multipliers
on slow constraints;

si = 10 s;; Uj ::: u;llO; K7 ::: O.

4290

Min F(x, 5, u)
with prior H

4120

Adjust offsets:
Save~=u,
u=u+cIu
SetK7=1

Figure 5.4.7. Flow chart for multiplier penalty program MULTPEN addition to quasi-Newton
optimizer QNEWT.

302

Constrained OptimizatiQn 303

Subroutines 5500, 7500, 8000, and 9000 that program the equations (5.4.113)
and related gradients are contained in program C5.-9, H1M360, in Appendix
C; the lower bounds on the two variables are enforced by projection due to
BOXMIN.

Subroutines 5500 and 7500 are similar to those normally provided in 5000
and 7000 with QNEWT to describe the unconstrained objective function and
its gradient, respectively.

Subroutine 8000 describes constraints c,(x) and c2(X) and must contain
several important features. In general, there are M constraints in array C(),
the first Kl of these being equality constraints (K1 = 0 may occur). Both Kl
and M must be set in subroutine 8000. Inequality constraints are assumed to
be in the form c,(x) ~ 0; if given a constraint y(x) s; 0, then it must be
programmed c,(x) = - y(x).

Subroutine 9000 contains the Jacobian matrix whose columns are the
gradient vectors of the respective constraint functions, that is, A = [vc, VC2]'
These elements must be programmed in array A(J, l) so that a typical element
is the first derivative of the lth constraint with respect to the Jth variable.
Note that these row and column dimensions are reversed from those of the
Jacobian matrix in the Gauss-Newton method (4.4.16). The definition em
ployed in tltis section agrees with most literature on constraints.

To execute this example, LOAD"QNEWT, MERGE"BOXM1N,
MERGE"MULTPEN, and MERGE"HlM360. RUN the program, using
command 1 to set x, = 3, X2 = 3; command 2 to print only every 50th
iteration; command 5 to set zero lower bounds on x, and x 2 ; and command 6
to begin the sequence of constrained optimizations. The initial output checks
the user's subroutine 9000 by comparing computed g(x) ~ V F(x) values by
finite differencing the entire penalty function F(x) for u = 0; see (5.4.89) and
(5.4.98).

The output from the first and last minimizations are shown in Table 5.4.8.
The first of the sequential minimizations required nine iterations and 17
function evaluations and reduced the maximum constraint modulus to 0.9976.
Note that x, ~ 0 came into play twice. The second minimization required four
iterations and five function evaluations, and even less work was required for
each subsequent minimization. Following the three dots in Table 5.4.8, the last
iteration allowed by the user found x' = (1.00128 4.89872)T and p' ~
(1.01560 0.75447)T with a maximum constraint modulus of 3.53£-7. A total
of 32 function evaluations were required for all six minimizations. It is easy to
confirm (5.4.5), g(x') = Ap'.

Example 5.4.& The Rosen-Suzuki test problem was solved by various penalty
methods by Gould in Lootsma (1972:356):

Minimize f(x) = xl + xi + 2x; + x; - 5x, - 5X2 - 21x, + 7x.

Table 5.4.8. Partial Output From Example 5.4.7, Program HIM360

4 #*#4.
59.1168
4 tttt.##
13.0280
4 :ft#.##
10.5119
12.5709
lL2721

4 .****4 #tt###
4 tt#"tt*
25_6571

#tttt#.#
tt#ttO.#
-tt-tt-tt....t-tt

I
1
2

AT START OF ITERATION NUMBER 1
FUNCTION VALUE ~-9

XU> 6(1)
3.00000000 4.00000000
3.00000000 -6.00000000

ACTIVATED X(1) LOWER BOUND
H*4#4t CUT BACK STEP SI2E BV FACTOR OF 4 ••••*

STEP-TO-GRADIENT DEGREES= 0.0000
ACTIVATED X(1) LOWER BOUND

CUT BACK STEP SIZE BY FACTOR OF
CUT BACK STEP SIZE BY FACTOR OF
CUT BACK STEP 51 IE BY FACTOR OF

STEP-TO-aRADIENT DEGREES=
ACTIVATED X(1) LOWER BOUND

####.# CUT BACK STEP sIZE BY FACTOR OF 4 ###.#
ACTIVATED X< 1) LOWER BOUND

#####. CUT BACK STEP SIZE BY FACTOR OF
STEP-TO-GRADIENT DEGREES=•••"4t. CUT BACK STEP SIZE BY FACTOR OF
STEP-TD-GRADIENT DEGREE5=

•••### CUT BACK STEP sIZE BY FACTOR OF
STEP-TD-GRADIENT OEGREES=
STEP-TO-GRADIENT DEGREES=
STEP-TO-GRADIENT DEGREES=

CONVERGED; SOLUTION IS:
AT START OF ITERATION NUMBER 9

FUNCTION VALUE =-32.76677
XO) G<I)

0.Q1202629 0.00007400
2 5.01655694 -0.00015321

TOTAL NUMBER OF FUNCTION EVALUATIONS = 17
i*.***.***••*********.**•••********.*****.***
ESTIMATED LAGRANGE MULTIPLIERS -

CONSTRAINT # 1: 0.00000
CONSTRAINT # 2: 0.00000

AFTER 1 PENALTY MINIMIZATIONS.
THE MAX CONSTRAINT MODULUS # 1 = .9976354

CONTINUE PENALTY MINIMIZATIONS (Y/N)?

•••
AT START OF ITERATION NUMBER 1

FUNCTION VALUE =-31.19197
I Xl}) G(l)
1 1.(J()128162 -0.00005222
2 4.89871779 0.00000743

STEP-TO-GRADIENT DEGREES= 9.2431
CONVERGED; SOLUTION IS:
A~ START OF ITERATION NUMBER 2

FUNCTION VALUE =-31.19197
1 X<l) Gn>
1 1.00128243 -0.00000001
Z 4.89871754 0.00000000

TOTAL NUMBER OF FUNCTION EVALUATIONS = 32

ESTIMATED LAGRANGE MUL,lPLIERS -

CONSTRAINT" 1: 1.01560
CONSTRAINT .. L: (t.75447

AFTER 6 PENALTY MINIMIZATIONS.
THE MAX CONSTRAINT MODULUS # 2 = 3.536583E~07

CONTINUE PENALTY MINIMIZATIONS {Y/N)~

----- - -----_. - --- ------

Constrained Optimization 305

such that

(5.4.114)

2x{ + xi + xi + 2x1 - X 2 - X 4 :S 5.

The functions and their gradients in (5.4.114) are coded in program C5-1O,
LOOT356, in Appendix C. Note that there are three inequality constraints, so
Kl = 0 and M = 3. Also note the required reversal of signs in the inequalities
in subroutine 8000.

After accomplishing the LOAD"QNEWT, MERGE"BOXMIN,
MERGE"MULTPEN, and MERGE"LOOT356 operations, it is informative
to add the following lines that display the multipliers in S whenever they are
changed:

4430 PRINT "-----------LOOP#";L8;" MULT S(";I;") =";
4432 PRINT USING" ######.####";S(I)
4434 NEXT I
A standard starting point is x = (0 0 0 O)T, and the constrained optimum

is at x' = (0 1 2 -ll with Lagrange multipliers p' = (1 0 2)T, that is, the
second constraint is not binding (active) at the solution. The multipliers all are
unity at the start, because none of the constraints were binding. At conver
gence, the multiplier for the third constraint had been increased to 10,000.

A more interesting starting point is x = (I 2 3 4)T, from which all the
multipliers are increased. Much more accurate results are obtained by chang
ing the optimization stopping criterion (menu command 2) to 0.000001. Note
that after 11 penalty loops, the maximum constraint modulus has dropped off
the end of the single-precision variable (P8) and become zero.

Since it requires 5 minutes to make these runs in IBM interpretive BASICA,
IBM BASIC Compiler Version 1.00 was used to generate machine code. That
reduced the run time to 48 seconds, a 6.25 : 1 reduction.

This section on program MULTPEN is concluded with a warning to users
that the constraints must be appropriately scaled. That amounts to having
each equality and inequality function producing values of approximately 1 to
100 in magnitude, and the same must be required of their derivatives. A

, problem Fletcher (1975:338) classified as difficult and requiring constraint
scaling is the classic Colville (1968) test problem 3, which has five variables
and 16 constraints, six of them nonlinear. 11 is recommended for the reader
wishing to push MULTPEN to its limit. The solution is obtainable, but the
bounds on variables must be included in the penalty function, since BOXMIN
fails to perform satisfactorily in that case.

306 QI«lS;-Newton Methods and Constraints

5.4.5. Other Methods for Non/inear Constraints. Perhaps the most active
area of current research in optimization methods concerns problems involving
nonlinear constraints. Nonlinear programming algorithms not previously
mentioned are usually much more difficult to program, but merit discussion so
that the reader may comprehend existing and future articles on these methods.
Among those algorithms that have performed well in the past or are currently
attractive are the following:

I. Nonlinear elimination methods.
2. Lagrange-Newton method.
3. Exact penalty function method.
4. Sequential quadratic programming (SQP) method.

This section begins with methods that extend the concepts employed to deal
with linear constraints, especially projection of the gradient and Hessian. The
very nature of projection ignores curvature, which has now been recognized as
the main consideration when dealing with nonlinear constraints. Therefore,
the second part of this section deals with the Lagrangian 'function and its first
and second derivatives. It turns out that the curvature of the constraint
functions is even more important than that of the unconstrained objective
function.

The theoretical basis for nonlinearly constrained optimization is the im
plicit function theorem in the sense that nonlinear constraints implicitly
determine a neighborhood (small subspace) about x in which the necessary
and sufficient conditions of unconstrained optimization apply. The neigh
borhood for which that is valid is the entire linear subspace for linea,
equality constraints, because the subspace is not a function of x, that is, A =
[VCl Vc, '" vcql is not a function of x, since Vc, = a, from ~x = b.
Drawing on the concept of a generalized elimination method from Section
5.4.1, note that (5.4.43) can be expressed as

[A Vr r
= [8 Z]'

so that a linear transformation of variables may be defined as

[~] = [A vfx - [~].

(5.4.115)

(5.4.116)

If z = 0: (5.4.116) yields (5.4.10), Arx = b, and (5.4.115) and (5.4.116) yield
(5.4.34), x = Sb + Zy. This result is merely the linear transformation of the x
space into the combined z, y space, where z = 0 leaves the y subspace in which
the reduced gradient and reduced Hessian were projected for linear con
straints.

-~-- - - - - -~------ --- - - ---

Comtrained Optimhation 307

The analogue of (5.4.116) for the nonlinear constraints case is to consider
the nonlinear transformations

z ~ c(x), (5.4.117)

(5.4.118)

The derivatives in the x space are mapped into a partitioned gradient vector
according to

(5.4.119)

Gradient gy contains the derivatives of f(x) in the subspace of free variables,
and gz provides a first-order estimate of the Lagrange multipliers as indicated
by (5.4.29).

Within the minimization that occurs in subspace y, there must now be an
inner Newton iteration that keeps y constant while maintaining z = O. The
generalized reduced gradient (GRG) method by Abadie and Carpentier in 1969
was an early application of these concepts. The interested reader is referred to
Fletcher (1981a:147).

To examine the remaining methods to be discussed for optimization with
nonlinear constraints c(x) = 0, the Lagrangian function

is differentiated with respect to both variables x and multipliers p:

V,L = g- Ap,

q

V;L = H - E Pi'V;C;.
i-I

~2L = 0V p ,

(5.4.120)

(5.4.121)

(5.4.122)

(5.4.123)

(5.4.124)

where g ~ v,f, H = V;'f, and A = [vc, VC2 VCq]. Then the n + q
changes in the elements of x and p for a Newton step toward a stationary
point may be expressed by

(5.4.125)

The linear system of equations in (5.4.125) can be solved for dx = X(k+l)

X(k) and dp = p(k+l) - p(k); this iterated process is called the Lagrange-

I -

308 Quasi.Newton Methods ond Constraints

Newton method. It may be viewed as a linearization of the system of nonlinear
equations VL(x, p) = 0 in the same sense that the Newton-Raphson method
(3.2.48) solves a set of nonlinear equations.

Example 5.4.9. Conn (1985:11) gave an example of both direct elimination
and the Lagrange-Newton method:

Minimize f(x) ~ Xl + x; + x;

such that -Xl + 3X 2 - x 2x, - 1 = O.
(5.4.126)

The solution for this particular problem may be obtained by solving the
constraint for Xl and substituting that expression into f(x):

(5.4.127)

Therefore. the new unconstrained problem is to minimize

F(y) =3x2 + x~ - x 2x, + xj - 1 (5.4.128)

in the subspace y = (x 2 X,)T. The Newton step in (3.2.48) is exact for a
quadratic function:

dy=-t[i 1][2x2 - x, + 3].
2 -x 2 +2x,

(5.4.129)

For instance, for y(l) = (X2 X,)T ~ (2 l)T, dy = (-4 _2)T and y(2) =

(-2 -l)T Therefore, the solution to (5.4.126) is x' = (-9 -2 _l)T, using
(5.4.127), and it may be verified from (5.4.5) that the Lagrange multiplier is
p' = -1. Typically, the projected Hessian employed in (5.4.129) is positive.
definite, even though (5.4.122), the Hessian of the Lagrangian function, is not;
in fact it is singular.

In general, the Lagrange-Newton method requires solution of (5.4.125).
Suppose x = (4 2 l)T and p ~ 3. Then (5.4.125), which is rank 3, yields
dp = -4, dx l = 13, dX 2 = If, and dx, = - 't. Therefore, the Newton point
is X(k+l) = (17 'f - ¥)T and p ~ -1. Also, the function value increases
from flk) = 9 to f(k+l) ~ 43.12. So even though the Lagrange multiplier is
predicted correctly, a sequence of line search iterations would be required.

Exact penalty function methods attempt to estimate the exact Lagrange
multipliers as functions of x, p = p(x), so that the minimum of L[x, p(x)] in
(5.4.120) is also the minimizer of f(x). By the chain rule, the gradient of L(x)
in (5.4.121) when p = p(x) is

VxL(x) = g(x) - A(x)p(x) - [Vp(X)T]C(X). (5.4.130)

--~-- -- -

Constrained Optimization 309

At the solution point x', p', (5.4.5) requires g(x') = A'p' and c(x') = 0; these
relationships applied to (5.4.130) meet the necessary conditions for a mini
mum, V,L(x) = O. One way a convergent sequence for p(x) may be selected is·
suggested by (5.4.24):

p(x) = A+g. (5.4.131)

There are severe problems with the exact penalty function method. Second
derivatives are required, and it is necessary to add a penalty term, say eTSc to
(5.4.120) to make V;L(x) positive-definite. But the result is similar to P(x, S, p)
in (5.4.99), which has been successfully applied from a different point of view.
Some investigators have defined approximations for (5.4.131) so that least
squares solutions of overdetermined linear equations are not required.

By far the most successful yet complex technique for solving the nonlinear
programming problem is the sequential quadratic programming (SQP) method.
A more convenient form for (5.4.125) is derived by recognizing the iterative
nature of the process: p(k+l) = p(k) + dp and d(k) = dx. Therefore, (5.4.125)
may be rewritten as

The first matrix equation in (5.4.132),

V;Ld - Ap = -g,

yields

d = [V;Lj-l(-g + Ap) = - [V,;Lj-1V,L,

(5.4.132)

(5.4.133)

(5.4.134)

using (5.4.121). But (5.4.134) implies that d is the Newton step for the problem

such that

Minimize L(x + d,p'), (5.4.135)

(5.4.136)

where the constraint is the second matrix equation from (5.4.132) with
e(x') = O.

A typical "major" iteration of the SQP method is to perform the line search

(5.4.137)

where direction d(k) solves the quadratic subproblem

(5.4.138)

310 Quasi-Newton Methods and Constraints

such that

(5.4.139)

The inequality constraint has been added for generality. In fact, the key
property of the SQP method is that it rapidly identifies the correct set of
binding constraints. The efficiency of the SQP method clearly depends on the
efficiency of solving the sequence of quadratic subproblems for search direc
tion d. That is clearly possible, based on the analysis of Section 5.4.1, because
(5.4.139) is simply a set of linear constraints that amount to a linearization of
the nonlinear constraints c. Recall that A ~ [VCl VC2 ... VC q].

A practical disadvantage of the quadratic subproblem method just de
scribed is that second derivatives are required, and the Hessian in (5.4.138) is
often singular or not positive definite. Han (1976) suggested using a Broyden
family updated matrix approximation for V;L in (5.4.138). It is not clear
which of several similar updating methods is best, but good practical results
have been obtained with these variations of quasi-Newton algorithms involv
ing quadratic subproblems. Reported results indicate that Han's algorithm and
similar variations run about twice as fast as the best of alternative methods for
nonlinear programming problems. However, there are several ad hoc decisions
left to the programmer and the complexity is considerable unless an efficient
constrained quadratic minimizer subroutine is available. In fact, Celis (1985)
has extended Fletcher's trust radius technique described in Section 4.2.1 to
minimize the quadratic subproblem. The method chosen must be able to deal
with infeasible or unbounded subproblems, unbounded approximations for
the Lagrange multipliers, and nonpositive-definite and singular Hessian ap
proximations.

This section is concluded with the remark that many concepts usually
encountered in explanations of nonlinearly constrained optimization have
been omitted for the sake of clarity. For example, these discussions usually
involve convexity, namely, the condition that all points in a subspace. having
nonlinear boundaries may be reached by linear interpolation between any two
boundary points. As Fletcher (1981a:63) remarked, "The subject of convexity
is often treated quite extensively in texts on optimization. My experience,
bowever, is that much of this theory contributes little to the development and
use of optimization algorithms."

Problems

5.1. Find an equation to compute the nth root of a given positive number e,
using the Newton-Raphson method. In other words, obtain a formula
for iteratively finding x such that I(x) = x' - e = O. This approach is
programmed in many handheld calculators.

Problems 311

5.2. Use a secant search to find the square root of 80 to six significant
figures, starting with a guess of x = 10. Compare this performance with
that obtained by your equation in the preceding problem. Compute the
rates of convergence.

5.3. Verify that B8FGS in (5.1.22) satisfies the quasi-Newton condition in
(5.1.10). Similarly, verify that R OFP in (5.1.25) satisfies the quasi
Newton condition in (5.1.24).

5.4. Modification of a rank n matrix by a term of rank p ~ n may be
accomplished by the Sherman-Morrison-Woodbury formula (2.1.36).
Consider the inverse update formula R OFP in (5.1.25). Since ROFPBoFP

= I, use (2.1.36) with p = 2 and Q = R to obtain B OFP:

• _ [dTBd]yyT _ [YdTB + BdyT]
B OFP - B + 1 + T T T'

yd yd yd
(5.5.1)

5.5. Show that under a linear transformation of the variable space:
(a) The Secant recursion (5.1.2) is invariant if Bik) is positive.

(b) Directional derivatives (slopes) are equal in the two spaces
according to (5.1.48).

(c) The steepest descent is not invariant unless under an orthogonal
transformation, particularly that the upper triangular form in U
such that UTU = H. converts steepest descent into Newlon's
method.

(d) The BFGS update formula (5.1.21) is invariant.

5.6. Employ linear transformation and translation of variables, x= Dx + c
to transform the interval 400.1234 ~ x ~ 400.9876 to - I ~ x ~ +1.
Find D and c. Indicate any necessary adjustments to first and second
derivatives from the x space to the xspace.

5.7. Linear transformations of variables, x= Tx, do not provide an in
variant metric for Euclidean distance under the two-norm, \lxll 2 = \lxlb
unless T is orthonormal. Using (5.1.43), show that the elliptic norm
(4.1.9) is invariant without such a restriction on T.

5.8. Verify the algebra leading to the conclusion that inequality (5.2.12)
involving three sampled function values guarantees that the minimum
on a quadratic function occurs at t -< 4 on the normalized line search t
scale.

5.9. Verify the algebra leading to derivative (5.2.24) and location of a
minimum (5.2.26) on a cubic function determined by two sampled
function values and their first derivatives.

312 Quasi-Newton Methods and Comtmints

5.10. Use program QNEWT to find the unconstrained ffilmmum of the
Lagrangian function (5.4.2), with the objective and constraint func
tions (5.4.26) and the fixed, optimal Lagrange multiplier vector p' =
(1 - t)T found in Example 5.4.1. Observe that the solution x' agrees
with Example 5.4.1, but that trials using nonoptimal multipliers do not
converge to the correct solution.

5.11. Find the maxima shown in Table 5.4.1 for the camelback function
(5.4.75), using QNEWT and starting at various x(O) in a neighborhood
of the origin with radius 3.

5.12. Run program QNEWT with QNEWTGRD merged for Rosenbrock's
and Wood's functions; compare the number of iterations and function
values with those under "CUTBACK" in Table 5.3.3. Also observe the
increase in run time with the larger number of variables.

5.13. Form the Lagrangian function (5.4.2) for the linearly constrained
quadratic problem (5.4.12) to (5.4.13). By setting V,L = 0 and VpL = 0,
show that the Lagrangian matrix is defined by

(5.5.2)

The Lagrangian matrix is symmetric, not positive definite, and may be
singular.

5.14. Solve linearly constrained quadratic problem (5.4.26) by computing one
Newton step using the projected gradient and Hessian in (5.4.63) and
(5.4.64), respectively. .

5.15. Run program QNEWT with BOXMIN merged to minimize:
(a) Quadratic function (3.2.11) such that x,;;' 3.9; start at x(O) =

(1.9 4.5)T Compare with the results in Section 4.3.3, especially
Table 4.3.5 and Figure 4.3.5.

(b) F(x) = -XIX, such that x, ,;:; 1 and x,';:; 2, starting from x(O) =
(0.1 O.I)T.

5.16. An inverse barrier function for inequality constraints was described by
Carroll (1961):

M

Minimize F(x) = f(x) + r L [ci(X)]-I,
j-I

r --> O. (5.5.3)

The starting and all subsequent values of x must be feasible, that is,
satiSfy the constraints. Using this method, minimize f(x) = 4xj + x,
such that Xl ;;, 0, X, ;;, O. First use QNEWT for r = 1, and note that
an overflow condition results; the BASIC direct-mode statement

- --------

Problems 313

"?X(1);X(2)" will show that the search left the first quadrant and
proceeded toward negative infinity. Stop that by merging BOXMIN
into QNEWT and using BOXMIN to ensure that the minimization
remains in the first quadrant, while retaining the inverse terms in
(5.5.3). Obtain a sequence of minima x'(r) for r = 10,1,0.1,0.001, and
0.0001. By setting the gradient of (5.5.3) equal to zero, explain the
trajectory x'(r) analytically.

5.17. Expand the multiplier penalty function expressions in (5.4.89) and
(5.4.99) for two variables to show that they are equal when PI = U1'1

and P2 = u2'2' that is, that (5.4.92) is required.

5.18. Find a correction to offset parameter u analytically in (5.4.93) for
equality constraint problem (5.4.84). Treating Lagrange multiplier P as
the variable, find V,P(p) and V;P(p) and form the algebraic expres
sion for the Newton step dp. Show that du --> (-c) as S --> 00, if
P = 'u is maintained. Separately, show that V}P(x, p) --> , as, --> 00.

5.19. Solve equality constraint problem (5.4.26), using QNEWT with
BOXMIN and MULTPEN merged, starting from x(O) = (1 2 3)T and
continuing penalty loops until the maximum constraint modulus is less
tbat 10- 6• Note that the solution agrees with both the x' and p' found
by general elimination in Example 5.4.1. Then use finite differences to
verify (5.4.8). Separately, perturb each of the two constraint constants
(4 and 0) by adding 0.1 and obtaining two new constrained solutions.
Evaluate fix) for the unperturbed and two perturbed solutions for x;
USe these values in a forward finite difference formula to show that
(5.4.8) is true.

5.20. Powell (1969:287) posed a nonlinear programming problem and Celis
(1985:79) presented some results:

Minimize fix) = X1X2X,X.xs such that

c1(x) = x? + xi + xi + xi + xl = 10,

c2(x) = x 2x, - 5x.x s = 0,

c,(x) = xi + xi = -1.

(5.5.4)

Two solutions are x' = (-1.7171 1.5957 ± 1.8272 - 0.7636
=+ 0.7636)T. Obtain solutions using QNEWT with BOXMIN and
MULTPEN merged and verify (5.4.5). One solution may be obtained
using 86 function evaluations for maximum constraint modulus less
than 10- 6 by starting at x(O)=(-11.5 2 -1 _2)T. However, the
penalty function method diverges (with the values of S built into
MULTPEN) when x(O)=(-l -1 -1 -1 _l)T unless BOXMIN

314 Quasi.NewtOll Metlwtb and Constraints

variable bounds of - 2 " xj " +2, j = 1 to n, are utilized. Other
starting points given by Celis (1985:80) will fail for the value of S
utilized in MULTPEN.

5.21. From Fletcher (1981a:50), use QNEWT with BOXMIN and MULT
PEN merged to

Minimize f(x) = - X, - X2 such that

c, (x) = X 2 - xl ~ 0,

c2 (x) = 1 - xl- xi 2: o.

(5.5.5)

Sketch the boundaries of the constraints, indicate the feasible region,
show several level curves of f(x), and draw the gradient vector vf(x')
at the solution point x'. Discuss the values, signs, and interpretations of
the Lagrange multipliers p'.

5.22. Show how (5.4.125) may be obtained.

5.23. Discuss the properties of the implicit function theorem listed in Table
3.3.1, as they apply to the Lagrange-Newton stationary point (5.4.125).

5.24. Obtain the first Lagrange-Newton step according to (5.4.125) for
problem (5.4.126) using singular value decomposition (SVD). See
(3.1.63) to (3.1.68).

5.25. Apply the Sherman-Morrison-Woodbury identity twice to verify
(5.4.110).

------ - - -- -

Chapter Six _

Network Optimization

Variable parameters of linear physical systems oscillating in the sinusoidal
steady state may be adjusted very easily by applying the optimization methods
described in Chapters Four and Five. The choice of these variables is often the
result of some design process, and it is the redesign or readjustment by
optimization that is considered here. This chapter deals with electrical net
works, but the mechanical analogues and applications in digital signal
processing where the same mathematical principles apply are mentioned.

A brief review of the underlying differential equations leading to simple
harmonic motion and the concepts of complex frequency and impedance will
establish some common interdisciplinary ground. The fundamental tools of
network analysis, constitutive equations and Kirchhoff's laws, will lead to a
simple and efficient method for ladder networks and to the nodal matrix
method for general network topologies.

It is fortunate that the most useful objective function for systems in
steady-state sinusoidal oscillation coincides with the least-pth form for systems
sampled over the real frequency domain. Aaron (1956) advocated the use of
least squares for electrical networks; the improvements since that time include
faster and more robust optimization algorithms and methods for efficiently
computing exact gradient vectors. Therefore, the Gauss-Newton optimization
method (Chapter Four) employing first derivatives is adapted for constrained
adjustment of elements in electrical networks, and projected variable bounds
and the multiplier penalty method from Chapter Five are also incorporated.
Program TWEAKNET will provide concrete illustrations of the power of
these techniques for automatic redesign of ladder networks.

Although it is possible to obtain first partial derivatives by forward finite
differences, that time-consuming technique is unnecessary, since exact deriva
tives may be computed efficiently for all linear systems such as electrical
networks and their analogues. The definition and application of Tel1egen's
remarkable theorem for this purpose wil1 provide insight and computation of
exact partial derivatives for any network, especially for lossless networks. The

315

3\6 Network Optimization

generality of Tellegen's theorem is actually not essential, so that direct
differentiation of network matrix equations is shown to yield the same results
with greater applicability, even if more obscurely.

The concluding topic concerns robust network response functions, namely,
those that are most sensitive yet well behaved for variations in network
variables. The dependence of most common network response functions on
branch impedances has the form of bilinear or linear fractional transforma
tions. Although the most familiar representation of that form is the electrical
engineer's Smith chart, it also is true that such mappings among certain unit
disks in the complex variable plane have been studied by mathematicians for
centuries, using the Poincare metric. Bilinear forms are the basis for some of
the best components of optimization objective functions. Again, the important
issue for optimization of variables that are nonlinearly related to responses of
linear systems is that the chosen responses are sensitive yet well conditioned
with respect to the variables.

6.1. Network Analysis in the Sinusoidal Steady State

The following sections describe some common mathematical and physical
ground among mechanical systems, electrical networks, and sampled functions
that are appropriately described by differential equations of simple harmonic
motion, Laplace transforms, and z transforms.

The formation and evaluation of network equations involving impedances
and admittances (immittances) is addressed as network analysis. Based on
Kirchhoff's laws, simple recursive equations may be written for ladder net
works topologies, and nodal matrix re"itionships describe linear networks with
arbitrary structures.

•
6.1.1. From Differential Equations to the Frequency Domain. The voltage
equilibrium equation for the series resistance, inductance, and capacitance
(RLC) circuit shown in Figure 6.1.1 is

di 1
L

dr
+Ri+ cfidt~e,(t). (6.1.1)

The source voltage is e" and i is the current through the circuit. If (6.1.1) is
differentiated with respect to time t, then it is a linear, second-order differen-

Figure 6.1.1. A series RLC electrical network
excited by a sinusoidal voltage source.

Network Analysis in the SinusoUkd Steady State 317

tial equation with real, time-invariant coefficients. Equation (6.1.1) models a
linear system because response i(t) is proportional to scale changes in excita
tion e, (t) and because superposition applies. Superposition implies that if
response i,(t) is obtained for excitation e,(t), and similarly for i,(t) and
e,(I), then i(l) = i1(1) + i,(1) when e(t) = eJI) + e,(1). It is especially
important to note that various paramelers or variables in linear systems may
be nonlinearly related to the response; for example, C in (6.1.1) does not affect
response i (t) linearly.

A means for obtaining a solution for the natural frequencies of (6.1.1) is to
assume an exponential form for the current given some initial energy stored in
the network. Assume that e,(t) = 0; then the response is determined by the
homogeneous equation

Since

i(t) = Ie". (6.1.2)

di
- = si(t)
tit

and
i(t)

fi(t) dt ~ -s-' (6.1.3)

substitution of (6.1.3) into (6.1.1) yields

1
Ls+ R + - =0sC . (6.1.4)

Parameter s is also the frequency in Laplace transform theory. Upon multiply
ing (6.1.4) by s, the resulting quadratic polynomial will have two roots, s\ and
s" and they are generally complex numbers that have real and imaginary
parts. Roots s, and s, are the characteristic values and are comparable to the
eigenvalues previously discussed in connection with the characteristic equation
in (2.2.33). See Maron (1982:398) and Jennings (1977:233). Because the
quadratic polynomial in (6.1.4) has real coefficients, the roots must be either
real or in conjugate pairs. The latter represent the usual oscillatory case, in
which the response decays with time according to (6.1.2). because s has a
negative real part. A complete homogeneous solution is the sum of two
exponential terms,

(6.1.5)

where c\ and c, may be viewed as constants of integration that are determined
to satisfy the initial condition of the network at t = O.

The particular solution of the linear second-order differential equation in
(6.1.1) is that obtained with some forcing function, e,(I). The case of interest
in Chapter Six is sinusoidal oscillation, so one choice is

.,(1) = Ecos(wl). (6.1.6)

318 N••worI< Op.imi'a1iOll

However, the usual approach for a particular solution is to impose the
exponential forcing function

e(l) = EeJWI = E[cos(wI) + jsin(wt)],

where j = (_1)1/2• Then a response function of the form

i(t) = Ie Jw1

satisfies (6.1.1) and leads to solution of the response magnitude

(6.1.7)

(6.1.8)

E
1= ----,--~

R+sL+l/sC'
s = jw. (6.1.9)

The key point is that a similar forcing function could have been the complex
conjugate of (6.1.7), leading to the complex conjugate of response (6.1.9).
Therefore, superposition and the identity 2cos(wl) = eJw1 + e-Jw1 lead to the
conclusion that the sum of the two forcing functions is the real sinusoid in
(6.1.6). Similarly the response is

i(l) = Re[leJw1
] = II/cos(wt + .p), (6.1.10)

where Re means "real part of' and the phase angle .p is the argument of the
current phasor

1= /I/eJ+. (6.1.11)

The general solution for any forcing function is the sum of the homoge
neous and particular solutions; the former may be ignored for the sinusoidal
steady-state condition, because it will decay to zero for t sufficiently large. The
important quantity in the sinusoidal steady-state solution is the loop imped
ance Z related to Figure 6.1.1:

1
Z=R+sL+-.

sC
(6.1.12)

It is the impedance that determines the magnitude and phase angle of the
steady-state response according to (6.1.9) through (6.1.12):

E
l~

Z' . (6.1.13)

which is Ohm's law. The convention ordinarily employed and used con
sistently in this chapter is that voltage and current phasors E and I are
rool-mean-square values; therefore, the extreme values of the time function in
(6.1.10) have magnitude 2'j21I/. Consequently, the real power dissipated in

----- - - - -----------------------

Network Analysis in the Sinusoidal Steady State 319

resistance R is

(6.1.14)

The impedance function in (6.1.12) is a function of complex frequency s, say
Z(s), where

s = (J + jw. (6.1.15)

In the steady state, w is called the real frequency so that the impedance
becomes the function Z(j",). It is known by the principle of analytic continua
tion that analytic (regular) complex functions of complex variables such as
Z(s) are completely determined by their specification over the entire real
frequency (w) axis. Therefore, references to either Z(s) or Z(jw) are used as
convenient.

The familiar treatment of this section serves as a remainder of the analytical
path from linear second-order differential equations representing simple
harmonic motion to the complex frequency plane. An alternative explanation
may be derived from Laplace transforms with similar results.

6.1.2. Related Technical Disciplines. The most obvious analogues of the
preceding analysis of differential equations occur in mechanical systems. Table
6.1.1 compares quantities in several analogous systems. Electrical current (i) is
the rate of flow of charge (q) with respect to time, and capacitance (C) is the
constant of proportionality between charge and voltage (V): q = Co. Flux
linkage is dual to charge, and inductance (L) is the relevant constant of
proportionality. An elementary series electrical circuit is illustrated in Figure
6.1.1. A parallel circuit has respective R, L, and C terminals all connected
together, in which case a current source that produces a voltage response
would be appropriate. As discussed in the next section, practical circuits
consist of arbitrary connections of both series and parallel circuits, all of
which have mechanical analogues. The mechanical filter field is especially

Table 6.1.1. Mechanical Analogues of Electrical Quantities

System Coordinate Velocity Force

Mechanical Position Velocity Force
translation

Mechanical Angular Angular Torque
rotation position velocity

Series Charge Current Voltage
circuit

Parallel Flux Voltage Current
circuit linkage

320 Network Optimization

dependent upon electromechanical analogies based on differential equations.
The interested reader is referred to Johnson (1973:164) and (1983).

There are several related electrical filter technologies that have important
connections to complex functions of complex frequency, such as the imped
ance function 2(s). It is shown in the next section that such functions are
generally rational polynomials. The signal-sampling process based on impulse
or delta function modulation leads to the z transform,

(6.1.16)

which is the basis of digital filter technology. Parameter T is the unit sampling
interval. One way to design digital filters is by transformation of desirable
rational functions of complex frequency s into rational polynomials in z .'.
The equivalence in that case is between RLC filters and synchronous sampling
switches connected with an arithmetic processor. See Golden (1973).

Other types of filters that are modeled on LC filter prototypes are micro
wave filters, RC active filters, and the more recent switched-capacitor filters.
Interested readers are referred to Ternes (1973). The point being emphasized is
that optimization of RLC filters illustrates the same potential for optimization
of a large number of other technical design problems based on differential
equations or rational polynomial functions of complex frequency that define
the prototype system.

6.1.3. Network Analysis. A restatement of Ohm's law (6.1.13) is

E = 12 or 1 = EY, (6.1.17)

where Z is an impedance function of complex frequency Z(s) and Y is the
reciprocal admittance function:

1
Z= Y· (6.1.18)

In the sinusoidal steady state, the complex frequency variable s is purely
imaginary, s = jw. Table 6.1.2 summarizes these functions.

It is customary to associate a parasitic power loss with inductors and
capacitors. As indicated by (6.1.14), a current through a resistance results in

Table 6.1.2. Impedances and Admittances of R, L, and C Network Elements

Element Type

Resistance
Inductance
Capacitance

Impedance

R
sL

1/(s C)

Units

Ohms
Ohms
Ohn1s

Admittance

G = l/R
1/(s L)

sC

Units

Mhos
Mhos
Mhos

,----------- ----

NetJWrk Anal}'sis in the Sinusoidal Steady State 321

loss of real power that cannot be recovered, as opposed to stored energy that is
returned to the connecting circuit by an L or a C during part of the frequency
cycle, Therefore, a dissipative inductor's impedance function and a dissipative
capacitor's admittance function of real frequency ware:

ZL = R L + iXL = wL(d +ill,

Yc = Gc + iBc = wC(d +ill, Bc = wC,

(6.1.19)

(6.1.20)

where the decrement d is related to unloaded quality factor Q by

1
d= -

Q'
(6.1.21)

Quality factor Q relates the power loss element to inductive reactance wL or
capacitive susceptance we:

wL
R -

L - Q' Gc = wC/Q. (6.1.22)

Quality factor Q is different for each kind of element and among elements of
the same kind; it is not necessarily independent of frequency (w), although
that is often an acceptable and convenient assumption.

Figure 6.1.2 shows the schematic representation of the R, G, L, and C
elements. The loss in conductance Gc is also because of the current, but since
it is in parallel with the capacitor, that power dissipation is usually expressed
as a function of the voltage:

(6.1.23)

In Figure 6.1.2 the reactive power (average stored energy) is Ill'(wL) in the
inductor and W1 2(wC) in the capacitor. Therefore, (6.1.14) and (6.1.23) show

I R Tc • WIVV'v 0

G C= = .~Gc v
L RL

1RL= wL/Q

Gc = wCIQ

Figure 6.1.2. Schematic representations for resistance, conductance, lossy inductor, and. lossy
capacitor.

322 Network Optimization

that quality factor Q is the ratio of reactive to real (dissipated) power in an
inductor or capacitor.

It is often necessary to invert the immittances in (6.1.19) and (6.1.20) to
obtain YL = 1jZL or Zc = 1jYc' A useful identity for that purpose is

1 d -]1

d + j1 = d 2 + 1 .
(6.1.24)

A network graph consists of nodes interconnected by branches that contain
elements, as illustrated in Figure 6.1.3. The nodes are numbered from the
ground or common node 0 to node n, and the elements in the branches are

.subscripted with the node numbers at the ends of the branch. There are node
voltages with respect to common node 0, and there are branch voltages across
each branch. Similarly, there are node currents from the common node (e.g.,
I k and In) and branch currents (e.g., I kn). A strict polarity convention is
necessary; All voltages are potential "rises" to the arrow or + sign, and
branch currents always enter the + end of the branch element.

Kirchhoff's current law requires that the sum of all currents leaving a node
equals zero; in Figure 6.1.3 I k1 + I k2 + I kn + I kp - I k = O. Kirchhoff's volt
age law requires that the sum of voltages around any loop equals zero; in
Figure 6.1.3 V2 + Vk2 - Vkn - v" = O. Since the network is assumed to be in
the sinusoidal steady state, all voltages and currents are phasors as described
in Section 6.1.1. Although the branch elements in Figure 6.1.3 are shown as
admittances Y;p any of them could be described as the equivalent impedance,
Zij = 1jY;j" The choice often is determined by the constitutive laws of the
elements, for example, Ohm's law for resistors; V ~ IR or I = VG. Another
example is a constitutive law for a branch element in Figure 6.1.3, for
example, I k2 = Vk2 Yk2'

A much more specific graph that is used extensively in this chapter is the
ladder network illustrated in Figure 6.1.4. It is convenient without loss of

n

..'

'.

v,

Figure 6.1.3.

o

Node and branch voltages and currents in a network.

Network Analysis in the Sinusoidal Steady State 323

% ~ ~

Vv' S "'TZ6~\-rt:~2 ~2 f bL~

'"~', ,,{, {," I"
G

Figure 6.1.4. Convenient notation for ladder network analysis.

G

generality to be overly restrictive in topology (location of nodes and branches),
including the source and load (sink), as well as in nomenclature. The Thevenin
source topology is assumed here, and its impedance is the resistance R ,. All
shunt branch elements are admittances, and all series branch elements are
impedances, numbered from 1 at load node L and increasing toward the
source node S. The nodes have odd numbers except for the common ground
node G. Nodes Sand G define the input port, distinguished by the fact that
the net current crossing that two-node interface sums to zero; a similar
statement defines the output port defined by nodes Land G. Branch currents
are defined to flow toward the load or ground; consequently, all branches
voltages are defined to rise to the nodes or toward the source. Because these
conventions are simple to deduce, ladder networks will usually be marked only
with node numbers.

It is quite laborious to assemble rational polynomials that represent re
sponses in complex frequency (s = fJ + jw) for any but the most simple
networks, such as in Figure 6.1.1 and equation (6.1.9). However, a very simple
but efficient real-frequency (s = jw) analysis scheme is well known for the
ladder network in Figure 6.1.4. When the source voltage E, and all branch
immittances are finite and nonzero, then a finite current I L will flow through
load impedance ZL' Alternatively, it is valid to assume that load current has
some arbitrary value and then to apply Kirchhoff's laws to work back to
discover the source voltage that is required to produce that load current. If the
reader objects that the source voltage thus obtained is not a desired value, then
all voltages and currents in the network may be scaled by the particular
complex constant that produces the desired source voltage. The suggested step
is valid precisely because the network is linear.

Figure 6.1.5 displays the load-to-source recursion scheme defined by the
recursion formula that has been labeled the complex linear update [Cuthbert
(1983:71)]:

A = BC + D, (6.1.25)

where A, B, C, and D are complex variables and are not the so-called chain or
ABCD parameters often associated with two-port networks. Because com
puters evaluate trigonometric functions slowly, the cartesian (rectangular)

324 Network Optimization

'VI = IlZl +0

\\
'2 = V1 Yl+ Il

\\
V3 = '2 Z2+ Vl

\\
Figure 6.1.5. The complex linear update recursion for the ladder
network topology defined in Figure K1.4.

form for complex quantities is utilized:

B = b, + jb" D = d, + jd,. (6.1.26)

Therefore,the two real equations defined by complex equation (6.1.25) are

(6.1.27)

(6.1.28)

Figure 6.1.5 also shows how the voltage and current phasors migrate in the
recursion. It is shown that only four short BASIC statements are required to
accomplish this recursion, no matter how many elements the ladder network
contains. Since this method of analysis is incorporated into network optimiza
tion program TWEAKNET in Section 6.2, no specific examples are given here.

Real-frequency network analysis requires manipulation of complex num
bers, which are merely pairs of real numbers related by specific operations.
The reader should note the definitions and identities related to complex
numbers that are contained in Table 6.1.3; they are not difficult, but they are
pervasive in analysis of networks in the sinusoidal steady state.

This discussion of network analysis concludes with a brief description of
the nodal matrix method. A network with n terminals and a common terminal
such as in Figure 6.1.3 can be described by n equilibrium equations in the
admittance form

1= YV. (6.1.29)

Vector I contains the complex node currents, Ik' k = 1 to n, Y is the complex
n X n definite nodal admittance matrix, and V is the vector of complex node
voltages. To be specific, (6.1.29) has the form

[
II] [Yll
~2 = 121

I Y.l
•

Y12
122

Y.2
][

V]
YIn 1

Y:~ ~2.

Ynn V•

(6.1.30)

Network Analysis in the Sinusoidal Steady Stote 325

Table 6.1.3. Some Useful Identities for Complex Variables'

.1. Z - R + jX = IZle j
' = IZILi.

3. Z" = R - jX= IZle-j
' = IZI~.

3. e)' = cos 0 + j sin O.
4. (Z, + Z,)" - Zt + Z,..
5. (Z,Z,)" = ZtZ".
6. IZI' = ZZ" - R' + X'.
7. Z + Z" = 2 Re(Z) = 2R.
8. VyZ - VyR + }VyX, Y real.
9. VyIZI- Re[Z"(VyZlllIZI.

10. V/IZI') - 2[R(Vy~~+ X(VyX)J.

11. If T(Z) = U+jV, dZ - VRU+jVRV= VxV-jVxu.

aThe asterisk (*) denotes complex coqjunction. The del operator iVy) denotes the partial
derivative with respect to real variable y. Re(·) denotes the real part of ('). Identity f1 is the
Cauchy-Riemann condition, where U, V, R, and X are real functions.

The more general problem is to express voltage V, through 1-';, in terms of the
currents I, through I., that is, in the impedance form .

V = ZI. (6.1.31)

Comparison of (6.1.29) and (6.1.31) clearly implies that impedance matrix Z is
simply the inverse of admittance matrix Y, Z = V-I. So the problem of
finding dependent voltages in terms of independent currents is one of con
structing the definite admittance matrix and then inverting it. In practice, the
LV factorization described in Section 3.1.1 is usually employed for reasons
that are discussed in Section 6.3.4.

Example 6.1.1. Use Kirchhoff's and Ohm's laws to find the nodal admittance
matrix for the bridge network in Figure 6.1.6. The equations are

Node 1: I, = (V, - V,)Y, + (V, - V,)Y"

Node 2: I, = V,Y, + (V, - V,)Y, - (V, - V,)Y"

Node 3: /, = V,Y4 - (V, - V,)Y, - (V, - V;)Y,.

(6.1.32)

Considering the matrix form in (6.1.29), the definite nodal admittance ma
trix is

[

(Y2 + Y,)

Y= (-Y,)
(- Y,)

(- Y,)

(Y, + Y,+ Y,)
(-YJ

(- Y,)]
(- Ys) .

(Y, + Y4 + Y,)

(6.1.33)

326 Network Optimization

I,
(V,-V,) '3..

2 Ys 3

V, Yi Y4
V3

'\L
a

Figure 6.1.6. A bridge network for Example 6.1.1.

Comparing (6.1.33) and (6.1.30), a general rule for forming the n X n
definite admittance matrix for any network composed of uncontrolled branch
elements is:

1. Admittance elements Yu are equal to the admittance of all elements
connected to node i with all other nodes grounded (connected to node
0).

2. Admittance elements Y'j are equal to the negative of the sum of
admittances connected between nodes i and j, for i and j chosen from
1ton,i';'J.

Readers interested in the numerous details involving controlled sources, con
nection matrices, and programming for general nodal analysis are referred to
Staudhammer (1975:97), Adby (1980:151), and Vlach (1983:28,114).

6.2. Constrained Optimization of Networks

The strategy and significant details of program TWEAKNET are described in
this section. TWEAKNET automatically readjusts the values of resistors,
inductors, and capacitors in ladder networks to meet or exceed assigned
transducer performance targets. The transducer power transfer response of
arbitrary ladder networks can be sampled at as many as 40 frequencies, so that
as many as 20 variable network elements may be adjusted by a Gauss-Newton
optimizer. The target data (desired power transfer values) for those frequency

-- - ---------------------

Constrained Optimization of Networks 327

samples supplied by the user are compared in a least-pth summation of
residual terms.

The least-pth objective function in TWEAKNET allows the sampled target
data to be a mixture of desired goals (by a least-pth criterion), equality
constraints, or lower or upper inequality constraint limits. The nonlinear
constraints are enforced by the multiplier penalty method described in Sec
tions 5.4.3 and 5.4.4. Also, the variables may be constrained by lower and
upper bounds by the projection method described in Sections 5.4.1 and 5.4.2.

The ladder network real-frequency analysis method is based on the complex
linear update recursion formula described in Section 6.1.3, especially in Figure
6.1.5. Any of the network's branches may contain a resistor, an inductor, a
capacitor, or an inductor in parallel with a capacitor in series branches, or an

'uctor in series with a capacitor in shunt branches. Each inductor and

~
'itor may have a unique value of frequency-independent quality factor Q.

.(ion to the transducer power transfer response (P.,/PLl in decibels
input impedance is available for all sample values by a menu

,fore and/or after optimization.
'-derivatives of the network's transducer response (applicable for

t. 'ction residuals) required for Gauss-Newton optimization are
0\)'.,~te/yby forward finite differences for dissipative (lossy)
RLC\ ';ariables or exactly for lossless LC network variables by
a met/ic fTellegen's theorem. The first derivative values for any
number ~, ~fs-e1ement variables may be obtained efficiently by only one
network an\.j~s per frequency sample, as opposed to one additional analysis
per frequency for each variable when using finite differences.

Several significant examples are provided to illustrate the power of network
optimization in particular and optimization of analogous systems in general.
Some readers may wish to bypass technical details by going directly to the
summary and examples for TWEAKNET in Section 6.2.4.

6.2.1. Program TWEAKNET Objectives and Structure. The least-pth objec
tive function minimized by network optimizer TWEAKNET is

1 m

F(x,S,u) ~ - }: [r,(x,S,u)]'.
P i=l

(6.2.1)

The TWEAKNET Objective function is a combination of (4.4.31) for un
constrained least-pth residuals, (5.4.89) for equality constraints, and (5.4.98)
for inequality constraints. The constraints are enforced by the multiplier
penalty method described in Sections 5.4.3 and 5.4.4, where matrix S =

diag(s[s, ... sm) contains the multipliers, and vector u contains the
constraint offset at each sample. Table 6.2.1 summarizes the four types of
residual terms.

328 Network Optimization

Table 6.2.1. Types of Residual Terms iu the TWEAKNET Ohjective Functiott'

Type Residual

Unconstrained
Equality constraint
Lower inequality constraint
Upper inequality constraint

a The constraints are Ci = L; - 7',..

L6() Expression

o 1[(Li - 1;) - 0]
2 s,[(Li - 1;) - u,]

-1 simin([+(Li - 1;) - u,],O)
+1 simin([-(Li - 1;) - u,],O)

Effect

min(L, - 1;)P
L~T, ,
L j ~ T;
L j s;, T;

Response L i at the i th frequency in Table· 6.2.1 is the logarithm of the
magnitude of the well-known transducer function:

(6.2.2)

where rms voltages E, and VL and terminating resistances R, and R L are
shown in Figure 6.1.4. Note that R L is the real part (resistance) in load
impedance ZL = R L + jXu The strict definition of the transducer function
according to (6.2.2) requires that XL = 0, in which case an equivalent defini
tion is

L i = 10 10glO (~:) in dB, (6.2.3)

where PM is the maximum power available from the source and PL is the
power delivered to the load (necessarily to R L)' Both (6.2.2) and (6.2.3)
provide dB loss so that L i ;,. 0 for the passive network being considered.

The sample data pairs previously described for program LEASTP in
Chapter Four and generated in DATA statements are treated similarly in
TWEAKNET. Each pair consists of a sample frequency, "'i' and the corre
sponding target data, T,. The sample data pairs are read into memory when
program TWEAKNET is RUN. The four possible interpretations of the target
data, T" may be changed or reviewed by menu command 7, which sets integer
values in array L6(I) according to the column in Table 6.2.1. The user often
may wish to change the problem target interpretation during a series of
optimization trials.

Figure 6.2.1 illustrates the four possible types of residuals in Table 6.2.1
and includes the unconstrained residual illustrated in Figure 4.4.1 for the
least-pth case. In Figure 6.2.1, the lower bound is violated at sample "'2 for the
given set of variables contained in x. Residual r2 is therefore active or binding
at this point of the optimization. Samples at "'4' "'" and "" do not represent
constraints, so that their residuals are to be minimized in a least-pth sense.

----- ------

Constrained Optimization of Networks 329

Ltx, w)

Lower
bound

Lower
bound)(Target

• Loss response

~_-'-_--'-_-l. "--'--:"-__-J......J --'-_~w

WI (J)2 w3 (1)4 £1)5 w6 W? (liB tug wlO WI I w12

Figure 6.2.1. Sampled network loss response function with targets that are goals, equalities, and
lower/upper bounds.

The other bounds are meant to be satisfied if possible, especially the equality
constraint at ws"

Note that the loss function illustrated in Figure 6.2.1 has two peaks of loss
(zeros of transferred power) at two frequencies between W9 and w12; the
infinite loss at these two frequencies indicates that either a series branch
impedance or a shunt branch admittance was infinite (open or short circuit,
respectively). Placement of samples W lO , WH' and W,2 is intended to define a
lower bound on the response sag following the peaks.

The listing for program C6-1, TWEAKNET, is contained in Appendix C.
The major program segments are shown in Table 6.2.2, and the flow chart is
shown in Figure 6.2.2. The format for the network DATA statements in lines
400-890 is described in Section 6.2.2. Command 10 is an alternative to read
network data from a disk; that makes the use of compiled BASIC especially
convenient. The menu commands for entering values of variables and control
parameters are unchanged from LEASTP except that exponent p in the
least-pth objective function is now entered with other control parameters
(command 2); it defaults to p = 2 if not reset. LEASTP in lines 1400~2430 is
essentially unchanged from the description in Section 4.5.1. However, the list
of residual values is not displayed in TWEAKNET, and no comparison of
gradient values is necessary.

Subroutine calls have been inserted into LEASTP for bounding variables by
the projection method employed for quasi-Newton optimizer QNEWT in
Chapter Five. These additions to LEASTP are indicated by balloons on the
LEASTP flow chart in Figure 4.5.1; the actions indicated by the balloons are
shown in Table 6.2.3.

The multiplier penalty function algorithm in TWEAKNET is essentially the
same as previously employed with QNEWT in Chapter Five according to the

330 Network Optimization

Table 6.2.2. Major Segments in Ladder Network Program TWEAKNET, Cli-I

Name

Read Network Data from DATA Statements
Sample Pairs and Network Topology Data
Enter Values for Variables and Control
LEASTP Gauss-Newton Unconstrained Optimizer
Display Network Responses and F, x, g
Subroutines for LEASTP Optimizer
Subroutines for Bounding Variables
Multiplier Penalty Function Algorithm
Reconstruct Constraints, Find Maximum Modulus
See/Reset Constraint Sample Number
Calculation of All Residuals
See Network F, L, C Units and Topology
Calculate Partial Derivatives of Residuals
Ladder Network Analysis for L j & Zin at Wi

Calculate Jacobian of Network Response
Read Network Data from Disk

Lines

340-379
400-890
900-1390

1400-2430
2440-2580
2590-3600
3610-4190
4200-4680
4690-4810
4820-4965
5000-5160
5300-5540
7000-7170
8000-8800
9000-9700
9800-9965

flow chart in Figure 5.4.7. Some differences are that all multipliers start at
s, = 1, i ~ 1 to m; no initial estimate of the Hessian matrix is required for the
Gauss-Newton method; and the offset (u,) values for unconstrained samples
are maintained at zero as indicated in Table 6.2.1. Variable K7 was renamed
K3 to avoid conflict. Variable K3 is also used in a test at line 4266; if there are
no constraints, then only one Gauss-Newton minimization is performed. The
constraints without offsets, c, = L, - T" are reconstructed in subroutine 4690,
so that the treatment of cj is comparable to that in MULTPEN (Section 5.4.4).
Other than the network analysis computations explained in the next two
sections, the remaining program segments in Table 6.2.2 are straightforward.

6.2.2. Ladder Network Analysis. The analysis method using the complex
linear update formula (6.1.25) as illustrated in Figure 6.1.5 for the standard
ladder network in Figure 6.1.4 has been implemented in TWEAKNET lines
8000-8800. The flow chart in Figure 6.2.3 describes the algorithm, which is
executed for each frequency furnished for analysis. The algorithm operates on
data contained in the arrays described in Table 6.2.4.

A specific example will simplify the explanation. Consider the elliptic filter
shown in Figure 6.2.4; two equivalent means for entering the descriptive data
for real-frequency analysis of that network are shown in Tables 6.2.5 and 6.2.6
The former data set is Appendix C program C6-2, LPTRAPl, to be merged
with TWEAKNET. The data set in Table 6.2.6 may be created with the IBM
EDLIN line editor or a text editor that can create an ASCII file for storage on
magnetic disk. The reader is cautioned that the correct placement of commas

-------~-_._----------~-- - - - - -

Display notes

999\----1

Display menu

Offsets Uj = 0
Multipliers Sj = 0

40

1000

4200

4240

VF
?

By exact method
for LC network

1450

By
differences

Min F(x, S, u)

Compare vF to
differences 1760

1455

CONTlNUE>.:N;:O:- ...,
?

4370

Increment loop count
Adjust Sj and Wj

1455

Figure 6.2.2. Flow chart for network optimizer TWEAKNET.

331

332 Network Optimization

Table 6.2.3. Additions to LEASTP to Implement Bounds on Variables

Figure Balloou Line No. Purpose

4.5.1 A 1455 Reset/record binding variables
4.5.1 B 1865 Release all bounds
4.5.1 C 1882 Release all K-T bounds
4.5.1 D 1883 Project gradient into subspace
4.5.1 E 2072 Project search direction into

subspace
4.5.1 F 2175 Check/set more bounds in linear

search

is critical, although extra spaces are allowed. Both data entry methods in
Tables 6.2.5 and 6.2.6 iJlustrate the expected information sequence:

I. Data set title or name.
2. Number of pairs of frequency and target values.
3. Set of frequency samples.
4. Set of target values in dB.
5. Frequency, inductance, and capacitance units.
6. Source and load resistances and load reactance in ohms.
7. Number of lines of network topological data.
8. Set of topological data lines.

From either Table 6.2.5 or 6.2.6 it is seen that there are seven frequency
samples. Five frequencies from 0.2 to 2.0 are associated with zero dB targets,
and frequencies 1.5 and 2.0 have 40 dB targets. The frequency is assumed to
be in hertz (cycles per second), not radian frequency, unless modified by the
frequency units constant. That constant might be lE6 for megahertz (MHz),
for instance. In line 600 in Table 6.2.5, the frequency samples are converted to
radians per second by the frequency unit factor (1/2,,) = 0.159155. The
inductance values are often given in nanohenrys, so the inductance unit factor
would be lE-9; in line 600 the value 1.0 is used, because the values for
inductances are furnished in henrys. Similarly, the capacitance values in this
example are furnished in farads.

The data in line 610 of Table 6.2.5 indicates that the source resistance is 1
ohm and the load impedance is 1 + jO ohms, as illustrated in Figure 6.2.4a.
Line 615 shows that seven lines of topological data are· required to describe the
arrangement of elements in Figure 6.2.4. All branches must be described,
starting with the shunt branch adjacent to the load impedance and including
the source resistance. The first branch is null, as indicated in Figure 6.2.4 and
by line 620 in Table 6.2.5. Each topological line contains the list line number,
type element (N, R, L, C, or LC), its quality factor Q, and a name.

START LADOER
ANALYSIS

w ;: 2Tr (sample)(units)
Il = 1/v'2R,.""L 0 0

lnlt update variables
and branch K :: O. etc,

8080l-----~_I

Branch # K:: K + I, etc.
Do complex linear update

8000

8040

END
LIST?

Yes 8650

Calculate decrement
if not zero

Calculate LdB
Calculate lin

RETURN

8230 NULL
TYPE

LC 8480

ZorY=O R

8270

Z = R + jO
or

Y = G + jO

8420

Y = wC(d + jl)
or inverse

8330 '----.----'

Z = wL(d + il)
or inverse

GOSUBs
8330 & 8420

for LC in series
or parallel

8080

Figure 6.2.3. Flow chart for ladder network analysis in optimizer TWFAKNET. Note: @ and
® add exact derivatives. See Section 6.2.3.

333

Table 6.2.4. Ladder Network Element Menn for TWEAKNET

ARRAY: N$() M$() X() Q() M()
Name Symbol Value(l Q" Odd Branch Even Branch Code No.

Null N N N 0
Resistor R # R R 1
Inductor L # Oor # L L 2
Capacitor C # Oor # C C 3
LC combined LC 2 #'s 2 #'s Series LC Parallel LC 4

a# stands for a floating-point number.

0.7

1 0.8

1.9 0.6 2.7

la)

Figure 6.2.4. Lowpass elliptic network for Example 6.2.1. (a) RLC circuit, (b) notational circuit.

Table 6.2,5. The DATA Statement Method for Describing the Network in
Figure 6,2.4

5 REM - 8511210940. COPYRIGHT T.R. CUTHBERT. 1985.
7 REM - APPROX. ZVEREV P.201 ELLIPTIC FLTR - C6-2 'LPTRA?t'
400 DATA "LPTRAP1" : REM - NAME DISPLAYED ON FIRST SCREEN
410 DATA 7 : REM - NUMBER OF FOLLOWING FRED/TARGET DATA PAIRS
420 DATA .2 •• 4 •• 6 •. 8.1.1.5.2
430 DATA O. O. O. 0.0, 40.40
bOO OATA .15Q155.1.1 : REM - FREQ [1/<2PI)). L & C UNITS
611) DATA 1.1.0 : REM ~ R SOURCE. R LOAD. & X LOAD
615 DATA 7 : REM -- NUMBER OF FOLL.OWING L.ADDER TOPOL.OGY LINES
620 DATA 1,N.O,NULLl : REM - LIST#l, NULL BR, DUMMY Q. NAME
630 DATA 2.L.0,L2 H REM - LIST#2. INDUCTOR, INFINITE Q, NAME
640 DATA 3.C.O.C3 F REM - LIST#3. CAPACITOR. INFINITE Q. N(-\HE
650 DATA 4.LC.O. L4 H : REM - LIST#4. INDUC (PARALLELi. INF Q. NAME
660 DATA 5,Le,O. C4 F : REM ~ LIST#5. CAPAC (PARALLEL). INF Q. NAME
670 DATA 6.C.O. C5 F : REM - LIST#6. CAPACITOR. iNFINITE Q. NAME
680 DATA 7.F:,O,R SOURCE: REM - LIST MUST END WITH SOURCE RESISTOR
Ok

334

Constrained Optimization oj Networks 335

Table 6.2.6. The ASCII File Method lor Describing the Network in Figure 6.2.4

"LPTRAPl SAMPLE. UNITS. AND TOPOLOGY DATA FOR TWEAI<NET"
7
.2... 4~ .6•. 8.1.1.5.2
O.O~O,(I,O.40,40

.159155,1,1
1.1. (I
7
1,N,O,NULLl
2.L,O,L2 H
3,C.O.C3 H
4.LC,O.L4 H
5.LC.O,C4 F
6,C,O,C5 F
7,R,O~R SOURCE

Infinite Q implies a IossIess element. Since Q ~ 0 has no meaning for L's
and C 's, program TWEAKNET interprets the value Q = 0 as infinite Q. Note
that lines 650 and 660 in Table 6.2.5 are both required to describe branch 4 in
Figure 6.2.4. The program assumes that the Land C are in parallel, since
these are in a series (even-numbered) branch; the dual case is series-connected
Land C in a shunt (odd-numbered) branch.

Table 6.2.4 summarizes the available elements and the BASIC program
array names in which data is stored. Note that the element values in the units
provided are contained in the X() array of optimizer variables. Because the
BASIC computed GOSUB statement operates from numbers and not symbols,
array M() contains integers, 0, 1, 2, 3, and 4 corresponding to N, R, L, C,
and LC that are made available to the user.

It is now possible to review the flow chart in Figure 6.2.3 in more detail.
The radian frequency is computed first. Then the current through the load
(caused by a source of yet unknown value) is assumed to have a magnitude
such that the power delivered to the load is t walt; this arbitrary choice is
useful in the scheme for exact partial derivatives to be described in the next
section. The load current phase is assumed to be zero; therefore, all other
voltages and currents will have a phase angle with respect to this reference.
Then the first line of the complex linear update in Figure 6.1.5 is performed,
yielding voltage V, across branch 1, Figure 6.2.4.

The program determines that branch I is a null branch, so admittance
Y, ~ 0 +)0 is set, and the second line of Figure 6.1.5 is performed to yield
current 1,. The program now finds that M(2) = 2, which sends the program to
subroutine 8330 in Figure 6.2.3 where Z = wL(d +)1) is computed according
to (6.1.19). That impedance is not inverted, since the branch number is even.
The next two updates in Figure 6.1.5 produce 14 in the branch 4 combination
of paralleled Land C. According to the flow chart in Figure 6.2.3, the
program finds that M(4) = 4 So that it branches to subroutine 8480. That in
turn calls subroutines 8330 and 8420 with a branch number alteration that
obtains two admittances that are added and then inverted to produce the
desired even-branch impedance.

336 Network Optimization

All the component values are obtained from the XO variable array and
adjusted by their unit values so that wL and we are in ohms and mhos,
respectively. Obviously, there are some pointers that are adjusted by the
algorithm so that the null branches and combined LC branches do not upset
the otherwise simple incrementing necessary to obtain desired values at the
proper time.

The MO array is initially filled with 9's by program line 337; for the
topology shown in Figure' 6.2.4, M() contains the integers 0,2,3,4,
4,3,9,9, The algorithm detects the "END LIST" condition shown in
Figure 6.2.3 when the first value 9 is reached, branching to compute the dB
response (6.2.2) and input impedance Zin' Figure 6.1.4.

As previously noted, the power delivered to the load resistance is assumed
to be ! watt; for example, the resulting load current magnitude would be
0.7071 amperes for R L = 1 ohm, according to (6.1.14). For Li = 100 dB,
(6.2.2) shows that IE,1 2 = 8E10, and IE,1 2 increases by 10 for each 10 dB
increase in Li . Since IBM BASIC can only accommodate numbers as large as
IE+38, there is the chance that an overflow may occur during some calcula
tions that employ the input voltage or current. That occurrence does not
interrupt interpreted BASIC, which simply supplies the machine number for
infinity and continues. However, the IBM BASIC compiler halts whenever an
overflow occurs. Although overflow does not usually occur, the user should be
aware that the easiest way to avoid the possibility in analysis of exceptionally
long ladder networks is to employ a BASIC compiler that uses the 8087 math
coprocessor chip. That coprocessor can accommodate numbers as large as
1E+4932!

Program TWEAKNET calls ladder analysis subroutine 8000 for each of the
m frequency samples required in objective function (6.2.1) to form the
residuals in Table 6.2.1. Menu command 9 allows the user to compute as many
as 40 loss and Zin values over any frequency range specified, using the set of
values assigned to the variables (network components). Either linear or loga
rithmic spacing of frequency samples is available in command 9.

Example 6.2.1. Run program TWEAKNET to obtain values for the trans
ducer loss function and input impedance of a network over a range of
frequencies. Consider the network in Figure 6.2.4 and its data in Table 6.2.6,
stored on disk by some name, say LPTRAPl.DAT. RUN TWEAKNET and
enter the five variable values using command 1: x(O) = (.8 2.7 .7 .6 1.9)T.
Then use command 10 to read in file LPTRAPl.DAT from the disk. Now the
set of seven samples from that file may be reviewed using command 6; the
result is shown in Table 6.2.7. Command 8 may then be_ used to review
the topological data corresponding to Figure 6.2.4; the result is in Table 6.2.8.
Command 9 may then be used to observe the network response over a
frequency range, say, from 0 to 2 radians per second in 11 linearly spaced
steps; the results are shown in Table 6.2.9.

For the reader wanting to obtain a more detailed understanding of the
BASIC instructions in TWEAKNET lines 8000-8800 for ladder network

Constrained Optimization of Networks 337

Table 6.2.7. Program TWEAKNET Menu and Command 6 Review of the Sample Data
for Examples 6.2.1 and 6.2.2

************* COMMAND MENU **t*ttttt.t*
1. ENTER STARTING VARIABLES {AT LEAST ONCE)
L. REVISE CONTROL PARAMETERS (OPTIONAL)
3. START OPTIMIZATION
4. EXIT (RESUME WITH 'GOTO 999')
~. SEE &/DR RESET LOWER/UPPER BOUNDS ON VARIABLES
6. DISPl.AY DATA PAIRS
7. SEE &/DR RESET CONSTRAINT SAMPLE NUMBER(S)
8. SEE FREQUENCY. L~ & C UNITS & NETWORK TOPOLOGY
9. SEE NETWORK RESPONSES FOR ALL SAMPLES
10. RECALL SAMPLE. UNITS. ~(TOPOLOGY DATA FROM DISK
it*****••• t*****!.*******t**.***.**.
INPUT COMMAND NUMBER;? 6

I INDEPENDENT DEPENDENT
1 (I. 200000 (). 000000
2 0.400000 0.000000
.,j 0.600000 0.000000
4 0.800000 0.000000
5. 1.000000 0.000000
6 1 • 500000 40. (100000
7 2.000000 40.(100000

PRESS <RETURN> kEY TO CONTINUE -- READY?

analysis, it is useful temporarily to add the following instructions:

8075 PRINT .. BR# REAL IMAGINARY"

8105 PRINT" "; : PRINT K; : PRINT USING S6$;A4,A5

Reloading the variables and topology data using commands 1 and 10 as above,
command 9 may be used for just one frequency, say, 1 radian per second; the
results are shown in Table 6.2.10. The branch numbers correspond to the

Table 6.2.8. Topological Data Reviewed hy TWEAKNET Command 8 for the
Network in Figure 6.2.4

UhlITS ARE: FREQUENCY 1.592D-01
INDUCTANCE = 1.000D+OO
CAPACITANCE = 1.0000+00

R SOURCE. R LOAD. X LOAD 1.0000 1.0000 0.0000

BRANCH TYPE VALUE Q NAME
1 N 0.0000 0.0000 NULL 1
2 L O. aOt)!} 0.0000 L2 H

3 C 2.7(IO(l 0.0000 C3 H
4 LC 0 .. 7000 o.O()OO L4 H

0.6000 O.O()(lO C4 F

5 C i.9(iOO 0.0000 C5 F

6 R 1.0000 O.O(Jl.)O R SQUF:CE

PRESS <RETURN> KEY TO CONTINUE: -- READY-;='

338 Network Optimization

Table 6.2.9. Command 9 Frequency Scan from 0 to 2 Radians per Second for
Example 6.2.1

11
Rin OHMS

1.00000000
0.69498101
0.38340311
0.27692510
0.45733164
0.39480205
0.00720423
0.00024101
0.00001152
0.00008916
0.00012426

START FREQUENCY.,:";:' (J

STOP FREQUENCY =~ 2
NUM~ER OF FREQS. MAX

it FREQUENCY
1 O. 0(1000000
2 1).201)00('00
3 0.40000000
4 O. 6(,l)(H)OO(1
5 O. 80000000
6 1 . 00(100000
7 1.20000000
8 1. 400000(JO
9 1 • 60000000
1 (I 1 . 80000000
1 1 2. 000000(10

F'KESS <RETURN) KEY TO

40 (+LIN. -LOG) :7
RESPONSE dB

-0.00000058
0.38934803
1.24801482
1.75990001
0.73275165
3.97692603

16.71844953
30.82038474
43.79171921
34.78645057
33.27204687

CONTINUE -- READY?

Xin
-0.00000000
-0.40951029
-0.36106296
-0.17500184

0.20426821
-1.41431934
-0.58236194
-0.40497064
-0.32195749
-0.27108300
-0.23571364

standard network configuration in Figure 6.1.4, and the voltages (odd hranches)
and currents (even branches) are those computed using branch immittances by
the complex linear update illustrated in Figure 6.1.5. In Table 6.2.10, VI = 12

because of a null branch 1 and a I-ohm load resistance (with Xl. = 0). It is
seen from Figure 6.2.4 that the rms voltage V, ~ -1.61122801 - j1.549547I6
from Table 6.2.10 is the source voltage E,. The last line in Table 6.2.10 is the
normal output from TWEAKNET command 9: the sample number, frequency,
transducer loss in dB, and input impedance (resistance and reactance) in
ohms.

To illustrate the effect of the frequency and component unit factors, the
network in Figure 6.2.4 is scaled in both frequency and impedance level.
Recall that (6.1.19) and (6.1.20) defined reactance ",L and susceptance ",C,
respectively. Frequency scaling requires that all reactances and susceptances be
held constant for changes in frequency reference, so that all Land C values

Table 6.2.10. TWEAKNET Output Due to Temporary Lines 8075 and 8105
in Example 6.2.1: Real and Imaginary Parts of Brancb Voltages and Cnrrents at 1
Radian per Second

Xin

-1.41431934

OHMS

2
3
4
5
6
7

40 (+LIN. -LOG) :~ 1
RESPONSE dB Ri n

REAL I MAG I NARY
0.70710677 0.00000000
0.70710677 O. (10(100000
0.70710677 0.56568562

~0.B2024494 1.90910096
-1 • 59708892 -0.42426609
-0.01413909 -1.12528107
-1.61122801 ~1.54954716

1.0000000(1 3.97692603 0.39480205
<RETURN> KEY TO CONTINUE -- READY~

i
PHESS

START FREQUENCY =7 1
STOP FREQUENCY =~ 1
NUMBER OF FREQS. MAX
* FREQUENCY

BR#
1

Table 6.2.11. Network Topology Data for Figure 6.2.4 Scaled from 1
Radian per Second to 100 MHz and from 1 Ohm to 50 Ohms

UNITS ARE: FREQUENC'{ ==
INDUCTANCE =
CAPACITANCE =

H LOAD. X LOAD 0.0000

- - ----------- - -- .-

50.0000

NAME
NULL 1
L2 H
C3 H
L4 H
C4 F
C5 F
R SOURCE

Q

0.0000
0.0000
0.0000
0.0000
Or (I(JOO

0.0000
0.0000

Constrained Optimization oj Network.~ 339

t. (H)OO+06
1-.000D-09
1.0000-12

50.0000

VALUE
0.0000

63.6b2(1
85.9440
55.7040
19. (J990
60.4790
50.<)000

C
R

TYPE
N
L

C
LC

b

4

5

BRANCH
1

R SOURCE,

F'RESS ':'-RE~UF:t,n f<:EY TO CDNTINUE -- READY?

are inversely scaled with frequency. Impedance scaling requires that all reac
tances, wL and -1/wC, and resistances be changed by the same amount, so
that inductances are increased proportionally and capacitors decreased in
versely for increases in impedance level. To change the impedance level from
the I-ohm, 1 radian per second references in Figure 6.2.4 to 50 ohms and
f= 100 Mllz (w = 2'lTf= 6.2832E+8), the source and load resistances are
changed to 50 ohms and L 2 = 63.662 nll, C, = 85.944 pF, L. = 55.704 nll,
C. = 19.099 pF, and C, = 60.470 pF. One picofarad (pF) equals lE-12
farads, and 1 nanohenry (nll) equals lE-9 henrys.

A new data file was employed so that the scaled network topology is shown
in Table 6.2.11 as displayed by command 8. When that data and the new
values for the variables given above are used in TWEAKNET, command 9
provides the results shown on Table 6.2.12. These. data should be compared
with the unsealed network results in Table 6.2.9. Note that the new frequency

Table 6.2.12. Frequency Response of the Scaled Network in Example 6.2.1 for
Comparison witb Unsealed Network Data in Table 6.2.9

START FREQUENCY =? (I

STOP FREQUENCY =? 200
NUMBER OF FREQS. MAX 40 (+LIN. -LOG> =?* FREQUENCY RESPONSE dB

1 0.00000000 0.00000000
2 20. 00000000 (I. 38935163
3 40.00000000 1.24802544
4 60 _00000000 1 . 7599 t 153
5 80.00000000 0.73274356
6- 100.00000000 3.97709455
7 120.00000000 16.71876638
8 140. OOO(IOOOl) 30. 82114475
9 160.00000000 43.78975602
1(1 180.00000000 34.78599083
11 200.00000000 33.27176730

PRESS <RETURN) KEY TO CONTINUE -- READY~

11
Rin OHMS
50.00000000
34.74895401
19. 17005335
13.84618623
22.86676143
19.73850t62
0.36018283
0.01204836
(1.00057647
0.00445840
0.00611325

Xin
-0.00000000

-20.47555717
-18.05312410
~8.75003177

10.21370278
~70.71460l16

-29.11779534
-20.24837562
-16.09776810

-13.5540667(1
-11.78561340

340 Network Optimization

Table 6.2.13. Logarithmic Spacing of Frequency Samples Using Command 9 iu
TWEAKNET for Example 6.2.1

-5
Ri /1 OHMS
49.77821250
47.86951537
34.74895401
13.82977947
O.(l06~1325

START FREQUENCY =~ 2
STOP FREQUENCY =~ 200
NUMBER OF FREQS. MAX 40 (+LIN. -LOG) =7* FREDUENCY RESPONSE dB

1 2. OOI)(IOO(I(l (1.00417098
2 6.324556(10 (J.04144999
3 20. 00000(1)0 (I. 38935163
4 63.24556000 1.7305479 i
5 200. (JOOOOO~)O 33.27176730

PRESS -(RETURN) LEY TO CONTINUE -- READ'(7

Xi/1
-3.08485025
-9.34203119

-20.47555717
-6.766539(1':

-11.785612:!.;)

scale has been specified, over which the transducer loss function values are
unchanged as expected; see (6.2.2). Of course, the input impedance values
have increased by a factor of 50. It is shown later that the gradient values are
different, because they depend on the component units chosen; there are
obvious scaling implications for optimization algorithms.

Finally, logarithmic spacing of frequency samples using command 9 is
illustrated in Table 6.2.13. Because geometric frequency mapping is used in
translating lowpass filters to their bandpass equivalent filters, logarithmically
spaced samples are often more useful than linearly spaced samples. The
interested reader is referred to Cuthbert (1983:205, 280). Also, typical quality
factor values may be used by replacing the zeros in topology list lines 2 to 6 in
Table 6.2.6 with values such as 200 for inductors and 500 for capacitors. Note
that Q values do not change with scaling, as seen by (6.1.22).

6.2.3. First Partial Derivatives. The Gauss-Newton optimization algorithm
described in Section 4.4.1 and utilized in programs LEASTP and TWEAK
NET requires only first partial derivatives of the residual terms in the standard
objective function (6.2.1). The Hessian matrix of second partial derivatives is
estimated by a positive-definite matrix that is a result of the unique form of
the objective function. This section describes the two alternative ways in which
these first partial derivatives are obtained in program TWEAKNET. A more
general analysis of first partial derivatives for electrical networks and analo-.
gous linear systems is described in Section 6.3.

The Jacobian matrix originally defined by (4.4.15) for the Gauss-Newton
method is

(6.2.4)

where J is m X n for m samples of residuals " that are functions of n
variables. Subroutine 7000 in TWEAKNET assembles the Jacobian in array
A(l, J), I ~ 1 to M and J ~ 1 to N. The residual functions are those defined
in Table 6.2.1, where it can be seen that the partial derivatives of the several
possible residual expressions all are equal to transducer function L, multiplied

-------- - - -------------

Constrained Optimization ofNetworks 341

by ± 1, multiplier s,' or zero. Subroutine 7000 receives the first partial
derivatives of transducer response L , with respect to variable xJ in array
A(l, J) from subroutine 9000, makes the decisions implied in Table 6.2.1, and
places the Jacobian in (6.2.4) into array A {I, J) for later computation of the
objective function gradient vector (4.4.32) by subroutine 2750: .

m

VF ~ L rr ' (vr,).
i=l

(6.2.5)

The remainder of this section describes subroutine 9000, which computes
either approximate or exact values of first derivatives of the transducer
response function for certain ladder networks. The easiest way to approximate
the first partial derivatives of the response function is by forward finite
differences: Just perturb each variable in turn and recompute the response.
Then

(6.2.6)

where ej is the n x 1 jth unit vector defined by (2.l.2). An alternative is to
perform finite differencing on objective function (6.2.1); this is not imple
mented in TWEAKNET because of the exact methods that follow. Either way,
finite differencing wastes n times as much work to obtain derivatives that are
subject to truncation error. The results are accurate to about three to five
significant figures, and the effects of those errors usually cause slower final
convergence to a nonzero gradient.

Finite differencing is programmed in TWEAKNET lines 9020 to 9160,
selected by the user's choice that sets K6 ~ 0 at line 1450. The extra network
evaluations required for finite-differenced derivatives are not included in the
"TOTAL NUMBER OF FUNCTION EVALUATIONS" report provided by
TWEAKNET at the conclusion of each minimization, but the total over the
sequence of penalty function minimizations is accumulated. It is recom
mended that the" maximum number of iterations" parameter in command 2
be set to 20 before using finite differences.

Exact first partial derivatives of response functions for any electrical
network composed of linear elements may be obtained in no 'more than two
analyses at each frequency. In fact, only one analysis is required if the
functions being differentiated are not transfer functions. For example, the
exact partial derivatives of input impedance Z;n with respect to all variables
in a network may be obtained by just one analysis of that network per
frequency. Since the transducer function is a transfer function (one that
involves quantities at opposite end of the network), two analyses at each
frequency are required for unrestricted types of linear elements. Two different
ways to arrive at these conclusions are discussed in Section 6.3, one being
Tellegen's theorem for systems based on linear constitutive laws.

342 Network Optimir.ation

In order to avoid a substantial increase in BASIC program code, a more
limited implementation for exact derivatives is provided in TWEAKNET,
namely, that for resistively terminated lossless LC ladder networks. In that
situation, only one analysis per frequency is required to obtain exact deriva
tives of transfer functions with respect to all variables. For the transducer
function in (6.2.3), assuming E, = IE,ILQ and PL ~ ~:

I

V'x,L; = - (20 10glOe)Im(pjll) ,

V'B,L; = + (2010g lOe)lm(pWk2
),

where reflection coefficient PI is defined as

keven,

k odd,

(6.2.7)

(6.2.8)

(6.2.9)

The symbol "1m" in (6.2.7) and (6.2.8) means "imaginary part of," and
(20 10glOe) = 8.68589. Also, lk and Vk are complex currents and voltages in
the k th network branches, respectively.

The even-branch impedances are

(6.2.10)

where reactance Xk is not to be confused with variable xJ' and the odd-branch
admittances are

(6.2.1I)

where Bk is the kth branch susceptance. The partial derivatives in (6.2.7) and
(6.2.8) are with respect to the branch reactance, Xk , and the branch suscep
tance, B k' respectively. The derivatives are real numbers, even though 'the
currents, voltages, and reflection coefficient are complex. These exact partial
derivative formulas for the lossless-element case have been derived by Bandler
(1985) using conservation of energy and the Cauchy-Riemann identity (Table
6.1.3) from complex variable theory and by Orchard (1985) using Tellegen's
theorem. See Section 6.3.2.

Subroutine 8000 in TWEAKNET for ladder network analysis stores the
complex branch voltage or current in A(I, J) for frequency W; and variable
element x j associated with that branch. Null branch voltages and currents are
skipped over in this storage process. See lines 8150 to 8200 of the BASIC
listing C6-1 in Appendix C and balloon A in Figure 6.2.3. Because (6.2.7) and
(6.2.8) are not valid unless the phase reference is adjusted to the source voltage
(as opposed to the original reference to the load current), it is necessary to
subtract the computed source voltage angle from the stored branch voltages
and currents. The input impedance is also stored in array Z(l,) at each lth

Constrained Optimization of Networks 343

frequency for later use. These last two complex quantities are not available
until the input of the network has been reached by the sequence of complex
linear updates. See TWEAKNET lines 8730 to 8790 and balloon B in Figure
6.2.3.

The exact derivatives of the transducer function with respect to all elements
of a lossless network are computed in subroutine 9000, lines 9180 to 9700. The
reflection coefficient (6.2.9) is computed in lines 9250 to 9290, and the partial
derivatives of transducer loss with respect to branch reactance and suscep
tance, (6.2.7) and (6.2.8), respectively, are computed in lines 9300 to 9380.
Programming the preceding calculations involving complex variables is SOme
what awkward in the BASIC language, since the complex variable type is not
provided.

The chain rule must be applied to the partial derivatives in (6.2.7) and
(6.2.8) for them to be properly related to the problem's variables. Thus,

keven,

k odd.

(6.2.12)

(6.2.13)

If variable Xl is an inductance scaled by unit u2' then tbe reactance of lossless
branch k is

(6.2.14)

and the derivative of reactance X. with respect to variable element xi is

k even. (6.2.15)

Similarly, if variable element xi is a capacitance scaled by unit u" then the
derivative of susceptance Bk with respect to variable xi is

k odd. (6.2.16)

When an inductance occurs in an odd branch, then its susceptance is

1
(6.2.17)

so that the partial derivative of the inductive susceptance with respect to the
scaled inductance value is

k odd. (6.2.18)

344 Network Optimization

Similarly, for a capacitance occurring in an even branch,

I
k even. (6.2.19)

For the parallel LC arrangement in a series branch,

(6.2.20)

Therefore, the partial derivative of the reactance with respect to the scaled
inductance value x j is

keven, (6.2.21)

and with respect to the scaled capacitance value x
J
+ 1 is

k even. (6.2.22)

Similarly, for the series LC arrangement occurring in a shunt branch, the
partial derivative with respect to the scaled capacitance value X

J
+ 1 is

k odd, (6.2.23)

and the partial derivative with respect to the scaled inductance value x
J

is

k odd. (6.2.24)

The partial derivatives of reactance 'Xk or susceptance Bk in (6.2.12) and
(6.2.13) are defined in (6.2.15) through (6.2.24). Those factors contain the unit
constants u, and u, for inductors and capacitors, respectively. Therefore,
choices of Land C units will affect optimizer conditioning. The symptom to
watch is that all elements of the gradient should be within two orders of
magnitude of unity at the beginning of the optimization. Otherwise, more
appropriate choices for u, and uJ are required.

The chain rule conversions in (6.2.12) to (6.2.24) are accomplished in
TWEAKNET lines 9390 to 9700. If this is not programmed efficiently, then
the effort wasted in finite differencing may not suffer in comparison, especially

,

f Constrai1U?d Optimization ofNetworks 345

for a small number of variables. However, it is shown in the next section that
inaccurate derivatives definitely slow the final convergence of the optimization
process. Besides, it is shown in Section 6.3 that exact derivatives for any
dissipative (lossy) network require no more than twice the work for lossless
networks, so computation of exact derivatives is always worthwhile. As is
often the case, the price paid is more extensive and sophisticated pro
gramming, and this is aggravated by the absence of a complex variable type in
many programming languages.

6.2.4. Summary of Program TWEAKNET with Examples. Program C6-1,
TWEAKNET, is listed in Appendix C; remarks are provided throughout the
code, which occupies about 32,600 bytes in ASCII storage or 27,700 bytes in
compressed binary storage. An additional 19,000 bytes are required for
execution because of the defined variables and other BASIC interpreter
overhead, leaving about 13,750 bytes free in the standard IBM BASIC
environment. TWEAKNET may be compiled into machine code, and com
pilers that make use of the 8087 math coprocessor chip are highly recom
mended. This section summarizes the features and use of ladder network
constrained optimization program TWEAKNET.

TWEAKNET may be run directly as listed in Appendix C, program C6-1,
without merging any additional code. The 10 commands are shown in Table
6.2.7, and the first requirement is to use command 10 to load an ASCII
network data file with contents similar to that in Table 6.2.6. Alternatively, the
user may wish to first merge DATA statements defining BASIC lines within
the range 400 to 889 before running TWEAKNET; see the network data in
Table 6.2.5, which is the same as program segment C6-2 in Appendix C. The
only other mandatory action before optimization is to use command 1 to
furnish the values for the correct number of optimization variables; these are
the values of network elements.

Having furnished the network topology data for the network in Figure 6.2.4
by using either Table 6.2.5 or a file containing Table 6.2.6 and command 10,
the five variable values shown in Figure 6.2.4 should be entered from the load
(right-hand) end toward the source, that is, x(O) = (0.8 2.7 0.7 0.6 1.9l.
Those values correspond to L" C" L., C., and C" respectively. Referring to
Table 6.2.5, line 600 shows that the frequency scale (normally in Hz) has been
rescaled to radians per second by the factor 1/(2'1T) = 0.159155. Also on line
600, the inductance and capacitance units are scaled by unity and thus remain
in henrys and farads, respectively. Elements L. and C. (in a combined LC
branch) always must be furnished in that order, corresponding to lines 650
and 660 in Table 6.2.5. There could have been a sixth variable that would
override the fixed R SOURCE value furnished in line 610; in that case the
finite differencing option for estimating partial derivatives must be used after
selecting command 3 (optimization).

Having provided the network topological and variable element data, the
uSer may review the sample data status by using command 6; the result is

346 Network Optimization

Table 6.2.14. Command 8 Review of Example 6.2.2 Network State Before
Optimization

•

1. 592D-O t
1 .. (I00D+(I(l

1.000D+OO
1.0000

UNITS ARE: FREQUENCV =
INDUCTANCE =
CAPACITANCE =

R SOURCE. R LOAD. X LOAD 1.0000 0.0000

BRANCH
I
2

"4
5
6

TYPE
N
L
C
LC

C
R

VALUE
0.0000
(1.801)0

2 .. 7000
0.7000
(1.6000
"), .9(lOO
1.0000

Q

0.0000
0.0000

.0.0000
0.0000
0.0000
0.0000
0.0000

NAME
NULLl
L2 H
C'3 H
L4 H
C4 F
C5 F
R SOURCE

PRESS <RETURN:> I<EY TO CONTINUE -- READY?

shown in Table 6.2.7. These are the frequencies over which optimization will
occur. The corresponding dependent values or 'targets (0,0,0,0,0,40,40) are
the goals to be attained by least-pth minimization. For now, those target
values will not be made a part of equality or inequality constraints, requiring
the use of command 7.

Command 8 lists the ladder network structure; it may be used before or
after optimization. See Table 6.2.14. This allows the user to check the network
status; that data is easily recorded by using the IBM-PC's (PrtSc) keyboard
command.

Command 2 resets four parameters that already have default values: the
exponent p in the least-pth error function (6.2.1) is p = 2, each minimization
is limited to 50 iterations, the stopping criterion in (1.3.22) for both variables
and objective function is e = 0.0001, and minimization results are displayed
after every iteration. Before selecting finite differencing (after command 3), it
is recommended that the maximum number of iterations per minimization be
limited to 20, because of the slow final convergence rate. Once the user is
familiar with program operation, it is also recommended that the print choice
be set to 10 or 50, so that the screen will not be constantly in motion.
However, the cutback line search reports are always displayed, so the user will
know that the program is running.

Command 9 may be used to display the transducer loss (PaJPL in dB) and
the input impedance Zin (Figure 6.2.4) at one or more frequencies. The
frequencies need not correspond to the sampled data, although that may be
useful. Command 9 requires the beginning, ending, and number of frequencies
to generate the set of responses automatically. A negative number of frequen
cies produces logarithmic frequency spacing instead of linear spacing. Note
that logarithmic spacing requires a nonzero beginning frequency.

Command 3 may now be selected, and the choice of either differences (D)
or exact (E) partial derivatives must be made. If all quality factors Q are zero

---------- ..- - - - - ---------

Table 6.2.15. Unconstrained p = 2 Optimization 01 the Network Described in
Table 6.2.14

1
1
2
3
4
5

I
1
2
3
4
5

GO l
-22.85414195

12.94164591
1141.94880719
1265.14616997

3.65948409
LM PARAM V= 1.00-03

SiEP-TO-6RADIENT DEGREES= 89.1370
****** CUT BACK STEP SIZE BY FACTOR OF 4 ******

START OF ITERATION NUMBER 2
FUNCTION VALUE = 20.37907

X<I) 6<1>
1.08438985 -25.38351211
1.99481314 -4.89851744
0.76848907 324.34956809
0.53401574 475.65427660
2.08282897 -6.25864997

LM PARAM v= L.OD-02

AT

INPUT COMMAND NUMBER:? 3
•••_•••••••••••••••*•••*••-•••••*.*_.*.•.**.*******
DIFFERENCING OR EXACT LOSSLESS ELEMENT PARTIALS <D/El? E
AT START OF ITERATION NUMBER 1

FUNCTION VALUE = 40.7419
X (I)

O~BOOOOOOO

2.70000000
0.70000000
0.60000000
1.90000000

<II
G
o

*##### CUT BACK STEP SIZE BY FACTOR OF 4 ######
AT START OF ITERATION NUMBER 50

FUNCTION VALUE = 8.211599
1 XII) Btl)
1 1.7B280955 -0.26355336
2 1.59812958 -0.08003502
,-' 0.92276413 -3_02655326
4 0.42184804 1.61372724
5 l w 88634557 0.15353740

LM PARAM VZ 1.0D+04
StEP-tO-GRADIENt DEGREESz B4.S00i

I ~ I ~ I ! I ! I ! I ~ • , I I I I I I I , I , I • I I , • •

STOPPED AT GIVEN LIMIT OF 50 ITERf-'-lTIONS. RESULTS ARE~

AT START OF ITERATION NUMBER 51
FUNCTION VALUE = 8.206866

X(I) 6(1)
i .80429651 -0.00998179

,_ 1 • 600 12804 1).23932786
3 0.92321557 -3.34427939
4 0.42164131 1.12038790
5 1.85697765 ~o. 13935573

TOTAL NUMBER OF FUNCTION EVALUATIONS = 93
EXPONENT F ~ 2
PRESS <RETUF:N> I<EY TO COhlTINUE -- READY'7'

347

348 NetH'Ork Optimization

Table 6.2.16. Frequency Sweep lor the Variables at the Bottom 01 Table 6.2.15

-0.23640155
-0.22372965
-0.21245314
-0.20233928
-0" 19320357

Xin
-0. ciooooooo
-0.09197870
-0.28850966
-0.57241620
-0.71499266
-0.66131558
-0.53387052
-0.39006792
-0.21592986

0.07843098
-1.42504874
-0.81955827
-0.58911788
-0.48239253
-0.41720894
-0.37150100
-0.33683554
-0.30921773
-0.28646746
-0. 26727004
-0.25077648

0" 00004(191
0.00004091
0.00003947
0.00003725
0.00003465

Rin OHMS
1.00000000
1.03552512
1.08426221
0.97571590
0.68792471
0.43532630
0.29407635
0.23671178
(I. 25803877

0.54770055
0.93110878
0.04989598
0.00718231
0.00139773
0.00026815
0.00003368
0.00000001
0.00000927
0.00002309
0.00003314
0.00003876

RESPONSE dB
0.00000000
0.01018158
(1.08953151
0.35071318
0.86777711
1.56630578
2.21658716
2.49445166
1. 982527to

0139884561
1.89357925
9.48817601

16.75686177
23.44359234
3('.39448071
39.26755239
73.20648644
44.70595700
40.68735180
39.07531214
38.36082759

CONTINUE -- READY?
38. (911)8093
38.07307496
38.20B77840
38.44275605
38.74130798

CONTINUE -- READY?

FREQUENCY
0.00000000
O. 1(10(1(1(100
0.20000000
0.30000001
0.40000001
0.50000000
0.60000002
0.69999999
(I. 8(1000't)(J1

0.89999998
1 • 0000(1)00
1.10000002
1.20000005
1.29999995
1.39999998
1.500000qo
1 • 60000(102
1.70000005
1.79999995
1.89999998
2. (11)0(10000

<RETURN> kEY TO
2 • 1)t?9"'i999(1
2.20000000
2.3(1(100000
2.400000JO
2.50(100000

<RETURt-L \(EV TO

2
.,;:.

•
1

;'A
25
:':6

PRESS

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
::'0
21

PRESS

(implying infinite Q) and the last variable is not R SOURCE, then exact
derivatives are available and are recommended for both speed and accuracy.
Compiled BASIC win complete this optimization in a few minutes. Table
6.2.15 shows the first two and last two function evaluations. Command 9 may
be used to determine how the optimized network response fits the targets, and
the results are shown in Table 6.2.16.

The preceding experiment indicated that the two 40-dB targets were too
ambitious, so that the fonowing constrained optimization problem is more
appropriate.

Example 6.2.1. Using command 10, the sample data was changed to that
shown in Table 6.2.17 as observed by command 6. Command 7 may be used
to designate some or all of the samples as lower inequality (;0,), equality (=),
upper inequality (~) constraints or least-pth goals. Each time command 7 is
selected, an designated constraints are displayed; least-pth goals are not. It is a
simple matter to select the constraint pattern using command 7 to obtain the
results shown in Table 6.2.18.

After 13 iterations with command 3 (using exact partial derivatives) from
x CG) = (0.8 2.7 0.7 0.6 I.9)T, the end of the first sequential optimization
(penalty loop) and the subsequent analysis by command 9 are shown in Table
6.2.19.

Constrained Optimi:.ation of Networks 349

Table 6.2.17. A Revised Set of Sample
Data for Example 6.2.2 as Displayed
by Command 6

2
3
4
5
6
7

INDEPENDENT
0.600000
0.700000
0.800000
O.90()(JQO

1.000000
1.500000
2.200000

DEPENDENT
1.300000
1.300000
1.300000
1.300000
1.300000

35.000000
35.000000

The loaded Q values were then changed to 200 for inductors and 300 for
capacitors (with the help of command 10), and optimization was restarted
from the last set of variable values. Now the differencing method for estimat
ing partial derivatives must be selected, because the network is no longer
lossless. Two penalty loops were required to reduce the maximum error
constraint modulus to 0.0458. The results are shown by the data from
commands 3 and 9; see Table 6.2.20. The response curves for the first starting
point, X,D) = (0.8 2.7 0.7 0.6 1.9)T, and the last point, Table 6.2.20, are
plotted in Figure 6.2.5.

The preceding example required some unreported experimentation. More
important, insight for what is or is not technically possible is most helpful, but
it is claimed that the process of nonlinear optimization also contributes to
insight. The user will find that repeated experimentation is much easier to
accomplish with the aid of certain RAM-resident utility programs for the
IBM-PC. Especially useful are macro commands that assign a sequence of key
strokes to a spare key to avoid retyping and notepad capability that enables
temporary interrupt of TWEAKNET for modification of an ASCII file that is
subsequently acquired using command 10. Two such respective programs are
SuperKey and SideKick, trademarks of Borland International. These programs
also provide convenient cut-and-paste features to 'save noteworthy results.

Table 6.2.18. The Set 01 Inequality and Equality Constraints
Imposed on tbe Sample Data Using Command 7

CONSTRAINTS NOW SET ARE:
I SAMPLE LOWER
1 0.6000
2 0.7000
3 0.8000
4 0.9000
5 1.0000
6 1. '5000
7 2.2000 35.0000

EQUALITY

35. (1000

UPPER
t .3000
1.3000
1.3000
1.3000
1.3000

Table 6.2.19. The End of Constrained Optimization and a Frequency Sweep of the
Transducer Response Function for the Lossless Network in Figure 6.2.4

FUNCTION VAL.UE ""
X(l)

1.25767454
1.70484432
o_91281892
o_41891943
1.68247745

1
1
2
3
4
5

2. 256286E-I0
6(1)

-0.00011281
-0.00001546
-0.00025742
-0.00062080
-0.00005706

LM PARAH V= 1.0D-04
STEP-TO-GRADIENT DEGREES= 88.2262

CONVERGED; SOLUTION IS~

AT START ~ ITERATION NUMBER 13
FUNCTION VALUE = 2.909471E-12

I xn> 6(1)
1 1.25768692 0.00001458
2 1.70484566 O~00001524

3 0.91281995 0.000]7903
4 0.41891945 0.00033564
5 1.68246015 0.00001110

TOTAL NUMBER OF FUNCTION EVALUATIONS = 23
EXPONENT P = 2

*tt**t***t**t*****•••*,**.*.******.****************
AFTER 1 PENALTY MINIMIZATIONS.

THE MAX CONSTRAINT MODULUS * 6 = 2.412249E-06
CONTINUE PENALTY MINIMIZATIONS (YIN)?

40 (+LIN. -LOG) =?
RESPONSE dB

0.00000000
0.01769382
0.08841475
0.25169341
0.53151922
0.89172274
1.21311593
1.29999994
0.91304890

0.09542350
1.29999931
7.05162603

13.67249314
20.06111275
26.72505746
35.00000241
54.27558940
42.88774168
38.11600553
36. 2593()254
35.41944921

CONiINUE -- READY?
35.07181375
:":.5.00000060
35.1,)9597058
35.29925108
35.57329942

CONTINUE -- READy?

NUHBER OF FREQS. MAX
.. FREQUENCY
1 0.00000000
2 0.10000000
3 (1_ 20000(.)00
4 O. 30000001
5 O. 40000001
6 0.50000000
7 0.60000002
8 (I. 69999999
9 (I. 80000001
10 0.89999998
1 1 1 .00000000
12 1 • 100000(12
13 1 • 20000005
1 4 1 . 29999995
15 1 • 39999998
16 1 • 5(1000000
17 1 • 60000002
18 1.71)000005
19 1 • 79999995
20 1.89999998
21 2.00000000

PRESS <RETURN) KEY TO
22 2.09999990
23 2. 20(100000
24 2.30000000
25 2.40000010
26 2.50000000

PRESS <RETURN> KEY TO

26
Rin OHMS

1.00000000
0.99908403
0.97330122
0.87698387
0.71152370
0.54280863
0.42423677
0.37236895
0.41378490

0.74557252
1.11319530
0.10563878
O. 016(10889
0.00321637
(I. (1(1(164836
0.(10009261
0.00000106
0.00001436
0.00004243
0.000(.)6428
0.00007724

0.00008300
0.00008382
0.00008153
0.00007742
0.00007238

Xin
-0.00000000
-0.12772648
-0.28170604
-0.44065228
-0.5361)2045
-0.53465628
-0.46403412
-0.35475487
-0. 20882 1(14

-0.03897357
-1.24138682
-0.95952089
-0.67778205
-0.54620137
-(1.467'72089
-0.41378763
-0.37349284
-0.341744'.59
-0.31581031
-0.29406876
-0.27548376

-0.25935436
-0.24518479
-0.23261195
-0.22136199
-(1.21122361

350

Table 6.2.20. The End of Constrained Optimization and a Frequency Sweep of the
Transducer Response Function for the Dissipative Network in Figure 6.2.4

1.0D+02
86.9509

6(1)

-0.00875166
-0.00389084
-0.06901293
-0.10261966
-0.01526351

LM PARAM V=
STEP-TO-GRADIENT DEGREES=

:x (I)

1.58007720
1. 43531825
1.05720132
0.36246042
1.37282973

I
1
2
3
4
5

STOPPED AT GIVEN LIMIT OF 20 ITERATIONS; RESULTS ARE:
AT START OF ITERATION NUMBER 21

FUNCTION VALUE = b.7b5874E-03
I X(n 6(1)
1 1.56613845 -0.00680946
2 1.43370432 -0.00528253
3 1.05818550 -0.02824242
4 0.36211966 -0.00937649
5 1.38812583 -0.00318943

TOTAL NUMBER OF FUNCTION EVALUATIONS = 78
EXPONENT P = 2
t.t*t**tt******.**************************.****
AFTER 2 PENALTY MINIMIZATIONS.

THE MAX CONSTRAINT MODULUS" 2 = 4.44880lE-02
CONTINUE PENALTY MINIMIZATIONS (YIN)? N

PF:ESS (F\ETuRN> rEV "f(l

NUMBER OF FREQS~ MAX
*" FREQUENCY
1 (I. 0(1000000
2 (I. 1000(1000
3 O. 20000000
4 0.30000001
5 0.40(Il)0001
6 (I. 50000(100
7 0.60000002
8 0.69999999
9 (I. 8(1(l(n)(l(l 1
1(I (I. 89999998
1 1 1 . 00000000
12 1 • 1(H)('O(IO~

13 1 . 2000(1(1(15
14 1.29999995
15 1 . 39999998
16 1.50000000
1 7 1 . 600(Jt~H)(12
18 1. 700000CIS
19 1.79999995
20 1.89999998
21 2. (l(I(IU(H)(H)

PRESS 'RETURN;' KEY TO
~,-; 2. (,99''t',?99(l

24

26

2.2(J(J(!t)(H)(i

-"2. 30(H)(I(lfl(1

2.4000001ff
2.50000(I(H·,

40 (+L1N~ ~LOG) ='?

RESPONSE dB
0.00000000
0.01238261
0.05317945
0.17774808
0.43261254
0.80085790
1.17052571
1.34448796
1 • 08099988
').37118739
1.:316i6750
6.79604376

13.447115'17
19.90800796
26.64-;'97173
35.00617312
54.7.5206923
42. 633698<n
37.9997 \ :.34
36. 19118356
35.379-'3708

CONTINUE -- R€ADY7
3::.05213351
34.99366846
.:5.1(17-9544:.
:;.5.31740751
."?5.600'12765

CONTINUE _. k'FAm"7'

26
Rin OHMS

1 . 00000000
1.03684886
1.12207661
1.15529263
'•• ',)0864006
0.74880846
0.53945426
0.43148910
(1.43460 7 39

!).69450748
1 • 6618(1888
0.18622399

1).03152330
0.(1(19<;>6391
0.00489032
0.00323591
(I. t)0"252875
(I. ()0214420
O.(H)189165
o. '.)(>170383
O. ('0155362

'_I.O(lt42848
0.01"l1~::2174

(1.(I(l122936
,). (101 14860
(I. (Jl) 1(,T] 45

Xin
~(I. 00000000
-0.03216728
-(1.13860064
-0.36599504
-0.61422636
-0.70375131
-(1.63789415
~(l. 5(10680:.0
-0.32039974

-0.07715498
-.I . ('4 7 59004
-1.223T140o.

-0.8:3874336
~().6681904q

-0.56926513
-0.50222420
-(1.4525304:3-
-0.41357129
-.). :,8185512
-').35533248
··('.33270352

-').3" 1309~.78
-').29588750
- '.). 28063527
-(t. '26699914
-(1.25471897

351

352 Network Optimi'l.ation

Radians per second -

Figure 6.2.5. Beginning and ending response curves for a lossless optimization followed by one
for the dissipative network in Figure 6.2.4.

The next example is designed to show how TWEAKNET behaves for larger
optimization problems. Although the changes necessary to provide for more
than 20 variables are straightforward, many nonlinear optimization problems
seem to have fewer variables. The maximum number of variables encountered
by the author during many years of network optimization on large computers
has been less than 50. For personal computers there is no question of
numerical precision, especially when using the math coprocessor for maximum
dynamic range, but there is a question of running time. The next example
should alleviate that concern when using compiled languages, especially on
new personal computers that run many times faster than the original IBM-PC.

Example 6.1.3. The bandpass filter shown in Figure 6.2.6 was obtained from
an ideal lowpass Cauer elliptic filter that was transformed to the standard
bandpass configuration and then modified. There were originally three branches
in the standard bandpass filter that produced zeros of transmission, each
branch originally containing two L's and two C's. The modification replaced
each of those branches by two L's and one C, eliminating half the transmis
sion zeros and resulting in the three shunt branches at nodes 7 to 9, 13 to 15,
and 19 to 21 in Figure 6.2.6. These topics in electrical engineering have been
described by Cuthbert (1983:205, 364, 369).

1L1

C4L6

c,

L,

9 7
LlOL16

L21

1 C24 L22
AAA 2~5 '~

r--VV\.--o---l 23

'V

Figure 6.2.6. Modified Cauer elliptic filter for Example 6.2.3.

tii

354 Network Optimization

Table 6.2.21. Topological Description of tbe Network in Figure 6.2.6

UNITS ARE. FREQUENCY = 1.592D-01
INDUCTANCE = 1.000D+OO
CAPACITANCE = 1.000D-+OO

R SOURCE, R LOAD. X LOAD 1.0000 1.0000 0.0000

BRANCH TVPE VALUE Q NAME
t L 0.083t 0.0000 L1 H
2 N 0.0000 0.0000 NULL2
3 C 12.0340 0.0000 C3 F
4 C 0.0741 0.0000 C4 F
5 N 0.0000 0.0000 NULL5
6 L 13.5000 0.0000 L6 H
7 LC 0.1013 0.0000 L7 H

3.4740 0.0000 C7 F
8 N 0.0000 0.0000 NULL8
9 L 1).1866 0.0000 L9 H
10 L 13.9230 0.0000 L10 H
11 N 0.0000 (1.0(100 NULLi1
12 C 0.0716 0.0000 C12 F
13 LC 0.1402 0.0000 L13 H

3.2786 O.OO()O C13 F
14 N 0.0000 0.00(10 NUL.L14
t5 L 0.1648 0.0000 L15 H
t6 L 15.8490 0.0000 LIb H
t7 N (1.0000 0.1)00(1 NULL17
18 C 0.0631 0.0000 Ci8 F
t9 LC 0.0869 0.0000 L19 H

1.8866 O. (11)00 C19 F
20 N 0.0000 0.0000 NULL20
21 L 0.4432 0.0000 L21 H
,......'J L 10.9150 0.0000 L22 H~L

23 N 0.0000 0.(1000 NULL23
24 C 0.0916 0.0000 C24 F
25 N 0.0000 0.0000 NULL25
26 R 1.0000 0.01.)(10 R SOURCE

PRESS <RETURN> VEY TO CONTINUE -- READY";:·

Whether or not the origin of this example is of interest to the reader, the
optimization goal is to correct the distortion in the passband from 0.95 to 1.05
radians per second that was caused by the modification and then to com
pensate for the effect of element dissipation. The TWEAKNET topological
description of the network in Figure 6.2.6 including element values is con
tained in Table 6.6.21. The transducer loss function in the vicinity of the pass
band is shown in Figure 6.2.7a for starting values of the lossless elements; the
ideal filter had equal ripples in the passband.

The first step is to use TWEAKNET to obtain a 0.5-dB passband for the
lossless network; Table 6.2.22 also shows that the intention was 10 maintain at
least 55 dB at 0.8 and 1.3 radians per second. The Microway 87BASIC™
compiler was used to convert TWEAKNET to machine language instructions
that utilize the 8087 math coprocessor. Only 23 function evaluations were
required, using exact derivatives in the first penalty loop to obtain a maximum

1

Constrained Optimization 01 Networks 355

Radians per second __

Figure 6.2.7. Transducer loss function far the filter in Figure 6.2.6 far four sets af element values.
(a) Before optimization with lossJess elements; (h) after optimization to 0.5 dB with Jossless
elements; (c) effect of then adding dissipative elements; (d) after optimization ta 3.5 dB with
dissipative elements.

constraint error modulus of 2.22E - 6. The new element values and the finite
loaded Q values to be introduced at this time are shown in Table 6.2.23. The
transducer loss after optimization of the lossless elements is shown in Figure
6.2.7b, and the subsequent effect of inductor quality factors of 200 and
capacitor quality factors of 500 is shown in Figure 6.2.6c.

The second step is to use TWEAKNET to obtain a 3.5-dB passband for the
dissipative network. Twenty function evaluations, using derivatives obtained
by finite differences (another 380 function evaluations), produced a maximum
constraint error modulus of 4.45E -7. Table 6.2.24 shows that value after the
final element values at the end of one penalty loop. The frequency scan
confirming the binding 3.5-dB constraints at the passband edges (0.95 and 1.05
radians per second) and at two interior frequencies is also shown at the
bottom of Table 6.2.24 and graphed in Figure 6.2.7d.

The preceding example will run in interpreted BASIC, but it will take a
prohibitive amount of time. There are some OVERFLOW error messages (for
Example 6.2.3 only), but IBM BASICA supplies the appropriate number of
machine infinity and continues. IBM BASIC compiler Version 1.00 will
provide a tenfold increase in speed; unfortunately, the resultant machine code

356 Network Optimization

Table 6.2.22. Constrained Sample Data for Example 6.2.3 as
Viewed Using Command 7

CONSTRAINTS NOW SET ARE:
SAMPLE LOWER EQUALITY

0.8000 55_0000
2 0_9'500
3 0.9550
4 0.9600
5 0.9650
6 0.9700
7 0.9750
8 0.9800
9 0.9850
1(1 0.9900
11 0.9950
12 1.00(1)
1::) 1.0050
14 1.0100
15 1.0150
16 i.0200
17 :1.0250
18 j .0300
19 1.0350
20 i.0400
21 1.0450
22 1 .05')(1
23 1.30(lCl 55.000(',

SET OR RESET ANY CONSTHAINTS (-UN} ?

UPPER

t).500t)
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
().50t)(1
0.500(1
').50(1(>
0.5000
O.50(jl)
0.5000
o. SOOt)
0.500(1
(1.5(1(1(1

stops upon overflow. The best resolution of this problem is to use the math
coprocessor, which will not underflow or overflow in any practical cases.

Table 6.2.25 summarizes the real time required for the given number of
iterations and function evaluations for two examples using three different
language' modes. Problems that are comparable to Example 6.2.2 (five vari
ables, seven frequency samples) may be run in interpreted BASIC without
undue delay. Overflow usually does not occur in problems of that size, and
even if it does occur the interpreter will make the intelligent replacement and
continue. Overflow in larger problems being run using machine language
TWEAKNET from the IBM compiler should be rerun using an equivalent
compiler modified to work with the maih coprocessor; several such compilers
are commercially available. Since the IBM-AT personal computer will de
crease the BASICA time in Table 6.2.25 by a factor of 3, much larger
problems may be run without compiling TWEAKNET.

Readers who have run the preceding examples should now be able to
appreciate the power and potential of constrained nonlinear optimization of
networks and analogous physical systems. BASIC is a programming language.
that most personal computer users can readily understand, so it is a good
means for communicating the details of algorithms. As a finished product,
TWEAKNET compiled in conjunction with the math coprocessor is an
excellent tool for RLC ladder network problems.

Table 6.2.23. Element Values That Resulted from Optimization of the
Lossless Network and Finite Q Values to Be Introduced

**********t*t****,******************
INPUT COMMAND NUMBER:? 8

UNITS ARE' FREQUENCY = 1.592D-01
INDUCTANCE = 1.000D+00
CAPACITANCE = 1 .. 000D+00

R SOURCE. R LOAD, X LOAD 1.0000 1.0000 0.0000

BRANCH TYPE VALUE Q NAME:
1 L 0.1027 200.0000 LI H

·2 N 0.0000 0.0000 NULL2
3 C 9.8812 500.0000 C3 F
4 C 0.0737 500.0000 C4 F
5 N 0.0000 0.0000 NULL5
6 L 13.3216 200.0000 L6 H
7 LC 0.1447 200.0000 L7 H

3.4242 500.0000 C7 F
8 N 0.0000 O.OOOCj, NULL8
9 L 0.1398 200.0000 L9 H
9 L 0.1398 200.0000 L9 H
10 L 10.6267 200.0000 LtO H
11 N 0.0000 0.0000 NULL1l
12 C 0.0868 500.0000 C12 F
13 LC 0.1421 200.0000 Ll3 H

3.4242 500.0000 C7 F
8 N 0.0000 0.0000 NULLS
9 L 0.1398 200.0000 L9 H
10 L 10.6267 200.0000 LiO H
11 N 0.0000 0.0000 NULL11
12 C 0.0868 500.0000 C12 F
13 LC 0.1421 200.0000 L13 H

3.2692 500.0<)<)0 C13 F
14 N 0.0000 0.0000 NULl14
15 L t).1565 200.0000 L15 H
16 L 15.9345 200.0000 Ll6 H
17 N 0.0000 0.0000 NULL17
18 C 0.0653 500.0000 CiS F
19 LC 0.0582 200.0000 Ll9 H

2.2811 500.0000 C19 F
20 N 0.0000 0.0000 NULL20
21 L 0.5834 2(10.0000 L21 H
22 L 8.9024 200.0000 L--'--' H
23 N 0.0000 0.0000 NULL23
24 C 0.1197 500.0000 C24 F
-,= N 0.0000 0.0000 NULL25~~

26 R 1.0000 0.0000 R SOURCE

PPESS /RETlIRN> I<EY TO CONTINUE -- READY?

357

358 Network Optimization

Table 6.2.24. The End of the Optimization with Dissipative Elements and the
Resulting Constrained Passband for Example 6.2.6

= 20

0.00000 ...
0.00000075

-0.00016956
-0.00000102

0.00000531
0.00000033

-0.00000025
-0.00000043
-0.00006046

0.00002603
0.00000225
0.00001771

-0.00000015
-0.00004858
-0.00000532
-0.00000099
-0.00000208
-0.00000026
-0.00001923
EVALUATIONS

1 0.10775724
2 9.6278286.5
3 0.07748296
4 12.75971076
5 0.12269792
6 3.34196177
7 0.16896779
8 10.50612961
9 0.08518913
10 0.11871885
11 3.19510654
12 0.18488478
13 15.87142078
14 0.06590916
15 0.03038861
16 2.23804818
17 0.61754201
18 8.47542304
19 0.12634861

TOTAL NUMBER OF FUNCTION
EXPONENT P = 2

****~*****************************t****************
AFTER 1 PENALTY MINIMIZATIONS.

THE MAX CONSTRAINT MODULUS * 18 = 4.456584E-07
CONTINUE PENALTY MINIMIZATIONS (YIN)? N

17
Rin OHMS

(1.15077827
0.24980678
0.63553912
1 • (l01 05372
1 .38703934
1.39124909
1.04797737
0.737246(u)
0.58132184

0.62010047
1.0::!.(186691
1.88762981
1 • 08289(1 18
0.74736096
0.72116641
0.266757(1"1
0. 14529765

t*************.*.***.***************
lNPUT COMMAND NUMBER:? 9
START FREQUENCY =? .92
STOP FREQUENCY =? 1.08
NUMBER OF FREOS, MAX 40 (+LIN. -LOG) =?

FREQUENCY RESPONSE dB
1 0.9'2000002 22.41810194
2 (1.93000001 12.51758454
3 0.94000000 5.20408380
4 0.94999999 3.50000031
5 0.95999998 3.16671554
b (1.97000003 3.32492903
7 (I. 98000002 3. 46381484
8 0.99000001 3.49999954
9 1 • 0000(1001) 3. 36561215
10 1.00999999 3.22874116
11 1.(11999998 3.34376792
1 2 t • 02999997 3. 50000045
13 1.(13999996 3.46651651
14 1.04999995 3. 49999953
15 1. 05999994 4.47257345
16 1.07000005 9.20336718
17 1.0800<)004 15.66175530

PRESS <RETURN> f<EY TO CONTINUE -- READY?

Xin .
-1.51019911
-1.01984439
-0. S870S53::!.
-0.47507946
-0.54045038
-0.90003318
-0.96563522
-0.73682705
-0.34894196

0.11366616
0.58095179
0.07682236

-0.50851030
-0.10705578
-0.11917349

0.11989430
O. 50B08(111

There are at least three limitations to further expansion of TWEAKNET in
BASIC. Certainly one limitation of IBM BASIC is that variable names are
global so that names must be selected with care. Cross-reference programs
readily available from computer clubs and commercial sources make it possi
ble to avoid improper reuse of variable names, but it is still not a convenient
process. FORTRAN, for example, allows local names in subroutines with

Exact Partial DerirxJt~s lor Linear System.f 359

Table 6.2.25. Comparison of Computing Times (in Seconds) for Interpreted,
Compiled, and Math Coprocessor BASIC"

Example 6.2.2 Example 6.2.3
Derivatives BASICAb Compiledc 87BASIC d F#e BASICAb Compiledc 87BASIC d F#l.'

Exact 451
Differences 800

45
75

31
43

25
22

204
624

180
398

6
6

QTen iterations for Example 6.2.2 and three iterations for Example 6.2.3.
bIBM Interpreted BASICA Version A2.10.
CIBM Compiled BASIC Version 1.00.
dMicroway 87BASIC Version 3.04.
e F# is the number of function evaluations, not including the N additional evaluations
required for differences.

argument lists and named COMMON to pass sets of variable values without
worrying about global naming. The interested reader is referred to Wolf
(1985).

An important limitation in most versions of BASIC is that the complex
variable type is not available. The next section makes it clear that the algebra
of complex variables is far too pervasive in the real-frequency analysis of
electrical networks to extend the capability of TWEAKNET to more general
networks without inconvenience. However, Adby (1980) has written quite
general network analysis routines based on the nodal admittance formulation
(Section 6.1.3) in a BASIC language that includes matrix (MAT) operations.
Since matrix software routines that can be called from BASIC or FORTRAN
are commercially available for the IBM-PC, Adby's approach is feasible, and
"not a source of much difficulty."

Finally, optimizer program TWEAKNET leaves only 13,750 bytes available
for additional code and run-time memory assignment in the standard IBM
BASICA environment. Although that is not trivially small, many languages
have no such limitation. Additional user-friendly input-output routines, screen
graphics, and other valuable features often require large amounts of memory.

6.3. Exact Partial Derivatives for Linear Systems

Gradient optimizers perform substantially better when exact first partial
derivatives are available. For networks composed of lossless inductors and
capacitors, it has been demonstrated by program TWEAKNET that exact
derivatives may be computed with excellent efficiency. This section will show
why that result is true for any lossless, reciprocal network, and how it may be
extended with only slightly less efficiency to the most general linear networks.
The subject is introduced by a brief but essential description of Tellegen's
theorem, one of the most simple, powerful, and general tools applicable to all
kinds of electrical networks and analogous systems.

360 Network Optimization

b'

6

a

I,____ a

Figure 6.3.1. A network graph having five nodes and seven branches, applicable to the networks
in Figures 6.2.4 and Figure 6.3.2.

6.3.1. TeUegen's Theorem. Several limited forms of Tellegen's theorem for
electrical networks will be described before the most general definition is
given. Consider the network graph shown in Figure 6.3.1. That describes the
topology of the network in Figure 6.2.4, for instance, because it specifies the
relationships of its nodes and branches. A network having different elements
but the same graph is shown in Figure 6.3.2. It is essential that the branch
voltages and currents in a network graph be defined in a consistent manner;
currents that always enter the plus sign of the voltage are adopted as in Figure
6.3.1.

For two networks having the same graph, let the voltage and current in the
k th branch of the first network be called V. and I., and let the corresponding
quantities in the second network be called V. and ik • One result of Tellegen's
theorem is that the sum of all corresponding VJk products is zero (0 + jO
actually):

(6.3.1)

a b

I,
t-""'.....- R+ jX,-

--H- I,

Cz

+v,

a' b'

Figure 6.3.2. A second or adjoint network that shares the graph)n Figure 6.3.1 with any other
network having the same topology.

Exact Partial Derimtit:es for Linear Systems 361

A better way to write (6.3.1) is in complex vector inner product notation:

(6.3.2)

where vectors V and I contain the q complex phasors for the voltages and
currents in the q branches of the respective networks. This may seem to be
nothing more than conservation of energy, but that is only the special case
where the second network is identical to the first except for complex conjugate
voltages or currents:

(6.3.3)

The simple addition of two lines to program TWEAKNET was described in
Example 6.2.1, Section 6.2.2, to print the branch voltages and currents of
ladder networks. The reader would benefit from assigning values to the
network in Figure 6.3.2 and using that in conjunction with the network in
Figure 6.2.4 to verify (6.3.2) and (6.3.3) numerically for at least one case. Care
must be exercised to follow meticulously the branch voltage and current
notation in Figure 6.3.1.

The complex conjugation operators distinguish (6.3.3) from (6.3.2). Penfield
(1970) has shown that the most general form of Tellegen's theorem is

(6.3.4)

The symbol <I> denotes a Kirchhoff operator on a set of voltages (currents) that
obey Kirchhoff's voltage (current) law such that the result also obeys that law.
Complex conjugation and the identity operators were used to produce (6.3.3)
from (6.3.4). Other important Kirchhoff operators include differentiation with
respect to network variables, frequency, or time. First- or higher-order per
turbations are also valid Kirchhoff operators.

Tellegen's theorem applies to networks composed of linear or nonlinear,
reciprocal or nonreciprocal, lumped or distributed elements, characterized in
frequency or time, discrete or continuous, time-invariant or not, passive or
active. There are numerous applications in hydrostatics, mechanical systems,
electromagnetic fields, and quantum mechanics. Penfield (1970) has furnished
concise proofs of more than 100 important theorems about electrical networks
by using Tellegen's theorem.

6.3.2. Derivatives lor Lossless Reciprocal Networks. This section continues
the analysis of networks in the sinusoidal steady state, limited to those that
consist only of elements that are both lossless and reciprocal, specifically
inductors, capacitors, and ideal transformers. In order to derive the simple but
exact derivative expressions in (6.2.7) and (6.2.8), both the first-order difJeren
tial operator (ll) and the complex conjugation operator (.) are employed in
Tellegen's theorem (6.3.4).

362 Network Optimization

It is convenient to distinguish between port branches and internal branches
of the network. For example, there are two ports, a-a' and b-b', shown in
Figures 6.3.1 and 6.3.2. Port currents I a and I h are conventionally defined to
enter the ports with directions opposite those for internal branches. Therefore,
a difference form of Tellegen's theorem is

IaaVa - VaMa = LUkaVk - Vkalk),
k

(6.3.5)

using the identity and differential operators. Similarly, a sum form of Tellegen's
theorem is

I:aVa + V:ala = LUtaVk + V:alk),
k

(6.3.6)

using the conjugation and differential operators. The summations in (6.3.5)
and (6.3.6) include all branches except the source and the load (ports a-a' and
b-b') branches. The load voltage and current, Vb and Ib , do not appear in the
left sides of (6.3.5) and (6.3.6) because these may be considered invariant,
consistent with the complex linear update network analysis method described
in Section 6.1.3.

Figure 6.3.3 shows a resistively terminated two-port network and two
typical kinds of branches-one impedance branch, Zk' and one admittance
branch, Yk • For Tellegen's theorem, assume that the first network is the
unperturbed one in Figure 6.3.3 with aZk ~ 0 ~ alj, and the second network
is the same network with small but nonzero perturbations.

An interpretation of (6.3.5) is that a small impedance perturbation, azk ,

added in series with the k th branch will change all voltages and currents
throughout the network and -its terminations. However, it has been demon
strated by the analysis method of Section 6.1.3 that there is a new source

b'

R, I, a I,

+vk+ ,
E, +

'\" v, +vj
(

z, s Ij

a'

Figure 6.3.3. A resistively terminated two-port network containing perturbed branches Zk and
Y,.

Exact Partial Deriootives for Linear System:'i 363

voltage E a that will keep load voltage and current Vb and Ib constant. A
similar analysis involving perturbation ~lJ added in parallel with branch lJ is
deferred. The differential voltages and currents, ~V and AI, in (6.3.5) are the
changes due to perturbations in all branches of the second network. The same
explanation applies for (6.3.6), except that complex conjugate voltages and
currents are selected from the first, unperturbed network.

It can now be shown that terms on the right side of (6.3.5) that do not
contain AZk sum to zero. The constitutive law for a reciprocal kth impedance
branches is

(6.3.7)

Therefore, neglecting higher-order terms, the differential voltage is

(6.3.8)

Substitution of (6.3.8) and (6.3.7) into (6.3.5) leaves only terms containing
AZk. Terms not containing ~Zk on the right side of (6.3.6) also sum to zero,

(6.3.9)

because the real part of Zk is zero.
Orchard (1985) collected the nonzero parts of (6.3.5) and (6.3.6) in the

matrix expression

[
Ia
I-a

(6.3.10)

Matrix equation (6.3.10) may be solved for AVa/AZk and ~IalAZk; for
AZk --. 0, the partial derivatives of Va and Ia are obtained with respect to
branch impedances Zk:

V"ZkVa =
Ik(V"I: + V.*Ik)

(6.3.11)
2Ph

V"zla=
Ik(IaI: - I:Ik)

(6.3.12)
2Pb

The determinant of the matrix in (6.3.10) is twice the power delivered to the
lossless network; consequently, 2Pb is twice the power delivered to the load
resistance R h• As in TWEAKNET line 8050, it is assumed that Ph = i watt,
so that 2Pb = 1 in (6.3.11) and (6.3.12).

The exact partial derivatives in (6.3.11) and (6.3.12) are useful for optimiza
tion of various ratios of voltages and currents, using the identities in Table
6.1.3 in Section 6.1.3. Also, the partial derivative of input impedance Zin =

364 Network Optimization

Val fa in Figure 6.3.3 may be obtained by using the derivatives of Va and la'
By rearranging (6.2.9), it is seen that the corresponding input reflection
coefficient is

Po = (6.3.13)

Therefore, partial derivatives of the input reflection coefficient are also avail
able.

The complex transducer loss function H is defined:

Ea
H= --=-..,...",

(2R
a
)'/2 '

The transducer loss function in (6.2.2) is

(6.3.14)

L; = (20 loglOe)Re[ln(H)] dB, (6.3.15)

where 'IRe" means a "real part of." Therefore, it is convenient to work with
In(H):

In(H) = In(Ea) - 1In(2R.), (6.3.16)

The partial derivative of In(H) with respect to a branch impedance is

"i7 E
I (H) Z, u

VZkn = -E-
u

VZkVU + RaVz / a

Va + RaJa

Substitution of (6.3.11) and (6.3.12) into (6.3.17) yields

(6.3.17)

(6.3.18)

Assuming that the zero phase reference is the source voltage, that is, Eu = E:,
then (6.3.13) may be substituted into (6.3.18) to yield

The partial derivative in (6.3.19) is a complex number, as is

In(H) = In[IHleJOj = InlHI + jB.

(6.3.19)

(6.3.20)

Exact Partial Deriootit:es for Linear Systems 365

The Cauchy-Riemann identity, item 11 in Table 6.1.3 in Section 6.1.3,
defines the derivative of a complex function of a complex variable. In ihis case
the complex variable is Zk = R k + jXk , and R k = O. The Cauchy-Riemann
result of interest is

V'zln(H) = V'x8 - jV'xlnIHI·, "
Equating the imaginary parts of (6.3.21) and (6.3.19):

V'x,1nIHI = -Im(p;fn

(6.3.21)

(6.3.22)

Introducing the factor (20 10glOe) to (6.3.22) yields the desired partial deriva
tive for lossless, reciprocal networks originally stated in (6.2.7):

(6.3.23)

A similar result may be obtained using branch admittance perturbations, d Yk ,

finding the resulting partial derivatives of Va and fa' and finally (6.2.8):

(6.3.24)

where branch admittance Yk = Gk + jBk , and Gk = O. It should be noted that
expressions similar to (6.3.23) and (6.3.24) could be obtained for the trans
ducer phase angle 8. Again, note that (6.3.18) through (6.3.24) are valid only
when the power delivered to the load is Ph = t watl.

This section is concluded with remarks concerning derivatives evaluated
with respect to quantities that have the value zero. That is the present situation
with branch resistances in lossless networks. The Cauchy-Riemann identity
provides an alternative expression of the partial derivative of In(H) with
respect to branch resistance R k :

V'z In(H) = V'R InlHI + jV'R 8., , , (6.3.25)

Therefore, the derivative analogous to (6.3.23) for lossless, reciprocal networks
(with t wall load power) is:

(6.3.26)

and a similar deri'vative with respect to branch conductance Gk may be
obtained. There is nothing wrong with the fact that the derivative in (6.3.26)
occurs at the value R k = 0: It is still a linear prediction in a small neighbor
hood of Zk = 0 +jXk of the expected change in transducer loss L, with small
changes in R k , typically because of parasitic dissipation (finite quality factor
Q). The interested reader is referred to Orchard (1985) for an extended
discussion.

366 Network Optimization

Another interesting possibility to consider is the case of derivatives for
zero-valued elements, say a shunt capacitor placed in branch 1 of the network
in Figure 6.2.4. See problem 6.14. Certainly the partial derivative of L i with
respect to such a capacitance (C, = 0) is of interest, since a negative derivative
value at a passband frequency means that adding some finite amount of C1

would decrease the transducer loss. This leads to the possibility of "growing"
elements into network graphs, a subject explored by Smith (1971). Because of
the "Swiss Alps" effect of becoming trapped prematurely in local minima, the
technique is unreliable except for determining exact values of circuit parasitic
values for resistance, inductance, capacitance, and transmission line (propa
gation delay) effects in physical networks.

6.3.3. Derivatives/or Any Network Using Adjoint Networks. Tellegen's theo
rem will now be employed to obtain exact partial derivatives for any linear
network, including those that are active, passive, dissipative, or nonreciprocal.
Only two analyses of the network are required for each frequency. The
response is any voltage or current at any of many ports for voltage or current
excitation at any number of ports; it should follow from developments in the
last section that exact partial derivatives of other responses, such as the
transducer loss, input impedance, reflection coefficient, and so 00, are avail
able through algebraic manipulation. The following explanation is restricted to
two-port networks as in Figure 6.3.4 without loss of generality.

Tellegen's theorem, (6.3.4), is implemented by defining the differential
operator (t1) on a given network and the identity operator on a second
(adjoint) network having the same graph, Figures 6.3.4a and b, respectively. It
is convenient to collect the port voltages and currents in vectors containing
complex phasors:

The - symbol denotes voltages and currents from the adjoint network. The
internal branch voltages and currents are contained in vectors V and I that are
related by the branch impedance matrix from (6.1.31):

V = ZI,

V= zi.

Then a difference form of Tellegen's theorem is

(6.3.28)

(6.3.29)

(6.3.30)

The operator (t1) denotes a differential of every element in the vector or
matrix it precedes.

Exact Partial Deriooti1X!s for Linear Systems 367

Perturbing the branch impedances (6.3.28) in the given network and ignor
ing second-order changes,

fN = (8Z)I + Z(8I).

Substitution of (6.3.31) into the right side of (6.3.30) yields

(6.3.31)

(6.3.32)

Further substitution of VT= iTzTfrom (6.3.29) into (6.3.32) shows that the
entire right side of (6.3.30) may be reduced to

(6.3.33)

if Z = ZT, which defines the adjoint network. Reciprocal networks are self
adjoint (e.g., an RLC network).

The adjoint network serves the following purpose in determining exact
partial derivatives. A single excitation and resulting response are contemplated
for the given and the adjoint network, but they need not respectively agree as
to port or kind. Notice that the terminating resistances, if any, are included
within the given and adjoint networks in Figure 6.3.4. Whether they are in
series or shunt connection is discussed later in this section. A typical excitation
pattern might be a unit value of Va' a zero value of Vb (short-circuit port
b-b'), and response lb' Similarly for the adjoint network, the excitation
pattern might be Vb = 1, Va = 0 (short-circuit port a-a'), and response ia.

For generality, all possible excitation patterns are described by Table 6.3.1,
using notation by Bandler (1973a:256). The voltages and currents in Table
6.3.1 are shown as vectors, since there may be multiple sources and multiple
responses in a multiport network. The typical excitation pattern just described
contemplated scalar V's and /'s in Table 6.3.1, but whether they represent
port a-a', b-b', a-a', or b-b' voltages or currents is still arbitrary. The
"consequences" are due to the assumed independence of the excitation, which
is not subject to change as is the response.

I,
A

A A
A

a b 1b I, a b Ib

Rb
A A

+
R,

+
R, Rb

A A A

V, Z Vb V, z::::; ZT Vb

a' b' ~.
A

b'
(a) (b)

Figure 6.3.4. Two two-port linear networks employed to obtain exact partial derivatives of
response due to excitation of the given network. (a) Given network, (b) adjoint network.

368 Network Opt;m;:at;on

Table 6.3.1. Excitation Patterns for the Given and Adjoint Networks

Excitation
Response

Voltage Current Consequences

dVV - 0 ~ dI[
dl v '" 0 '" dV[

The excitation and response patterns are selected according to the left side
of (6.3.30), which simplifies because of the consequences shown in Table 6.3.1:

(6.3.34)

Equation (6.3.34) is the final result. Table 6.3.2 summarizes the excitation
patterns that satisfy the left side of (6.3.34) for six commonly encountered
two-port transfer functions. Compare the first line in Table 6.3.2 with the left
side of (6.3.34). The response is a voltage resulting from an exciting current, so
dVf = dVa. The subscript indicates that If ~ fa = 1, since it multiplies the
desired response. The desired port b-b' condition, 1b = 0, requires that
dlb = 0, and its multiplier in (6.3.34) is Vb = 1.

Notice that the first and third lines in Table 6.3.2 obtain a response at the
same port being excited, that is, the response is not a transfer function. It is
seen in those cases that the given and adjoint networks are excited and
terminated in exactly the same way. Therefore, for reciprocal networks where
Z~ Z T ~ Z, only one network analysis per frequency is required for exact
derivatives; otherwise, two are required, one for the given network and
another for the adjoint network.

The right side, IT(dZ)I, would have been - VT(dY)V had the analysis
utilized the branch admittance matrix Y instead of the branch impedance
matrix Z ~ y- I Table 6.3.3 summarizes the right side of (6.3.34) for Z, Y, R,
G, L, and C branch elements in the given network.

Table 63.2. Excitation Patterns for Common Two-Port Network
Transfer Functions

Given Network Adjoint Network

Response Source b--b' Source Oilier Port

v,JIa la = 1 Ib - 0 1 - I lb ~ 0.a
VblIa la = 1 Ib ~ 0 Ib ~ 1 la - 0
lui v" Va = 1 Vb ~ 0 V ~ 1 Vb - 0.a
Iblv" Va = 1 Vb - 0 Vb ~ 1 C: = 0

Vblv" ~ = 1 Ib ~ 0 lb ~ 1 Va = 0
Iblla la = 1 Vb ~ 0 Vb - 1 la - 0

Exact Partial Derimtnrs for Linear Systems 369

Table 6.3.3. Sensitivities for RLC Elements

Branch Element

Impedance Z,
Admittance Yk

Resistance
Conductance
Inductance
Capacitance

"d ~ I/Q lor L or C.

Sensitivity a

i,Ik
- VkVk
ikI,

- V,Vk

w(d + jl)i,,Ik
-w(d + jl)V,V,

Differential

1>. Zk

1>. Yk

1>.R,
1>.Gk

1>.L,
1>.C,

Example 6.3.1. To find the exact partial derivative of Vb/Va with respect to a
branch impedance Zk for a resistively terminated two-port network as shown
in Figure 6.3.4a, consult the next-to-last line in Table 6.3.2 to determine the
port connections. A unit voltage source is connected at port a-a'; therefore,
source resistance R a is connected in series inside the network (or it would
have no effect). Port b-b' is left unterminated so that Ib ~ 0; therefore, load
resistance R b is connected in shunt (or it would have no effect). A unit current
source is connected to adjoint network port b-b'; therefore, resistance Rb is
connected in shunt. Adjoint network port a-a' is short-circuited so that
Va = 0; therefore, resistance Ra is connected in series. Both the given and
adjoint networks are analyzed at the same frequency, to determine the currents
through Zk: I k and ik, respectively. According to (6.3.34) and Tables 6.3.2
and 6.3.3, the differentials are related by

(6.3.35)

so the exact partial derivative is

(6.3.36)

Since Va = 1, (6.3.36) is the partial derivative of the transfer function Vb/ Va'

It is not difficult to deal with branch elements that have more than two
terminals, such as lengths of transmission line (a two-port branch element) or
much larger pieces of subnetworks. Bandler (1970b, 1973a) lists the sensitivity
expressions for a large variety of multiport branch elements, especially for
microwave networks. Cuthbert (1983:108) provides expressions for the right
side of (6.3.34) for scattering, voltage transfer, current transfer, and cascade
(chain ABeD) network parameter systems that differ from Z and Y char
acterization.

370 Network Optimization

6.3.4. Derivatives Obtained by the Nodal Admittance Matrix. A conventional
way to analyze linear electrical networks is by means of the definite nodal
admittance (Y) matrix described in Section 6.1.3. It is shown in this section
that LU factorization may be employed to eliminate much of the work
otherwise required for analysis of the adjoint network. Finally, a method is
described in which the adjoint network is not involved in efficient calculation
of the exact partial derivatives of general network response functions.

The definite nodal admittance matrix was defined as Y = [Yi}l in the system
of equations (6.1.30):

I ~ YV. (6.3.37)

where V is the node voltage vector and I is the node current vector, both
containing phasors related to the sinusoidal steady-state voltages and currents.
The adjoint network has the same graph as the given network, and its
admittance matrix is Y~ y T• As Director (1971) has noted, only one nodal
admittance matrix need be constructed per frequency, not two, since the node
equations of the adjoint network are

(6.3.38)

Most methods for inverting an n X n Y matrix require on the order of n'
complex multiplications and divisions, and about n 2 additional operations are
required to solve V = Y-1 I for a given vector I.

The LU factorization method was defined for real matrices in (3.1.1)
through (3.1.6); exactly the same algebra may be employed by using complex
instead of real numbers. Using that method, the nodal admittance matrix may
be factored using about n'/3 operations:

Y=LU. (6.3.39)

Then forward and back substitution may be employed to solve (6.3.37) for V
in about n 2 operations. The solution of (6.3.38) is equivalent to solving

(6.3.40)

where U T is lower triangular and LT is upper triangular. Consequently, two
forward and back substitution processes using a total of n'/3 + 2n 2 oper
ations are required to solve both the given and adjoint network equations. The
LU factorization method for obtaining network responses and subsequently
their exact derivatives saves about n'/3 operations.

Although Tellegen's theorem and the adjoint method provide useful insight
into computation of exact partial derivatives, it turns out that neither of those
concepts are necessary. Consider the nodal admittance matrix, Y ~ [Y,) and

Exact Partial Derimtires for Linear System.v 371

its inverse, Z = [Zi) Then,

Zy = I, (6.3.41)

where I is the unit matrix in this case. The object is to obtain the partial
derivative of the complex transfer function

such that 12 = O. (6.3.42)

It is assumed that node 1 is the input terminal and node 2 is the output
terminal with respect to a common ground; for example, see Figure 6.1.6 in
Section 6.1.3. The elements of Z, Z iJ' are defined on the basis of zero current
at node j, analogous to the definition of the elements of Y, Yip which are
defined on the basis of zero voltage at node j. Since Z2' = VzlI, and
Z11 = VI/I"~

(6.3.43)

(6.3.44)

Taking the derivative of (6.3.44) with respect to some branch admittance Yk

yields

(6.3.45)

Therefore, the approach is to find the partial derivatives of Z2' and Zl1 and
then employ (6.3.45) for the desired derivative.

A method by Fidler (1983) is derived by differentiating (6.3.41) with respect
to a two-terminal branch element Yk :

(6.3.46)

Then postmultiplying (6.3.46) by Y-' = Z yields

(6.3.47)

Matrix '17 y Y has a simple structure that is not difficult to envision in terms,
of the two rules given in Section 6.1.3 for formulating Y: diagonal element Yii
is the sum of all branch admittances touching node i, and element Yij is the
negative sum of all branch admittances connected between nodes i and j. The
differentiation is with respect to only one two-terminal branch admittance, Yk ;

suppose that it is connected between nodes i and j. Consequently, V' y'f has
only four nonzero terms: + 1 at (i, i) and (j, j) and -1 at (i, j) and (j, i).

372 Network Optimization

Therefore, it is convenient to define a vector

o

+1

Then (6.3.47) may be written

u= o

-1 j

o

(6.3.48)

[

Z1I - Zli][Z;! - ZJI]T
_ Z2i~Z2i Z".~.:i2 .

zm ,Znj zln In

(6.3.49)

The partial derivatives needed in (6.3.45) are available from (6.3.49):

(6.3.50)

(6.3.51)

There are slightly more complicated rules for including controlled sources and
other more general network components. The only major work required to
both analyze and obtain derivatives for any linear network is to form and
invert the definite admittance matrix. Branin (1973) has provided a complete
treatment of this subject without restriction to the nodal admittance matrix.

6.4. Robust Response Functions

11 is well known that nonlinear programming is much more successfully
practiced by those who understand both the optimization methods and the
nature of the problems being solved; certainly the more the better. A great

Robu..~t Response Functions 373

deal is known about a large class of useful response functions for optimization
of linear electrical networks. Some concepts that have direct bearing on the
convergence rate and ultimate success of network function minimization are
described. The central theme is the bilinear function, since most network
response functions are bilinearly related to branch immittances.

6.4.1. Bilinear Functions and Forms. A bilinear function or linear fractional
transformation may take the form W(Z),

bZ + c
W=-

dZ+ l'
(6.4.1)

where all quantities are complex numbers, and coefficients b - cd '" O. Multi
plication of both sides of (6.4.1) by the denominator term gives the alternative
bilinear form

bZ + c - dWZ = W, (6.4.2)

which is linear in Z and linear in W, thus the name bilinear. Use of (6.4.2) for
any three unique pairs of (W, Z) values enables a solution for coefficients b, c,
and d.

A third form of the bilinear function often found in textbooks on complex
variables is

b _c_-_b-.:.-/_d
W=d+ dZ+1' (6.4.3)

which shows that Z is mapped into W by two linear transformations (e.g.,
Q ~ eF + g) and one inverse transformation (e.g., T = l/Q). Linear transfor
mations in the rectangular complex plane do not change the shape of sets of
points (curves) or angies of intersections of curves. It can be shown that
inverse transformations and consequently bilinear transformations map circles
and lines in the Z plane into circles or lines in the W plane.

It is important to confirm that "a bilinear function of a bilinear function is
bilinear." What is meant by that word twister is that if (6.4.1) is given and a
second bilinear function is defined, say

eV+ h
Z~ -qV-+-1' (6.4.4)

then substitution of (6.4.4) into (6.4.1) shows that W(V) also has the bilinear
functional form.

There are just two special sets of the three coefficients that are of interest in
the present application of bilinear forms, although their general use occurs
throughout mathematics and its applications in the physical sciences. Any

jX j(X + X,)

jRe _._-f_._-
I
j

R.eW jO
R,

RR1 R, R
I R,
I (0I jO

-jRe "-"-1"-"-'--

374 Network Optimization

ImW

j1

(a) (h) (e)

Figure 6.4.1. Mapping of Z into W according to (6.4.5) with 8 = 0 and Z,. = R c + jO. (a) Unit
circle in the W plane; (b) Z plane for Xc = 0; (c) Z plane for Xc '* O.

bilinear function that maps the right-half complex plane into a unit circle must
have the form

(6.4.5)

where Z ~ R + iX, Z, ~ R, + iX,., R, > 0, and Zc' ~ R, - iX,. The map
ping of Z into W according to (6.4.5) is illustrated in Figure 6.4.1; the unit
circle in the W plane is the image of the entire right-half Z plane. Normally
the pure rotation by eiO through angle e is omitted (e ~ 0) in (6.4.5).

It is seen from the numerator of (6.4.5) that the origin in the W plane
corresponds to the point Z ~ Z, in the Z plane. The small circle indicated by
the solid line has a geometric center located at Z ~ Z" that is, R; ~ R1R,.
There is a set of orthogonal circles and intersecting arcs in the W plane that
corresponds to the rectangular coordinate grid in the Z plane. Figure 6.4.1a is
the Smith chart usually associated with transmission line applications in
electrical engineering with X, ~ 0 as in Figure 6.4.1b. The more general case
for Xc '" 0 in Figure 6.4.1c is easily related to it. Lines of constant X in Figure
6.4.1b appear as arcs in the unit circle in Figure 6.4.1a. When X, '" 0, those
arcs represent constant X + X, loci, and there are no other changes.

The second special bilinear function of interest here is the unique form that
maps one unit circle onto another:

. W- Wo
H= ei.---'

1 - WWo
(6.4.6)

Transformations (6.4.5) and (6.4.6) are illustrated in Figure 6.4.2. It is seen
from the numerator of (6.4.6) that Wo in the W plane maps into the origin of
the H plane. The mapping from the Z plane to the H plane must depend on

Robust Re,f;ponse Functions 375

ImH

~Z)

iO I----!:----- R
W(Zy R,

/ -iX, 8
ImWtH(W)

--I------.,H+--+_ Re W

--I---=-+---+_ Re H jX

Figure 6.4.2. Mapping Z onto Wand II and mapping Wonto II using bilinear functions.

some Z-plane constant corresponding to "'0' say Z = Z., such that

H~
Z - Zh

(6.4.7)
Z+ Z:'

Zh - Z,
(6.4.8)Wo =

Z. + Z,*

One final form of bilinear transformation has been very useful for imped
ance mapping in electrical engineering:

(6.4.9)

By arranging (6.4.9) in the form of (6.4.1), the constants in (6.4.9) may be
identified:

1
Z ~- (6.4.10)

C d*'

cd' + b
(6.4.11)T=

d + d'

b
U=--T (6.4.12)d .

376 Network Optimization

ImW jX

W plane

T

Z plane

~------;"R

""'--------------;.. ReW

(a) (b)

Figure 6.4.3. A bilinear transformation for impedance mapping. (a) The W plane containing a
scaled, rotated unit circle; (b) the right·half Z plane that maps into the unit circle.

The complex constants in (6.4.9) have geometric significance: T is a constant
displacement, and U scales the magnitude and rotates the unit-circle domain
that originally appeared in Figure 6.4.1a as defined by (6.4.5). The bilinear
mapping function of (6.4.9) through (6.4.12) is shown in Figure 6.4.3. The
circle in Figure 6.4.3a is the image of the entire right-half Z plane in Figure
6.4.3b.

Additional details of these bilinear transformations are available in
Cuthbert (1983:242, 370). The relevance to optimization of these mapping
transformations in complex planes is discussed next.

6.4.2. The Bilinear Property of Linear Networks. All voltage and current
response ratios such as those listed in Table 6.3.2 are bilinear functions of a
linear network's branch immittances, Zk or Yk . For instance, input impedance
2 in in Figure 6.2.4 is a bilinear function of Z2' and L 2 is also bilinearly
related to 2 2 since 2 2 = wL2(d + j1). Input reflection coefficient PI is related
to Zin by the bilinear function (6.2.9). Since a bilinear function of a bilinear
function is bilinear, PI is also a bilinear function of Zin, but with different
coefficients b, c, and d in (6.4.1). Other bilinear functions having different
coefficients are PIty,), PI(C.), etc. All of the complex constants in these
bilinear functions arc functions of frequency.

One benefit in knowing that most responses are bilinear functions of branch
immittances at a frequency is for impedance mapping. The special bilinear
form of (6.4.9) as illustrated in Figure 6.4.3 is relevant to the behavior of 2 in
as a function of Z2 in Figure 6.2.4, for example. In that case, the W plane
represents the Zin plane, and the circular Smith chart is the image of the entire
2 2 right-half plane. Therefore, the extreme values for R in and Xin for the
worst-case values of L 2 can be determined by inspection, since the rim of the
Smith chart represents lossless branch-impedance values.

Robust Response Functions 377

Another benefit in recognizing the bilinear properties inherent in network
behavior is directly applicable to optimization. Suppose that the optimization
problem is to adjust branch impedance Z, in Figure 6.2.4 to make input
impedance Z as close as possible to a given impedance value at a frequency,
say Z = R + jX. The Euclidean norm (2.1.37) is often used as a metric for the
neighborhood shown in Figure 6.4.4a:

Il>ZI, = [(R - R)' + (X _ X)']'/2 (6.4.13)

The squared norm also may be used, since a square root is avoided and

jX

~-----+R--!R:----R

(a)

jX

X
A

X
----t2l
---~

I I
L-----!A~_!:_--_ R

R R

(b)

Imp

-+--+-Il<+---+- Re p

(e)

Figure 6.4.4. Three neighborhoods about Z =

R+ jX. (a) Arithmetic neighborhood; (b) geo
metric neighborhood, (c) reflection-plane neigh
borhood.

378 Network Optimization

squaring is a monotone function that does not introduce extraneous minima.
One objection to using the unnormalized sum of squared differences as an
error function is that it may not evenly represent the relative sizes of such
neighborhoods. For example, R - R~ 1.5 is a large increment if R = 2 but is
quite small if R~ 2000. Another objection to an unnormalized squared error
function is that it does not penalize large neighborhoods as severely as others
that behave better during optimization.

An alternative definition of a neighborhood in the Z plane is the geometri
cally centered circle in Figure 6.4.4b. The geometric mean approximates the
arithmetic mean for small relative errors (less than 10%), but the reason for
considering the geometric neighborhood is that (6.4.5) maps that neighbor
hood into one concentrically located at the origin of the generalized reflection
coefficient (see Figure 6.4.4c):

Z-z
p ~ Z + Z* (6.4.14)

The magnitude of the generalized reflection coefficient is a scalar metric that is
uniform over the entire right-half Z plane and is normalized to 0 :;<; !pl :;<; 1. In
order to avoid the square root operation, Ipl' is used, and to increase the
penalty for large neighborhoods, a particular monotone weighting function is
used to map Ip!' to the range zero to infinity:

1 + Ipl' 21pl's = - 1 = -"-'--c;:
l-Ip!' I-Ip!"

(6.4.15)

The metric in (6.4.15) is a measure over the range 0 :;<; S :;<; 00 for 0 :;<; Ipl :;<; 1
as tl.Z varies from 0 to infinity, no matter where Z occurs in the Z plane.

The resulting normalized metric for the error tl.Z ~ Z - Z may be ex
pressed in real and imaginary impedance coordinates by substituting (6.4.14)
into (6.4.15); after some algebra:

(R-R)'+{X-X')'
S ~ 2RR (6.4.16)

Ordinarily, the 2 in the denominator is ignored when using (6.4.16) to
accumulate errors over a number of frequency samples.

6.4.3. Sensitivity oj Network Response Functions. Notice that the analysis
leading to (6.4.16) mapped a complex error (tl.Z) into a concentric neighbor
hood in generalized reflection plane p and then imposed an arbitrary weight
ing function to penalize larger neighborhoods nonlinearly. First, it is shown
that nearly all commonly used network response functions are just such scalar
functions over the radius of a unit circle, with values that range from zero to

-------------- - -----~---

Robust Response Function.<i 379

infinity as the reflection radius ranges from zero to one. Second, the nature of
several of these nonlinear monotone weighting functions, for example (6.4.15),
is discussed. A final remark concerns normalized sensitivity.

It is interesting to begin by considering the transducer function from (6.2.3):

L = 1010g lO (::) in dB. (6.4.17)

If the two-port network is lossiess, then the power delivered at the input
terminals is the same power that is delivered to the load, PL = Pin' In that case
it is not difficult to use (6.2.9) as the definition of input reflection coefficient to
show that

(6.4.18)

where for present and later convenience y is defined to be the reflection
magnitude

y = Ipl· (6.4.19)

Note that 0 ,;; y s 1, I ?: (1 - y2) ?: 0, and 0 s [-In(l - y')] S 00. There
fore, the transducer function is also a weighted metric over the reflection
magnitude. (The natural logarithm was used since it differs from base 10
logarithm by just the factor 10gJOe.)

Table 6.4.1 summarizes some weighted reflection magnitude functions and
their slopes. Function 1 in Table 6.4.1 is just the reflection magnitude that
varies from 0 to 1; it makes very poor use of the dynamic range of digital
computers and is not recommended as a component in an optimization

Table 6.4.1. Some Monotone Weighting Functions for the Reflection MagnitudeQ

Name Response Modified Slope

l. Reflection magnitude y y I
1 + Y 1 + Y 2

2. SWR using IpI -- ---I
(1 _ y)'1 - y l-y

3. SWR using Ipl'
1+ y' 1+ y2 4y

I _ y'
---I

(1 _ y2)'1- y2

I+y 2
4. Poincare metric tanh- 1 y In--

1- y'1- Y

-lOlog(1 _ y')
1 2y

5. Transducer loss In--
1- y' 1- y'

Q y = Ipl. SWR is standing wave ratio function.

380 Network Optimization

objective function. The remaining modified response functions in Table 6.4.1
all range from zero to plus infinity as the reflection magnitude ranges from
zero to one. Response function 2 is the normal standing wave ratio (SWR)
function that electrical engineers use to express the maximum-to-minimum
standing wave ratio on a uniform transmission line (normally one to infinity).
It is modified by subtracting unity so that its minimum is zero. Modified
response 3 is a function similar to (6.4.15).

Function 4 in Table 6.4.1 is the "classical Poincare metric ... introduced
near the turn of the century and is one of the most basic metrics in
mathematics besides the Euclidean metric. . .. It is amusing to note that a
picture of it appearing in most mathematics books looKs much like an
electrical engineer's Smith chart," according to Helton (1981:1133). The
Poincare metric is defined on reflection magnitude y corresponding to (6.4.6)
and is invariant under maps of the unit circle onto itself. The modified form
shown in Table 6.4.1 is an identity for tanh -ly with a factor of t omitted.
Helton has described the essential role of the Poincare metric in the design
theory for network power transfer over broad frequency ranges. "

The clear similarity among the apparently unconnected functions in Table
6.4.1 is remarkable. For example, function 2 in Table 6.4.1 is the conventional
SWR function that varies over the range from one to infinity. One way to
change the lower bound is to subtract unity from the SWR expression.
However, the Poincare metric achieves the same result by including the
logarithmic operator. The major significance of the data in Table 6.4.1 is in the
"slope" column, 'the first derivative of the modified function with respect to y.
Table 6.42 tabulates some values of interest.

The slope data in Table 6.4.1 describes the effect of a small change in the
polar distance of a response in a unit circle and is therefore a sensitivity. That
unit circle may be centered at the origin of the W plane in Figure 6.4.3, and
the possible result of varying some branch impedance occurs in the image
circle shown in Figure 6.43. It will not be known where or in what direction a
branch variable change will cause movement in the response unit circle, but
the slope data in Table 6.4.2 does show the response change that will occur,
that is, the sensitivity.

Table 6.4.2. Slope Data lor Four Monotone Weighting Functions from Tahle 6.4.1

Magnitude of Reflection Coefficient

Function 0 0.1 OJ 0.5 0.7 0.9 0.99 0.999 0.9999

SWR witb Ipi 2 2.47 4.08 8 22.2 200 20000 2E6 2E8
SWR with /pl' 0 0.408 1.45 3.56 10.8 99.7 1E4 1E6 1E8
Poincare 2 2.02 2.20 2.67 3.92 10.5 100.5 1000 10000
Transducer 0 0.202 0.659 1.33 2.74 9.47 99.5 1000 10000

Robust Response Functions 381

The first and third response types in Table 6.4.2 are more sensitive than the
others when the reflection magnitude is very small. The Poincare metric has
relatively uniform slope for all reflection magnitudes. Keep in mind that
!p! ~ 0.9999 in transducer function (6.4.18) is equivalent to 37 dB, so optimi
zation for reflection magnitudes near unity will occur frequently. The data in
Table 6.4.2 also shows that the first two weighting functions would react
drastically to changes near the edge of the reflection circle.

It is concluded that certain response functions are more suitable for one
purpose than another. Certainly a mixed objective function may be used.
Perhaps a good choice would be response function 2 in Table 6.4.1 for
network passband performance and response function 5 for stopband selectiv
ity. Or one could recommend the Poincare metric as a reasonable choice for
most situations. In the latter case, the sampled target data, T, in Table 6.2.1,
must be converted to equivalent values in the new domain. That minor
inconvenience has proved to be worthwhile in practice.

This section is concluded by mentioning an often touted cure for many
problems. It is possible to change the domain of the variables xj to In(x),
j = 1 to n. Suppose that a variable in the new domain is v; then a logarithmic
transformation is

or

v = In(x), (6.4.20)

(6.4.21)

At first, (6.4.20) was suggested to keep variables strictly positive, a condition
guaranteed since no real value of v will make x negative in (6.4.21). However,
a .more interesting fact about the nonlinear transformation in (6.4.20) is its
effect on the first derivatives in the two domains, using the chain rule:

Therefore,

"V,F= ("VJ)("Vjl)

d(ln F) (/iF/F)

d(lnx) (~x/x)'

(6.4.22)

(6.4.23)

The right side of (6.4.23) is the Bode sensitivity function, which is a measure of
the relative change in the objective function for a relative change in a
particular variable.

By optimizing in the logarithmic variable space. it is possible to widen
straight but narrow valleys in the functions space and perhaps overcome some

382 Network Optimization

of the uneven weighting that occurs as just described. However, it is not
difficult to find optimization objective functions that become defective under
the logarithmic transformation in (6.4.20); see Wright (1976:73) and problem
1.8. Another difficulty is that all variables and gradients must be transformed
by (6.4.20) and (6.4.22) when passing between the optimization algorithm and
the objective function and gradient subroutines. Programming details for
typical nonlinear transformations have been provided by Cuthbert (1983:160).

There is no uniform agreement concerning the beneficial effects of logarith
mic scaling, except that projection of linear constraints for lower bounds on
variables is a vastly superior technique.

Problems

6.1. Write the quadratic function in (6.1.4) in terms of parameters "'6 =

1j(LC) and a = Rj(2L). Then find an expression for the roots, using
the quadratic formula. How does "'0 compare to a in order that the
solution be oscillatory?

6.2. Derive the rational polynomial Z(s) for the network in Figure 6.5.1,
using the branch immittances given in Table 6.1.2, Section 6.1.3. Hint:
Form the impedance of the LR branches, invert and add to the
admittance of the C branch, and invert once more.

6.3. Find E in the resistive network in Figure 6.5.2. What value of E would
make voltage V, = t? What is the value of R i• = V,j!4?

L,<or f'
Figure 6.5.1.

2 ohms V, 2 ohms lohm

I,
+ -i- mhosE 2 mhos 1 ampere

Figure 6.5.2.

-------- -- -- -

Problems 383

10 Figure 6.53.

6.4. A resistive network having 10 branches connected between five nodes
and one common node was described by Ley (1970:292) as shown in
Figure 6.5.3. Solve for the node voltages by forming the Y node
admittance matrix according to the rules in Section 6.1.3 and solve
using program MATRIX with LUFAC merged into it as described in
Section 3.1.1.

6.5. Prove identity 9 in Table 6.1.3, Section 6.1.3.

6.6. The impedance for the RLC network in Figure 6.1.1 is defined by
(6.1.9) and (6.1.13):

{6.5.1}

Write the derivative dZ/ds. Apply the Cauchy-Riemann identity (11
in Table 6.1.3, Section 6.1.3) for Z = P + iQ and s = (J + ie.>, and
evaluate at s = 0 + ie.>. What does '\1. P equal along the ie.> axis?

6.7. Write the topology description lines similar to lines 620 to 680 in Table
6.2.5 for the network in Figure 6.5.4.

50 9.00 31.0

31.3

3.50 80.0

5.05

9.00
24.4

3.00 80.0

19.0 15.0 65

Units: Ohms, pF, nH

Figure 6.5.4.

384 Network Optimization

6.8. Optimize the lossless network in Figure 6.5.4, starting from the 13
element values shown. Sample the passband every 10 MHz from 250 to
400 MHz, placing an upper bound of 0.1 dB on each sample. Sample
the stopband at 470 and 490 MHz, using a 40-dB lower bound on those
samples. Obtain before and after optimization data. TWEAKNET
compiled into machine code is desirable.

6.9. Uhlir (1982) has provided the following equations in BASIC to convert
a complex number, Z ~ X + jY, from rectangular to polar form,
Z~ RLi:

R = SQR(X*Y* + Y*¥),

A ~ 2*ATN(Y/(R + xl).

(6.5.2)

(6.5.3)

Polar angle A is in radians; for degrees, replace the 2 in (6.5.3) by
(360/,,). The program tests to avoid divide-by-zero errors are Y = X =
o and Y = 0 when X < O. Use Uhlir's equations to print the branch
voltage or current A4 + jA5 in polar form by adding new lines 8075
and 8105 to TWEAKNET, similar to those in Example 6.2.1, Section
6.2.2.

6.10. Prove (6.4.18):

L = -10 10glO(1 - Ipl') dB.
6.11. The standing-wave ratio function is

1 + Q
S=--.

l-Q

(6.5.4)

(6.5.5)

Find an expression for the partial derivative of S with respect to some
variable y, VyS, in terms of VyQ.

6.12. Given a value for Vz L, the partial derivative of transducer loss L with,
respect to a branch impedance Z. = R k + jX., find an expression for
VQL, where Q ~ X./R •.

6.13. Perform least-pth unconstrained minimization of the transducer loss
for the lossless network in Figure 6.5.5. Use samples at '" ~ 0.8, 1.0,
and 1.2 radians per second with target values of 0 dB. What are the
optimized Land C values for p ~ 2 and p = 1O?

lohm r, v. 1 H
a

L

C 1 F

a'

Z.
Figure 6.5.5.

b 0.25 ohm

b'

Problems 385

6.14. Change the first topology line in Table 6.2.6 for the network in Figure
6.2.4 from a null element to a capacitor in branch 1. Enter the six
starting values x(O) = (0, 0.8, 2.7, 0.7, 0.6, 1.9)T. Define two lower
bound constraints on the 40-dB samples at 1.5 and 2.0 radians per
second. What is the gradient element V'"F[x(O)j for C1 = O? Perform a
least-squares minimization to "grow" a finite capacitor C1 into branch
1. What are the new element values? Were the constraints satisfied?

6.15. Use the PRINT statements suggested in problem 6.9 to obtain the
voltages and currents at one radian per second in the network in Figure
6.5.5 for QL = 100 and Qc = 200. Compute the exact partial deriva
tives of Za ~ Valfa with respect to C and L. Check your answers by
finite differences, using TWEAKNET command 9.

6.16. Prove that a bilinear function (6.4.1) of a bilinear function is bilinear.

6.17. Solve for Z(W) from (6.4.1).

6.18. Record the gradient in Example 6.2.1, Section 6.2.2, when using the
suggested element values in pF and nH. Then compare the gradient
after changing to nF (set C unit to 1E-9 and divide capacitances by
1000) and mH (set L unit to 1E-3 and divide inductances by 10').
Verify that the transducer loss and input impedance do not differ
between the two sets of units.

6.19. Consider an n X n system of complex equations

(A + jB)(x + jy) = u + jv, (6.5.6)

where A and B are matrices, the remaining quantities are vectors, and
all elements are complex numbers. By writing the two sets of real
equations resulting from equating real and imaginary parts, show that
the 2n x 2n real system of equations also represents the system:

(6.5.7)

This formulation enables use of the real-variable methods described in
Chapters Two and Three for solutions of systems of complex linear
equations.

6.20. Derive V'B,L; (6.3.24) and V'G,L;.

6.21. Consider the right side of (6.3.34) for differentials of Zk and Yk with
respect to small changes in radian frequency, w. Therefore, show that
the group time delay, TG ~ -d8Idw, is a sum of terms contributed by
all L's and C's in the network. Radian angle 8 is a part of the transfer
function being considered.

386 Network Optimi:ation

6.22. Use the following" triple" of complex data pairs to write three complex
equations in three complex unknowns according to (6.4.2):

z, W,

1 0.1~ 0.1732(-7.8675

2 0.5~ 0.4473/129.505

3 1.1/ -100 0.5099(- 30.32

Solve for complex coefficients b, c, and d using the method in problem
6.19.

6.23. Use the method described by (6.3.45) to find the exact derivatives of the
transducer function with respect to each branch conductance (I/R) in
the network in Figure 6.5.2. Check two of your answers by finite
differences.

Appendix A _

Test Matrices

The purpose of this appendix is to discuss three references where the reader
may obtain descriptions and commentary on some well-known and perhaps
notorious matrices. Comparison of algorithms is difficult at best, but some
standard test problems are helpful. Other resources include reliable sources of
FORTRAN programs; four such references are provided.

Knuth (1968:36-37) describes the following matrices and their analytical
inverses:

Vandermonde

Combinatorial

Cauchy

Hilbert

Nash (1979:210-211) defines the following matrices and explains why they
cause numerical problems:

Hilbert

Ding Dong

Moler

Bordered

Diagonal

Wilkinson W +
Ones

387

388 Test Matrices

Klema (1980:168, 173-176) lists the following nearly singular matrices and
notes why the singular value decomposition algorithm is helpful:

Ostrowski family

Rank23x3
Hilbert order 7
Bauer

Dongarra (1979) is the user's guide for the UNPACK collection of FOR
TRAN matrix programs. These are widely accepted and have been adapted for
personal computers.

Smith (1976) and Garbow (1977) document the EISPACK eigensystem
package of matrix programs. These subroutines are very well documented.

IBM (1968) is an aging collection of FORTRAN subroutines for numerical
analysis in general and matrix computations in particular. These subroutines
have been referenced in many books on scientific computation.

Hopper (1981) is the librarian for the Harwell collection of the United
Kingdom Atomic Energy Research Establishment. This respected FORTRAN
collection includes subroutines for solving eigensystems and many more that
are part of gradient nonlinear programming algorithms of all kinds.

----------- - -

Appendix B _

Test Problems

The purpose of this appendix is to discuss references where the reader may
obtain descriptions and commentary on some well-known nonlinear optimiza
tion test problems. These references are listed by importance and accessibility,
especially in single sources that have collected articles with problems by
different authors.

The foremost set of test problems was assembled by Colville (1968).
Colville decided that it was not reasonable to perform a complete analysis on
the large variety of algorithms by programming representative problems on a
standard computer. Instead, a set of eight standard problems was solved by a
number of unrelated organizations, using a variety of computers. Some timing
data were obtained. Abadie (1970:532) commented on experiments with
Colville's problems, especially as they were solved by the generalized reduced
gradient method (Section 5.4.5). Powell (1977:153) commented on the nature
of some of the more interesting Colville problems. Colville's summary report is
frequently cited, even today.

The book by Himmelblau (1972) contains numerous test problems from a
wide variety of sources. Excellent tabular comparisons for various algorithms
and computers employed and graphical data where feasible are provided.
Pages 69-96, 194-201, 213-216, 366-431, and 475-477 are recommended.
This reference is probably the easiest to obtain and utilize for test problems.

Lootsma (1972) edited the proceedings of a conference that were published
in an excellent book by a number of contributing authors. Several dozen
test problems with tabular results are found on pages 29, 67-68, 99-113, 120,
and 162-163. These test problems are less well organized than those in
Himmelblau (1972).

Davidon (1977a:17) gives the sources (not necessarily original) for 23 test
problems in five categories:

1. Quadratic-like
2. Valleys and helixes

389

390 T..t ProbleltU

3. Badly scaled, singular, ridges
4. Involving exponentials
5. Variable/large dimension

Also results were tabulated for the performance of Davidon's more recent
algorithm (Davidon 1975), a FORTRAN program listing being included
(derivative-free version). Previously, Davidon (1976:194) gave three interesting
nonlinear least-squares problems, with and without zero residuals.

Nazareth (1978a) discussed quality optimization software, what it should
contain, and how it should be tested. He commented on bothColville (1968)
and Himmelblau (1972), previously cited. Nazareth (1976:17) provided a list
and references for eight test problems, with results from variations on
Gauss-Newton algorithms (Levenberg-Marquardt performed well).

Dennis (1979b:15) listed 20 test problems and their original sources.
Performance data are given for a Gauss-Newton algorithm that estimates that
part of the Hessian matrix normally ignored [see M in equation (4.4.21)].

Finally, there are dozens of articles by recognized researchers with a few
test problems that differ from those included in the previous citations. Perhaps
the remaining useful comment is that almost all of the numerous articles by
Professor Roger Fletcher contain carefully considered test problems, used in
full awareness of the contributions of others.

Appendix C _

Program Listings

CONTENTS

C2-1. MATRIX for Elementary Matrix Computations with CRT Display.
C2-2. GSDECOMP for Gram-Schmidt Orthogonalization, MATRIX Com

mand Number 10.

C2-3. SYMBNDS for Bounds on Eigenvalues of Symmetric Matrices, MA
TRIX Command Number 13.

C2-4. QRITER for QR Algorithm Using Gram-Schmidt Decomposition,
MATRIX Command Number 13.

C2-5. SHINVP for Shifted Inverse Power Method for Eigenvalues, MA
TRIX Command Number 13.

C2-6. VECTOCOL for Matrix D Composition by Vector A, MATRIX
Command Number 13.

C2-7. HOUSE for Transformation of Matrix A to Upper Hessenberg Form,
MATRIX Command Number 13.

C2-B. GENINVP for Full-Rank Generalized Inverse and Projection, MA
TRIX Command Number 10.

C3-I. LUFAC to Form LV Factorization of Matrix D and Provide Solu-
tion.

C3-2. LDLTFAC for LDLT Factorization, Rank 1 Update, and Solution.

C3-3. SVD to Perform Matrix Singular Value Decomposition.

C3-4. LAGRANGE for Newton Solution of Lagrange Multiplier Example
3.3.4.

C4-1. NEWTON Discrete Optimizer Using Finite Differences for Second
Derivatives.

C4-2.. ROSEN for Rosenbrock n = 2 Function and Gradient with NEW
TON or QNEWT.

C4-3. WOODS for n ~ 4 Function and Gradient with NEWTON or
QNEWT.

391

392 Program Listings

C4-4. NBOUNDS to Merge with NEWTON for Illustrating Simple Upper
and Lower Bounds on Variables.

C4-5. LEASTP Optimizer Based on Gauss-Newton Hessian Matrix and
Levenberg-Marquardt Trajectory with Scaling.

C4-6. ROSENPTH for Rosenbrock n = 2 Function and Gradient with
LEASTP.

C4-7. GAUSS for LEASTP to Obtain Quadrature Coefficients.
C4-8. SARGESON for LEASTP to Solve a Least-Squares Problem with

n = 5.
C4-9. CHEBY for LEASTP to Illustrate the Minimax Effect of Increasing

Exponent p.

C5-L QNEWT Optimizer Based on BFGS Hessian Updates and" Cutback"
Line Search.

C5-2. LINQUAD for QNEWT to Implement Line Search Without Deriva
tives Using Quadratic Interpolation.

C5-3. LINCUBIC for QNEWT to Implement Line Search Using Deriva
tives and Cubic Interpolation.

C5-4. QNEWTGRD for QNEWT to Replace Any Subroutine 7000 so That
Gradients Are Calculated by Finite Differences.

C5-5. CAMEL for QNEWT With and Without BOXMIN for Branin
Function Having Six Maxima and Two Minima.

C5-6. BOXMIN for QNEWT to Implement Lower and Upper Bounds on
Variables in Conjunction with the Cutback Line Search.

C5-7. PAV17 for QNEWT with BOXMIN to Test Variable Bounds When
Strict Feasibility Must Be Maintained.

C5-8. MULTPEN Program Segment to Add Nonlinear Constraints by the
Multiplier Penalty Method to QNEWT with BOXMIN Merged.

C5-9. HIM360 Subroutines 5500, 7500, 8000, and 9000 for Himmelblau
Test Nonlinear Constraints Example 5.4.7 Using BOXMIN and
MULTPEN Merged into QNEWT.

C5-10. LOOT356 Subroutines 5500, 7500, 8000, and 9000 for Rosen-Suzuki
Nonlinear Equality Constraints Example 5.4.8 Using BOXMIN and
MULTPEN Merged into QNEWT.

C6-1. TWEAKNET Gauss-Newton Nonlinearly Constrained Optimizer
with Variable Bounds for RLC Ladder Networks.

C6-2. LPTRAPI DATA Statement Method for Describing Figure 6.2.4;
same as Table 6.2.5. .

C2-J 393

List of Variable Names Used in Program C2-1: MATRIX

AO E K2 M6 P2 S6$
BO E1 K3 MS P3 S7$
B1 H K4 M9 Q SS$
B2 I K5 N R S9$
B3 11 K6 N$ S$ T
q) 19 K9 N7 Sl$ T1
DO J LS NS S2$ T2
OJ J9 L9 N9 S3$
D2 K M P S4$
03 K1 M5 P1 S5$

10 REM - MATRIX HATH UTILITY - IC2-11 'MATRIX'
30 REM - USE OF MAJOR VARIABLES AS FOLLOWS -
40 REM ACI9,J91,B(K9,L9),C(M9,N9l,DeMB,N8) VEe DR MAT (= 6x6
50 REM VI DETERMINANT
60 REM I,J WORKING ROW.,eOL#, RESPECTIVELY
70 REM K COMMAND • ~ LOOP INDEX
80 REM L LOOP INDEX
90 REM L8 PRINT FLAG - O=OFF, l*LOCAL, 2=GLDBAL
100 REM M5,H6 TEMPORARY ROW.,eOL.
110 REM N7 HISTORY EVENT COUNTER
120 REM N$ DATA STATEMENTS FILE NAME
130 REM S5 FIRST MATRIX NAME
140 REM 51$ RECALL DR SAVE CHOICE
150 REM 52$ DISK FILE NAME ON CURRENT DIRECTORY
160 REM S3$ COMMENT LABEL FOR DISK FILE
170 REM 54$ MIse STRING
180 REM 55$ MIse STRING
190 REM 56$ PRINT-USING IMAGE
200 REM S7$ MISC NUMBERS IN STRING FORMAT
210 REM S8$() HISTORY EVENT NAMES
220 REM S9$ SECOND MATRIX NAME IF REQUIRfiD
230 OPTION BASE 1 : REM - NO SUBSCRIPT 0
240 L8=0 : REM - PRINT FLAG OFF
250 N7=0 : REM - HISTORY COUNTER INIT
260 CLS : KEY OFF
270 PRINT *ELEHENTARY VECTOR &- MATRIX OPERATIONS"*""**".".,,"
280 FoRINT: PRINT "NOTES:"
290 PRINT "1. USE ONLY UPPER CASE LEITERS"
300 PRINT "2. NERGE VECTOR AND MATRIX DATA STATEMENTS"
310 PR I NT I NTO RESERVED LINE RANGE 400-620 (OPT I aNAL) "
320 PRINT "3. IF 'BREAK ° OCCURS. RESTART WITH °GOTO 999 <RTN>'"
330 DEFDBL A~H,Q-R,T-Z : REM - NOTE THAT P IS SNGL PRECISION
340 DEFINT I-N
350 DEFSTR 5
360 DIM 58$(103)
370 REM - DIMENSION FOR 4 MATRICES EACH DIM <: 6:
380 DIM A(6,6i,B(6,6),C(6,6J,D<6.6J
390 REM .*** LINES 400-620 RESERVED FOR MERGING PROBLEM DATA ****
400 REM - THE BYPASS CASE IS SHOWN HERE AS FOLLOWS
410 N$ = "NONE" : REM - A NAME FOR PROBLEM MERGE FILE MUST BE HERE
420 DATA 0,0 : REM ~ MATRIX A +tROWS,#COLS - MUST HAVE AT LEAST ONE PAIR
630 REM ****************************_**********
640 REM - READ ONE DR MORE MATRICES A.B,C,D
650 PRINT: PRINT "WORKING WITH DATA SET: ";N$
660 READ I9.J9 ; REM - DIM OF A
670 IF 19=0 THEN GOTO 1280 ; REM - NO A. B. C. OR D
680 PRINT" A(";I9;".";J9;")"
690 FOR 1=1 TO 19
700 FOR J:l TO J9

394 Program Listings

I!. DETERI'1INANT(B); DESTROYS B!"

COLUMNS"
18"
19"

SCIENTIFIC ALL
16
17

'GOTO 999')"

",58$ (I)

"***it***** COMMAND MENU **********
"0. DISPLAY A MATRIX IN FIXED FORMAT"
"1. SEE COMMAND HISTORY"
"2. TOGGLE PRINTER ON/OFF"
"3. e:QUATE ONe: MATRIX TO ANOTHER"
"4. TRANSPOSE"
"5. MATRIX TO/FROM DISK"
"6. SCALAR. (MATRIX)"
"7. A B + C"
"8. A = D * C"
"9. D = (in"B)
"10. SPARE"
"11. NORMS OF VECTOR OR MATRIX D"
"12. EXTREME ELEMENTS OF 0"
"13. SPARE"

FORMAT: FIXED
PRINT = 14
DISPLAY 0 OR 15

"20. EXIT (RESUME WITH

710 READ A(I,J)
720 NEXT J
730 NE)(T 1
740 READ K9,L9 ~ REM - DIM OF B <OR ABORT READING)
750 IF K9=O THEN GOTo 1260 : REM - NO B,e, OR 0
760 PRINT" B(";K9;",";L9j")"
770 FOR 1=1 TO K9
780 FOR J=l TO L9
790 READ B([,J)
BOO NEXT J
810 NEXT I
820 READ H9,N9 ; REM - DIM OF C <OR ABORT)
830 IF M9=O THEN GOTO 1280 : REM - NO C OR D
840 PR1NT" C(";M9;",";N'1J")"
850 FOR 1=1 TO M9
860 FOR J= 1 TO N9
870 READ C(I,Jl
880 NEXT J
890 NEXT I
900 READ HB,NB : REM - DIM OF 0 (DR ABORT)
910 IF M8=O THEN GOTO 1280 ~ REM - NO 0
920 PRINT" D(";M8;",";N8;")"
930 FOR 1=1 TO Me
940 FOR J=l TO NB
950 READ D(I,J)
960 NEXT J
970 NEXT I
980 BOTD 1280 : REM - TO MENU & SELECTION
990 REM - RE-ENTRY FOR INVALID COMMAND NUMSERS & CONTINUING
999 CLS
1000 PRINT
1005 PRINT
1010 PRINT
1020 PRINT
1030 PRINT
1040 PRINT
1050 PRINT
1060 PRINT
1070 PRINT
10eo PRINT
1090 PRINT
1100 PRINT
1110 PRINT
1120 PRINT
1130 PRINT
1140 PRINT
1150 PRINT
1160 PRINT
1170 PRINT
1180 REM
1190 PRINT"************************************
1200 IF N7>100 ,HEN N7=O ~ REM -DON', RUN OUT OF SUBSCRIPT
1210 'PRINT"INPUT COMMAND NUMBER: ";:INPUT 9f
1220 K=LEN(S$) : IF K=O THEN GOTO 999 : REM - AVOID <CR)
1230 K=ASC (S$)
1240 IF K<48 OR K>57 THEN GOTO 999 : REM - 1ST CHAR MUST BE 0-9
1250 K=VAL(S$)
1255 IF K=O THEN K= 15 : REM - ALTERNATIVE DISPLAY NUMBERS
1260 IF K>20 THEN GOTO 999 : REM ~ CAN'T EXCEED MENU #'5
1270 ON K BOSUB 1330,1410,1470,2470.4580,3870,2890,3040,3220,6370,

5360,5820,6370,41S{).4180,4070,4110,6030,60S0,6370
1280 PRINT "PRESS <RETURN> KEY TO CONTINUE -- READY";
1290 INPUT 54$
1295 IF S4$(>~'" THEN BEEP : REM - <RETURN> BEFORE NI!XT eND NUMBER
1300 GOTO 999
1310 REM*************************_********_****
1320 REM SEE COMMAND HISTORY - MAX OF 100
1330 IF N7~0 OR N7>100 THEN RETURN
1340 FOR 1=1 TO N7
1350 PRINT" ",S8$(I)
1360 IF LB>O THEN LPRINT

C2-1 395

1370 NEXT I
13E10 RETURN1390 REM-*- •••• ••• ••••••

1400 REM - TOGGLE PRINTER ON/OFF
1410 IF La=:2 THEN GOTO 1430
1420 La=2 : PRINT PRINTER TURNED ON" : GOTD 1440
1430 L8=O : PRINT PRINTER TURNED OFF"
1440 RETURN1450 REM ._._*._. ._. .._._·...__
1460 REM - EQUATE ONE MATRIX TO ANOTHER
1470 PRINT "EQUATE A, B, C. OR D="; = INPUT S$
1480 IF S$="A" OR 5$="9" OR S$="C" OR 8$"'''D'' THEN GOTD 1500
1490 GOTO 1470
1500 PRINT "EQUATE TO A. a, c, D, DR I <UNIT MATRIX>"; I INPUT 5q$
1510 IF S9$="A" OR S9$s"B" OR S9$="C" DR S9$="D" OR S9$="I"

THEN GOTO 1530
1520 OOTO 1500
1530 IF 89$<>"1" THEN GoTO 1560
1540 PRINT "ttROWS=#COLUHNS="; : INPUT 57$"
1550 REM ** ENTRY POINT IF PRESET PARAMETERS
1560 N7==N7+1 : S8$IN7)=S$+"="+S9$: REM STORE OPN NAME
1570 PRINT" u; SS$ (N7)
1580 IF L8)0 THEN LPRINT" ";5St:(N7)
1590 IF 59$(>"1" THEN GOTO 1640
1600 M5=VAL(57$)
1610 N7:::11N7+1 : SS$(N7)=:" "+57$+"X"+S7$+" UNIT MATRIX"
1620 PRINT S8$(N7l
1630 IF L8)0 THEN LPRINT SB$(N7)
1640 IF S$="A" THEN GOTO 1700
1650 IF 5$="8" THEN GOTO 1890
1660 IF S$="C" THEN GOTO 2080
1670 IF 8$="0" THEN GOTO 2270
1680 GOTO 1470
1690 REM - FOR A=
1700 IF 59$()"8" THEN BOTO 1720
1710 19=K9 ; J9=L9
1720 IF 59$()"C" THEN GOTO 1740
1730 I9=M9 ; J9=N9
1740 IF 59$()"0" THEN GOTO 1760
1750 19=MB : J9=NS
1760 IF 59$(>"1" THEN GOTO 1780
1770 I9=M5 = J9 = H5
1780 FOR J=l TO J9
1790 FOR 1=1 TO 19
lS00 IF 89$="8" THEN A(I.Jl=B(I.J)
1810 IF S9$="C" THEN A<I,J)-C<I,J)
1820 IF S9$="0" THEN A(I.J)-=O<I.J)
1830 IF 89$="1" THEN A(I,J)=O
1840 IF 69$-="1" AND I""J THEN A(I.J)""l
la50 NEXT I
1860 NEXT J
1870 RETURN
18BO REM - FOR Bs
1690 IF S9${>"A" THEN BOTO 1910
1900 K9=19 : L9=:J9
1910 IF S9$(>"C" THEN GOTO 1930
1920·K9=M9 t L9=N9
1930 IF 89$()"D" THEN GOTO 19:50
1940 K9=M8 : L9=NB
1950 IF 89$(>"1" THEN GOTO 1970
1960 K9=MS : L9 = M5
1970 FOR J=l TO L9
1980 FOR 1=1 TO K9
1990 IF S9$="A" THEN B<I.JJ=A(I,J)
2000 IF S9$="C" THEN B(I.J)=C<I.J)
2010 IF 89$="D" THEN Btl.J)=D(I.J)
2020 IF 89$::%"1" THEN B(I.J)=O
2030 IF 59$="1" AND I""J THEN B(I,J)=1
2040 NEXT I
2050 NEXT J
2060 RETURN

396

2070
2080
2090
2100
2110
2120
2130
2140
2150
216.0
2170
2180
2190
2200
2210
2220
2230
2240
"2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770

Program Listings

REM - FOR c=
IF S9$<>"A" THEN GOTD 2100
1'19=19 : N9=J9
IF 59$<)"B" THEN GOTO 2120
M9=K9 : N9==L9
IF 59$<>"0" THEN GOTa 2140
M9=MB : N9=NB
IF 59$< >" I" THEN GOTo 2160
M9=M5 : N9 ;:: MS
FOR J=l TO N9
FOR 1=1 TO M9
IF 59$;::"A" THEfN CCI.J)=A(I,J)
IF 89$="8" THEN C(l.Jl=B(I,J)
IF 69$="0" THEN C(I,J)=D(I,J)
IF 59.$="1" THEN C<I,J)=(1
IF 59$="1" AND I=J THEN C<I,Jl=l
NEXT I
NEXT J
HETURN
REM - FOR D=
IF 59:f< >"A" THEN GOTO 2290
M8=.1'~ ; N8=J9
IF 59$(>"0" THEN GOTa 2310
M8=K9 : N8=L9
IF S'1$<>"C" THEN GOTO 2330
M8c:H9 : N8=N9
IF 89$< .>" I" THEN 80TO 2350
M8=M5 : N8 = T15
FOR J=1 TO N8
FOR 1=1 TO 1'18
IF S9$="A" THEN DtI.J)lIOAtI,J)
IF 89$="8" THEN D<I,J)c:IHI,J)
IF S9$"""C" THEN O(I,J)=C(I,J)
IF 89$="1" THEN Dtl,J)=O
IF 89$"""1" AND Ic:J THEN DCI,J)=1
NEXT 1
NEXT J
RETURN
REM._*******_****_******•••***••••••••••••
REM - TRANSPosE
PRINT "TRANSPOSE A, 0, C, OR D"; : INPUT S$
IF SS="A" OR 5$="8" OR S$="C" OR 8$"'''D'' THEN
GOTO 2470
REM •• ENTRY POINT IF PRESET PARAMETERS
N7=N7+1 : S8$(N7l="TRANSPOSE "+5$
PRIN1" ";SB$CN7)
IF L8>O THEN LPRINT
IF S$="A" THEN GOTO
IF 5$="0" THEN GOTO
IF S$="C" THEN GOTO
IF 8$="0" THEN GOTO
GOTO 2470
REM - TRANSPOSE A
1'1=19 ; 19~J9 : J9=M
IF I9>M THEN M~I9

GOTO 2740
REM - TRANSPOSE B
M=K9 : K9=L9 ~ L9=M
IF K9>M THEN MFK9
GOTO 2740
REM - TRANSPOSE C
M=1'I9 : M9=N9 : N9=M
IF M9>M THEN M=1'I9
GOTO 2740
REM - TRANSPOSE 0
M=M8 : MB=NB ; NB~M

IF M8>11 THEN M=M8
FOR 1=2 TO M
FOR J=1 TO 1-1
IF S$'< >" A" THEN GOTD 2780
H=A(I,J) : A(I,J)=A(J,I) : A(J,ll=H

GOTD 2510

---------- -- -- - ----------------------------------

C2-1 397

";S8$eN7)

";S6:$(N7)
19""M9
J9-...

";SB$eN7)
RESET MATRIX A DIMENSIONS

BCJ,I)=H

C(J,I)=H

DeJ,I)=H

THEN GOTO 2800
B(l,J>==B(J,U :
THEN GOTO 2820
C(I,J)>=C<J,I) :
THEN GOTD 2940
D(I,J)=D(J,I) :

2780 IF 5$(>"B"
2790 H=B<I.J) ;
2800 IF S'*<>"C"
2810 H=Cn,J) :
2820 IF 5.$(>"D"
2830 H=D<I,J)
2840 NEXT J
2850 NEXT I
2860 RETURN2870 REM*_* .*••••••••••__._._._. ._
2880 REM - A=B+C
2890 N7=N7+1 : S8:f(N7)="A=B+C"
2900 IF (f(9<>M9J OR (L9<>N9) THEN PRINT "8 & C DIFFERENT SIZES!"
2910 IF (LS}O) AND (K9<>t19"OR L9<>N9) THEN LPRINT"B &.: C DIFFERENT SIZES"
2920 PRINT" ";S8$(N7)
2930 IF LB>O THEN LPRINT ..
2940 I9=K9 I IF 19<t19 THEN
2950 J9=L9 r IF J9<N9 THEN
2960 FOR 1=1 TO 19
2970 FOR J=1 TO J9
2980 ACI,J) ::= 8(I,J) + CCI,Jl
2990 NEXT J
3000 NEXT I
3010 RETURN3020 REM•• ••••__••••••••••_•••••••••__•••••

3030 REM - A=O*C
3040 N7=N7+1 : SB$(N7)="A=D*C"
3050 IF N8<>M9 THEN PRINT "WARNING - 0 & C NOT CONFORMABLE!"
3060 IF LB>O AND N8<>M9 THEN LPRINT "WARNING D &: C NOT CONFORMABLE!"
3070 PRINT" ";S8$CN7)
3060 IF LB>O THEN LPRINT
3090 19=MB : J9=N9 ; REM
3100 FOR 1=1 TO I~

3110 FOR J=1 TO J~

3120 H:=O
3130 FOR K:=l TO M9
3140 H:=H+DCI,K)*C(K,J)
3150 NEXT K
3160 ACI,J):=H
3170 NEXT J
3180 NEXT I
3190 RETURN
3200 REM*********.****************.************
3210 REM - D=inv(BJ
3220 IF K9=L9 THEN SOTO 3260
3230 PRINT"MATRIX B IS NOT SQUARE"
3240 IF lS)O THEN LPRINT "MATRIX B IS NOT SQUARE"
3250 RETURN
3260 N7=N7+1 : 5S$(N7)="O=inv(B)"
3270 PRINT" ";58$CN7)
3280 IF LB>O THEN LPRINT
3290 M8=K9 : NB=K9
3300 E=.000000000000001_
3310 REM - EQUATE D TO THE UNIT MATRIX
3320 FOR 1=1 TO N8
3330 FOR J=1 TO N8
3340 O(I,J)=O
3350 IF I=J THEN 0(I,J)=1
3360 NEXT J
3370 NEXT I
3380 REM - FIND MAX MAGNITUDE ON OR BELOW MAIN DIAGONAL
3390 Dl=1 : REM - INIT DETERMINANT
3400 FOR K=1 TO NB : REM - OUTER STAGE LOOP
3410 IF K>=NB THEN SOTO 3610
3420 Il=K
3430 Bl=A~S(B(K.K»)

3440 FOR I=K+l TO N8
3450 IF Bl)=A8S(BCI.K)J THEN GOTO 3480
3460 11""1
3470 Bl=ABS(8eI,K» s REM - NEW MAX PIVOT FOUND
3480 NEXT I

398 Program Listings

3490 REM - SWAP ROWS II & K IF 11 <> K
3500 IF licK THEN BOTO 3610
3510 FOR J=1 TO NB
3520 82=,8CI1,J)
3530 B(Il,J)~B(K,J)

3540 BCK,J)=B2
3550 D2=0(11 ,3)
3560 D(Il,J)~D(K,J.

3570 DCK,J)=D2
3580 NEXT J
3590 Dl=-Dl ; REM - DET SIGN SWAP
3600 REM - TEST FOR SINGULAR MATRIX
3610 IF ABSCB(K.K»(=E THEN GOTO 3820
3620 Dl=B(K,K).Dl
3630 REM - DIVIDE PIVOT ROW BY ITS MAIN DIAGONAL ELEMENT
3640 D3=BCK,Kl
3650 FOR J=1 TO N8
3660 B(K,J)=B(K,J)/D3
3670 DCK,J)=D(K,J)/D3
3080 NEXT J
3690 REM - REPLACE EACH ROW BY LIN CONBI WITH PIVOT ROW
3700 FOR 1=1 TO NB
3710 B3=B (I ,K)
3720 IF I=K THEN GOTO 3770
3730 FOR J=1 TO NB
3740 B(I,J)=B(I,J)-B3*B(K,J)
3750 DCI,J)=D(I,J)-B3*D(K,J)
3760 NEXT J
3770 NEXT I
3780 NEXT K
3790 PRINT" DETERMINANT(S) "" ";01;". NOW B""I."
3800 IF L.8>0 THEN LPRINT" DETERMINANT (B) = ";01;". NOW B:=I."
3810 GOTo 3840
3820 PRINT"B SINGULAR FOR K=";I<;". INVERSE A&ORTED."
3830 IF L8>0 THEN LPRINT "B SINGULAR FOR K=";K;". INVERSE ABORTED."
3840 RETURN
3850 REM_* ***_*****.*****.*******.*_*_*__***
3860 REM - SCALAR _ (MATRIX)
3870 PRINT "SCALAR = "~ : INPUT S7$
3880 PRINT "MATRIX IS A, B, C, DR D"; : INPUT S$
3890 IF S$="A" OR S$="8" DR S$="C" DR 9$="0" THEN GaTO 3910
3900 GOTo 3880
3910 REM ** ENTRY POINT IF PRESET PARAMETERS
3920 N7=N7+1 : S8$(N7);:S7$+"-"+5$
3930 El=VAL(S7$)
3940 PRINT" ";98$(N7l
3950 IF L8>0 THEN LPRINT" ";S8$(N7)
3960 FOR 1=1 TO 6
3970 FOR J=l TO 6
3980 IF S$="A" THEN A<I,J)=El*A(I,Jl
3990 IF 5$="B" THEN B(I,J)=El*B<I,J)
4000 IF S$a"C" THEN C(I,Jl=El*C<I,J)
4010 IF 5$::"0" THEN D(I,J)=EI_0(I,J)
4020 NEXT J
4030 NEXT I
4040 RETURN4050 REM *._.__* ***** • *••__

4060 REM - PRINT ARRAY IN SCIENTIFIC FORMAT
4070 IF L8::0 THEN LB::1 : REM - TURN ON LOCAL PRINT FLAG
4080 GOTO 4110 : REM - TO STND DISPLAY ROUTINE4090 REM**_. • • **__* __• • _

4100 REM - DISPLAY ARRAY IN SCIENTIFIC FORMAT
4110 56$=" 4...1. +1••*................."
4120 GOTO 4190 : REM - TO STND DISPLAY ROUTINE
4130 REM4***********************************.**
4140 REM - PRINT ARRAY IN FIXED FORMAT
4150 IF L8=0 THEN L8=1 : aoTO 4180
4160 REM**************************************.
4170 REM - DISPLAY ARRAY IN FI~~D FORMAT
4180 56$=" ##~UUttt ..
4190 PRINT "SEE A, B. C, OR D"; : INPUT S$

Cl-1 399

INPUT S5$

LINE INPUT 53$

",

INPUT 54$

4810
4870
4830
4870
4850
4870
4870

GOTO
BOTO
GOTO
BOTO
GOTD
GOTO
GOTO

IF S4;"A" OR 5$"""8" OR S$="C" OR SS="D" THEN GOTO 4230
mHO 4190
REM ~* ENTRY POINT IF PRESET PARAMETERS
IF S$()"A" THEN GOTO 4250
H5:19 : M6=>J9 = GOTO 4310
IF 5:t< >"B" THEN GOTO 4270
M5=K9 : M6=L9 ~ GOTO 4310
IF S:t<>"C" THEN GOTO 4290
M5=1'19 : M6=N9 t GOTO 4310
IF 5$<>"D" THEN GOTO 4310
M5=1'18 : 1'16=1'118
PRINT "MATRIX ";5$;"(";M5;",";M6;") -
IF L8>O THEN LPRINT "MATRIX n;S$;"(";M5;",",M6;")
FOR 1=1 TO M5
J=Mb : IF J=1 THEN BOTD 4450
FOR J=l TO M6-1
IF S$="A" THEN PRINT USING 56$; A(I,J);
IF 5$="A" AND LB>O THEN LPRINT USING S6$; A (I,J);
IF 5$="B" THEN PRINT U5ING 56$; B<I,J);
IF S$="B" AND LB)O THEN lPRINT USING 56$; B<I,J);
IF S$="C" THEN PRINT USING 56$; C (I ,J);
IF 5$="C" AND LB>O THEN LPRINT USING 56$; C(I,J);
IF S$="D" THEN PRINT USING 56$; 0(1 ,J);
IF 5$="0" AND LB>O THEN LPRINT USING 56$; D(I,J);
NEXT J
IF S:J="A" THEN PRINT USING 56$, A(I.J}
IF 5$="A" AND LB>O THEN LPRINT USING 56$; A<I,J)
IF 5$="B" THEN PRINT USING 66$; 6(1,J)
IF 5$="B" AND L8)O THEN LF'RINT USING 56$; fH I ,J)
IF S$="C" THEN PRINT USING 56$; C<I,J)
IF S$="C" AND L8>0 THEN LPRINT USING 56$; cn ,J)
IF 5$="0" THEN PRINT USING 56$; D(I,J)
IF 5$="0" AND L8>O THEN LPRINT USING 56$; Dn,J)
NEXT I
IF LB=! THEN LB=/) : REM - TURN OFF LOCAL PI'i:INT FLAG
RETURN
REM***************************************
REM - MATRIX TO/FROM DISK
PRINT"5EE DIRECTORY (YIN) "; : INPUT 54$
IF 54$<>"Y" THEN GOTO 4660
PRINT"FILENAME SPECIFIER (LIKE it. *" DR <RETURN»

IF 5S$="" THEN 55$::"*.*"
FILES S5$
PRINT "SEE DIRECTORY AGAIN (YIN)";
IF S4$<>"Y" THEN GOrO 4660
GOTO 4bOO
PRINT "MATRIX INVOLVED IS A, B, C, DR D"; : INPUT Sf'
IF S$="A" OR 5$="B" OR S$="C" OR 5$="0" THEN GOTO 4690
GOTO 4660
PRINT "RECALL OR SAVE MATRIX 01;5$;" (R/5) "; : INPUT 51$
IF 51$="R" OR 51$="5" THEN GOTO 4720
GOTO 4690
PRINT "FILE NAME IS"; : INPUT 52$
PRINT" ! !! WARNING - DO NOT <CNTRL><BREAK) DURING THIS STEP ! ~

IF Sl$="R" THEN BOTO SOlO
REM - SAVE MATRIX TO DISK FILE
PRINT "COMMENT LABEL FOR FILE 15 «96 CHAR): ";
REM ** ENTRY POINT IF PRESET PARAMETERS
OPEN 52$ FOR OUTPUT AS #1
WRITE #1,53$
IF S$()"A" THEN
MS=I9 : Mb=J9 :
IF 5$<)"B" THEN
MS=K9 : M6=L9 ~

IF S$<)"C" THEN
M5=M9 : M6=N9 ;
IF S$(>"D" THEN
M5::118 : M6=N8
WRITE #1,115,M6
FOR 1=1 TO 115
FOR J=1 TO M6

4200
4210
42:'0
4230
4240
4250
4260
4270
4280
4290
4300
4310
4320
4330
4340
4350
4360
4370
4380
4390
4400
4410
4420
4430
4440
4450
4460
4470
4480
4490
4500
4510
4520
4530
4540
4550
4560
4570
4580
4590
4600
4610
4620
4630
4640
4650
4660
4670
4680
4690
4700
4710
4720
4725
4730
4740
4750
4760
4770
4780
4790
4800
4810
4820
4830
4840
4850
4860
4870
4880
4890

400 Program Listings

ROW";K

GOTO 5320

::: ";SQR(P)
SUM SORS OF D = "; SOR (P)
= ";T;" FOR ROW";J<
ROW SUM OF D = ";T;" FOR

";58$(N7)

";58$(N7)

#l.ACI,J)
*l,B(I,Jl
#I,C<I,J)
#I,D(I,J)

#l,ACI,J)
#1,8CI,JI
#lpC<I,J)
#l,D<I,J)

GOTO 52bO
GOTO 5320
GOTO 5280
GOTO 5320
GOTO 5300
GOTO 5320
GOTO 5320

INPUT
INPUT
INPUT
INPUT

WRITE
WRITE
WRITE
WRITE

THEN
THEN
THEN
THEN

IF S$="A"
IF 5$="[1"
IF S$="C"
IF 5$="D"
NEXT J
NEXT I
N7=N7+1 : 58$(N7)=''SAVED MATRIX "+5$+" IN FILE "+52$
PRINT" ''jSB$(N7)
IF LS>O THEN LPRlNT
CLOSE #1 : RETURN
REM - RECALL MATRIX FROM DISK FILE
OPEN 62$ FOR INPUT AS #1
INPUT #1,53$
PRINT "READY TO READ FILE ";52$;" INTO MATRIX ";S$;" TITLED: ";
PRINT "; 53$
PRINT "PRESS <RETURN> KEY IF 01<., ELSE 'ABORT' <RETURN)";
INPUT 54$
IF 54$="" THEN GOTO 5120
PRINT "ABORT RECALL; MATRIX ";5$;" NOT CHANGED"
REM ** ENTRY POINT IF PRESET PARAMETERS
OPEN 52$ FOR INPUT AS *1
INPUT *1,53$
N7=N7+1 : 58$(N7)c"READ FILE "+52$+" INTO MATRIX "+5$
PRINT" ";S8$(N7)
IF LB>O THEN LPRINT
INPUT *I,M5,Mb
FOR 1:::1 TO 115
FOR J=1 TO Mb
IF 5$:::"A" THEN
IF 5$c"8" THEN
IF 5$="C" THEN
IF S$:::"D" THEN
NEXT J
NEXT I
IF S$< >"A" THEN
19:::1'15 : J9=l1b :
IF 5$<>"B" THEN
K9=1'15 ; L9=116 :
IF 5$<>"C" THEN
119:::1'15 : N9:::I1b ;
IF 5$< >"0" THEN
118:::1'15 ; N8=116
CLOSE #1 : RETURN
REM_**************************************
REM
REM - VECTOR AND MATRIX NORMS OF D (EXCEPT SPECTRAL)
IF (M8:::1) OR (N8:::1) THEN GOTO 5650 : REM -VECTOR
REM - MATRIX CASES
T:::O : K=1 : P:::O
FOR I c l TO M8
H=O
FOR J=1 TO N8
H:::H+ABSW(I,J»
P=P+D<I,J)"2
NEXT J
IF H>T THEN 1<=1
IF H>T THEN T=H
NEXT I
PRINT" SOR-ROOT OF SUM SORS OF 0
IF L8>0 THEN LPRINT" SQR-ROOT OF
PRINT" MAX ABSOLUTE ROW SUM OF D
IF L8>O THEN LPRINT" MAX ABSOLUTE
T=O : 1<=1
FOR J=1 TO N8
H=O
FOR. I=L TO M8
H=H+ABS<D(I,J))
NEXT I

4900
4910
4920
4930
4940
4950
4960
4970
4980
4990

59°0
5010
5020
5030
5040
5050
5<)60
5070
5080
5090
5100
5110
5120
5130
5140
5150
5160
5170
5180
5190
5200
5210
5220
5230
5240
:5250
5260
5270
5280
5290
5300
5310
5320
5330
5340
5350
5360
5370
5380
5390
5400
5410
5420
5430
5440
5450
5460
5470
5480
5490
5500
5510
5520
5530
5540
5550
5560
5570

C]·} 401

K6=1

";An ,J)
";AO ~J)

LPRINT ..
";B(I,J)

IS";?1
P=1 NORM OF D IS";Pl
IS";8QR(PZ)
P=Z NORM OF D IS";SQR<P2)
OF D IS";P3
INFINITY NORM OF D IS";P3

6100
6160
6120
6160
6140
6160
6160

GOTO
GOTO
GOTO
60TO
GOTO
GOTO
GOTO

P=1 NORM OF D
THEN LPRINT "

P=2 NORM OF D
THEN LPRINT "

INFINITY NORM
THEN LPRINT "

IF H>l THEN Ko::J
IF H>T THEN To::H
NE:XT J
PRINT" MAX ABSOLUTE COL SUM OF D 0:: ";T;" FOR CDL";K
IF LB>O THEN LPRINT "MAX ABSOLUTE COL SUM OF 0 =: ";T;" FOR COL";K
RETURN
REM - VECTOR NORMS
Plo::O ; P2=0 : P3=0
FOR 1=1 TO Ma
FOR J=1 TO NB
Pl=Pl+ASSCD(I,J»
P2=P2+ABS(D(I,J»A2
IF AB5(D(I,J»>P3 THEN P3=ABS,D(I,J»
NEXT J
NEXT I
PRINT "
IF LB>O
PRINT "
IF LB>O
PRINT "
IF L8>O
RETURN
REM***************************************
REM - EXTREME ELEMENTS OF D
T=O = T2=-1E+33 ; T1=IE+33 :Kl=1 : K2=1 :K3=1
FOR 1=1 TO MB
FOR J=1 TO NB
IF ABS(D(I,J))(=T THEN GOTO 5870
Kl=I = KZ=J : T=ABS(D(I,J»)
IF D(I,J)Tl THEN GOTO 5890
K3=I = K4=J : Tl=D(I,J)
IF O<I,J)(T2 THEN GOTO 5910
K5=I K6=J = TZ=D(I,J)
NEXT J
NEXT I
54$=" ELEMENT OF 0 IS "
PRINT" MAX AB5"+S4$; T;" @ ROW"; Kl;" I COL"; KZ
IF LB>O THEN LPRINT" MAX ABS"+S4$;T;" @ ROW"jKl;". COL"jK2
PRINT" MAX"+S4$;TZ;" @ ROW";K5j" COl";K6
IF L8>O THEN LPRINT" MAX"+S4$;T2j" @ ROW";K5;" COL";1<6
PRINT" MIN"+S4$; Tl;" @ ROW"; K3j" COL"; K4
IF LS>O THEN LPRINT" MIN"+S4$;T1;" @ ROW";K3;" COL";1<4
RETURN
REM***************************************
REM - PRINT COLUMNS
IF LB~O THEN LB=! : REM - TURN PRINTER ON
REM**********~****************************
PRINT "DISPLAY COLUMNS OF A, B, C, DR D"pINPUT 5$
IF S$=:"A" OR 8$='''B'' OR S$="C" OR S$~"Dn THEN GOTO 6080
GOTD 6050
IF S$<>"A" THEN
M5='I9 : M6='J9 ;
IF S$(>"B" THEN
M5=K9 ; M6==-L9 ;
IF S$(>"C" THEN
M5=<M9 ; M6=N9 =
IF 5$(>"D" THEN
M5=M8 ; M6=N8
PRINT"************************************"
PRINT"COLUMNS OF MATRIX "iS$
IF L8>O THEN LPRINT"COLUMNS OF MATRIX ";5$
FOR J='1 TO M6
PRINT" COLUMN ";J
IF L8>0 THEN LPRINT" COLUMN ";J
FOR 1=1 TO 1'15
IF 5$="A" THEN PRINT"
IF S$="A" AND L8>0 THEN
IF 5$="B" THEN PRINT"

5580
5590
5600
5610
5620
5630
5640
5650
5660
5670
5680
5690
5700
5710
5720
5730
5740
5750
5760
5770
5780
5790
5800
5810
5820
5830
5840
5850
5860
5870
5880
5890
5900
5910
5920
5930
5940
5950
5960
5970
5980
5990
6000
6010
6020
6030
6Q40
6050
6060
6070
6080
6090
6100
6110
6120
6130
6140
6150
6160
6170
6175
6180
6190
6195
6200
6210
6220
6230

402 Program Listings

";e (I ,J)

"i B <1,J)

";D(I,J)

LPRINT ..
";C(I ,J)

LPRINT "
";D(I,J)

LPRINT

AND L8>O THEN
THEN PRINT"
AND L8>O THEN
THEN PRINT"
AND Le>o THEN

6240 IF 5$="8"
6250 IF S$="C"
6260 IF S$="C"
6270 IF 5$="0"
6280 IF 5$="D"
6290 NEXT I
6300 REM - END OF COLUMN
6310 IF La > 0 THEN GOTO 6340
6320 IF J=M6 THEN GOTQ 6340
6330 PRINT"PRESS <RETURN> KEY TO CONTINUE -- READY";: INPUT 54$
6340 NEXT J
6350 IF La=! THEN L8=O : REM - TURN PRINTER OFF
6360 RETURN
6370 KEY ON t PRINT "END OF RUN" : END
6380 REM~**************************************
6390 REM - ANY NEW CODE GOES HERE
6400 REM*.-•••*.-_.._..*••••_•••••_*••*_••_••_.
6410 END

1099 REM - GRAM-SCHMIDT ORTHQNORMALIZATION -Icz-zl 'GSDECOMP'
1100 PRINT "10. a-a DECOMPOSITION OF A=D*C, D ORTHONORMAL"
1270 ON K GOSUB 1330,1410,1470,2470.4580,3870,2890,3040,3220,0400,

53bO,5B20,b370,415Q,4180,4070,4110,b030,bQ~Q,b37Q

6390 REM - GRAM-SCHMIDT ORTHONORMALIZATION FROM A TO 0
6400 N7=N7+1 : S8$(N7):=:"D=orthodecomp(Al, &. C triangular"
6410 PRINT" ";S8$(N7)
6420 IF LB>O THEN LPRINT" ";Se$<N7)
6430 M=I9 : N=J9 : M8=M : NB=N I M9=N I N9=N
6440 REM - NULL C
6450 FOR 1=1 TO N
6460 FOR J=l TO N
6470 C<I,J)=O
6480 NEXT J
6490 NEXT I
6500 REM - MAIN LOOP FOR N COLUMNS ·OF A & 0
6510 FOR J=l TO N
6520 REM - STORE COLUMN J OF A IN D
6530 FOR K=l TO M
6540 D<K,J) =' ACK,J)
6550 NEXT K
6560 1=1
6570 REM - BEGIN I LOO? FOR ROWS OF UPPER TRIANGULAR C
6580 IF I=J THEN GOTO 6720 : REM - G~T DIAG ELE & NORM ORTHOG VECTOR
6590 REM - CALC C(I,J) UPPER TRIANG
6600 T=O
6610 FOR K=1 TO M
6620 T=T+D<K,I)*A(K,J)
6630 NEXT K
6640 C<I,J)=T
6650 REM - CONSTRUCT ORTHOG VECTOR IN D
6660 FOR K=l TO M
6670 D(K,J)=D(K,J)-T*O<k,l)
b680 NEXT K
6690 1=1+1
6700 GOTO 6580 : REM - FOR NEXT ROW OF UPPER TRIANG C
6710 REM - CALCULATE C(I,I)
6720 T==O
6730 FOR K=l TO M
6740 T=T+D<K,J)*D<K,J)
6750 NEXT K
6760 T:>SQR<T)
6770 C<I,I)=T
6780 REM - EUCLIDEAN NORM ORTHOGONAL VECTOR IN COL J OF D
6790 FOR K=l TO M
6800 O(K,J)=D<K,J)/T
6810 NEXT K
6820 REM - END OF COLUMN J WORK

•

- -- ----------------

C1-J 40J

6830 NEXT J
6840 REM - CALC ALL COMBI'S OF COL INNER PRODUCTS
6B50 FOR 1=1 TO N8
6860 FOR J=I TO N8
bB70 T:::O
6880 FOR K=l TO M8
285'0 T==T+OCK.I>*DCK •.Jl
6900 NEXT K
6910 PRINT "INNER PRODUCT OF" COLUMNS".; I;J;T
6920 NEXT J
6930 NEXT I
6940 RETURN
6950 END

1129 REM - EIGENVALUE BOUNDS FOR MATRIX D. [C2-31'SYMBNDS'
1130 PRINT "13. EIGENVAlUE BOUNDS FOR MATRIX 0"
1270 ON K BOSue 1330,1410,1470,2470,4580,3870,2890,3040,3220,6370,

5360,5820,7030.4150,4180,4070,4110.6030,6050,63707000 REM. **._* ** *_* *__*_
7010 REM - GERSCHGORIN BOUNDS ON MAXIMIN EIGENVALUES
7020 REM - ABORT IF MATRIX 0 NOT SYMMETRIC
7030 IF M8<>NB THEN GOTO 7270
7040 FOR 1=1 TO MB
7050 L=I-l
7060 FOR J=l TO L
7070 IF D(I.J)<>D(J,I) THEN GOTO 7270
70BO NEXT J
7090 NEXT 1
7100 REM - COMPUTE EIGENVALUE BOUNDS ~OR MATRIX D
7110 11=IE+30 : T2~Tl ; T3=-IE+30 : T4=T3
7120 FOR 1=1 TO MB
7130 Rl=O
7140 FOR J=1 TO MB
7150 IF I<>J THEN Rl=Rl+ABS(D(I,J»
7160 NEXT J
7170 IF D(I.J)T3 THEN T3=0(I,I)
71BO IF D(I,I)(T2 THEN T2=D(I,I)
7190 R4=D(I.I1+Rl
7~OO Rl=D(I,I)-Rl
7210 IF R4>T4 THEN T4=R4
7220 IF R1<Tl THEN Tl=R1
7230 NEXT I
7240 PRINT "MAX EIGENVALUE BETWEEN ";T3;" AND ";T4
7250 PRINT "MIN EIGENVALUE BETWEEN ";T1;" AND ";T2
7260 RETURN
7270 PRINT "MATRIX D IS NOT SYMMETRIC!" ; RETURN
7280 END

1129 REM - QR ITERS FOR DIAG FORM OF EIGENVALS -IC2-4! 'QRITER'
1130 PRINT "13. QR DIABONALIZATION OF A"
1270 ON K B05UB 1330,1410,1470.2470,4580,3870,2890,3040.3220,6400.

5360.5820,6960,4150.4180,4070,4110.6030,6050.6370
6950 REM - OR ITERATIONS FOR DIAGONALIZING MATRIX A
6960 L7=O : REM - INIT ITER COUNT
6970 56$=" ••*4Ut•. #.*.*" : S$="A"
6980 PRINT ,,******..*****.....*••*_*****,.._.**••**.*.*****."
6990 GOSUa 4220 : REM - DISPLAY MATRIX A
7000 PRINT "COMPLETED ITERATION * "jL7;" CONTINUE (Y/N)";:INPUT 84$
7010 IF 54$="N" THEN RETURN : REM - GO BACK TO MENU
7020 GOSUB 6430 ; REM - DECOMPOSE A=DC 9Y GRAM-SCHMIDT
7030 S$="B" : S9$="C"
7040 GOSUB 1640 ; REM - MOVE C TO B TEMPORARILY

404 Program Listings

7050
7060
7070
70BO
7090
7100
7110
7120

SS="C" : 59$'" ".P "
BOSUS 1640 : REM,- HOVE C"'D
5$="0" : 59$.:<:"8"
GOSUB 1640 : REM - HAVE NOW SWAPPED D ~ C
GOSUB 3090 : REM - COMMAND e IS A=D*C
L7=L7+1 : REM - INCREMENT ITER COUNTER
GOTO 6970 = REM - START OF ITERATION LOOP
END

H=H+A(I.l>*A<l.l) ; NEXT

REM - D=B

REM - D=A
IN D

C(M9.1l
GOSUB 1640
A=D*C
G09UB 1640
MAX ABS ELE
RETAIN SIGN
A

REM - SHIFTED INVERSE POWER METHOD FOR EIGENSOLNS -lc2-s! 'SHINVP'
PRINT "13. EIGENSOLUTION OF B FROM APPROX EIGENVALUE"
ON K BOSUB 1330,1410.1470,2470.4580,3870,2890,3040,3220,6370.

5360.5820,6960,4150,4180,4070,4110,6030,6050,6370
REM - SHIFTED INVERSE POWER METHOD FOR AN EIGENSOLUTION
L7=O = REM - INIT ITER COUNT
56$=" ##..tUft•• ####*" = 8$="8"PR I NT "*_*******... ...*...**_....*. * "
Bosue 4220 : REM - DISPLAY MATRIX B
PRINT "ESTIMATED EIGENVALUE="; INPUT T4
S$="C" : S9$="I" : M5=K9 ; REM - MAKE C=I DIM LIKE B
GOSUB 1640 ; REM - C""I
S$=:"C" : E1=-T4+.0000000001# : REM - CAN'T BE EXACT
GOsue 3960 : REM - SHIFT IDENTITY MATRIX BY ESTIMATED EIGENVALUE
Bosue 2940 : REM - A=B+C SHIFTS MATRIX B
S$="9" : S9$="A"
GOSUB 1640 : REM - B=:A. PREPARE TO INVERT SHIFTED MATRIX
BOSUB 3220 : REM - D=:inv(B>
5$=:"B" ; 59$:o"D"
GOSU9 1640 : REM - B~D. HOME OF SHIFTED INVERSE MATRIX
M9=M8 : N9=:1 : REM - DIMENSION VECTOR C
FOR 1=:1 TO 119
C(I.l)=1 • REM - SET C TO ALL l's
NEXT I
T3=1 : REM - INITIAL VECTOR SCALE FACTOR
REM'- START OF LOOP
PRINT
PRINT "ON ITERATION. ";L7;" TRIAL FACTOR=";T3
PRINT TRIAL TRANSPOSED EIGENVECTOR IS:"
L7=L7+1 ; REM - INCREMENT ITERATION COUNTER
FOR 1=1 TO M9-1
PRINT USING 56$; C(I,I);
NEXT I
PRINT USING 56$;
S$"""D" : 59$:o"B"
GOSUB 3090 : REM
S$"""D" : S9$="A"
BOSUB 5820 ; REM
T=D<Kl,K2l ; REM
REM - SCALE VECTOR
FOR 1=1 TO 19'
AU • U"'"A(l. 1) IT
NEXT 1
REM - TERMINATION TEST
IF ABS(T3-T)/<I+ABS(T»<.OOOI THEN GaTo 7380
T3=T ; REM - SAVE T SINCE NOT CONVERGED
S$="C" ; S9$:"A" : BOSUB 1640 : REM - C=A
GOTO 7165 : REM - GO TO TOP OF LOOP
REM - RENORM FROM INF- TO 2-NORM ~ PRINT ANSWERS
H=O
FOR 1=1 TO 19
H=SQR(H)
FOR 1=1 TO 19 A(I,l)=A(I.1)/H: NEXT I
PRINT "*******••**....*.**••**********...****....***"
PRINT" AFTER ";L7;" ITERATIONS:"

1129
1130
1270

69':10
6960
6970
6980
6990
7000
7010
7020
7030
7040
7050
7060
7070
7080
7090
7100
7110
7120
7130
7140
7150
7160
7165
7170
7180
7190
7200
7210
7220
7225
7230
7240
7250
7260
7270
7280
7290
7300
7310
7320
7330
7340
7350
7360
7370
7380
7390
7400
7410
7420
7430

7440 PAINT "
7450 PRINT"
7460 S$="A"
7470 R£TURN
7480 END

EIGENVALUE NEAREST "IT4;" IS ";1/T+T4
AND ITS EIGENVECTOR IS"
GQSUB 4220 : REM - DISPLAY VECTOR A

C2·6 405

•

1129 REM - MATRIX 0 COMPOSITION BY COLUMN VECTORS A -lc2-bl 'VECTQCOL'
1130 PRINT "13. MATRIX D COMPOSITION BY COLUMN VECTORS A"
1270 ON K BOSUO 1330,1410,1470,2470,4580,3870,2890,3040,3220,6370,

5360,5820,6960,4150,4180,4070,4110,6030,6050,6370
6950 REM - MATRIX D COMPOSITION BY COLUMN VECTORS A
6960 PRINT "DESTINATION COLUMN NUMBER IN DIS"; : INPUT 1148
6970 MB=I9 : REM - HAVE SET BOTH DIMENSIONS OF D
6980 FOR 1=1 TO MB
6990D(I,NB)=A(I,l)
7000 NEXT I
7010 RETURN
7020 END

1129 REM - HOUSEHOLDER TRANS FOR UPPER HESSENBERG -ICZ-71 'HOUSE'
1130 PRINT "13. TRANSFORMATION OF MATRIX A TO UPPER HESSENBERB FORM
1270 ON K BOSUE 1330,1410,1470,2470,4580,3870,2890,3040,3220,6370,

5360,5920,6970,4150,4180,4070,4110,6030,6050,6370
6950 REM - HOUSEHOLDER TRANSFORMATION FOR UPPER HESSENBERG
6960 REM - THERE ARE MUCH MORE EF~ICIENT WAYS TO IMPLEMENT THIS
6970 FOR KS=l TO J9-2 : REM - J9 COLUMNS IN MATRIX A
6980 86$=" " : S$:="A"
6990 GOSUB 4220 : REM - DISPLAy MATRIX A
7000 PRINT "CONTINUE (Y/N)";:INPUT S4$
7010 PRINT " *•••••_••_•••••••_*.."
7020 IF S4$:="N" THEN RETURN : REM - GO BACK TO MENU
7030 8$="8" : S9$:="A" : GOsue 1640 ; REM - SAVE 8=:A
7040 REM - PLACE UNNORM'D VECTOR U INTO D
7050 H=O : M8~J9 ; NB=l : REM - DIMENSION D
7060 FOR I~KSTl TO J9
7070 H=H+A{I,KS)*A(I,K5)
70BO NEXT I
7090 R=-SGN(A(K5+1,KS»*SQR(H)
7100 H5~H-R.A(K5+1,K5) : REM - SIGN OF R PREVENTS CANCELLATION
7110 FOR 1=1 TO J9
7120 D(I,1)=0
7130 IF I=K5+1 THEN D(I,1)=A(I,K5)-R
7140 IF I<K5+2 THEN GOTO 7160
7150 D(I,1)=A(I,K5)
7160 NEXT 1
7170 S$="C" : 59$="0" : GOSue 1640 : REM - C=D
71BO S$:=:"C" : GOSUB 2540 : REM - TRANSPOSE C
7190 GOSUB 3090 : REM - A=D*C COUTER PRODUCT OF VECTOR U)
7200 E1=-1/H5 : S$:=:"A" : GOSU!3 3960 : REM - SCALE &. CHANGE SIGN OF A
7210 S;f="C" 59$="A" Gosue 1640 : REM - SETUP FOR SUBTRACTION
7220 5$:=:"0" : 59$="8" Gosue 1640: REM - SAVE RESULT
7230 S$="E" : 59$="1" M5=:J9: Gosue 1640 : REM - 13:1
7240 Bosue 2940 : REM - A:9+C, A HOUSEHOLDER TRANSFORMATION Q
7250 S$="C" : S9$="A" BOSU8 1640 : REM - C.::A, P05TMULT PLACE
7260 5:1:="6" : 59$="A" GOSUB 1640 : REM - SAVE Q FOR PREMUL T
7270 Bosue 3090 : REM A=D*C, POSTMULT BY Q
7280 St:="C" ~ S9:f="A" GOSUB 1640 ; REM - SETUP PREMULT
7290 S:t="D" : 59$"""B" GOSUfC 1640 : REM - SETUP PREMULT
7300 GOSUB 3090 : REM - PREMULT BY Q
7310 PRINT "ANNIHILATED ";J9-1<5~t;" ELEMENTS IN COLUMN ";K5;":"
7320 NEXT k:5
7330 St="A" : GOSUE 4220 : REM - DISPLAY MATRIX A
7340 RETURN
7350 END

I

I

I

L

406 Program Listing.

1099 REM - FULL-RANK GENERALIZED INVERSE OF MATRIX A -tc2-al 'GENINVP'
1100 pRINT "10. FULL-RANK GENERALIZED INVERSE OF MATRIX A"
1129 REM - PROJECTION INTO INTERSECTION OF HYPERPLANES FROM COlS OF A
1130 PRINT "13. PROJECTION MATRIX INTO MANIFOLD FROM COLUMNS OF A"
1270 ON K BOSUB 1330,1410,1470,2470,4580,3870,2890,3040,3220,6960,

5360,5820,6970,4150,4180,4070,4110,6030,6050.6370
b9S0 REM - DUAL PURPOSE - COMMANDS 10 AND 13 - ANSWER IN MATRIX A
6960 K5=10 : GOTO 6980 ; REM - SET FLAG TO SHOW COMMAND 10 CASE
6970 K5=13 : REM - SET FLAG TO SHOW COMMAND 13 CASE
6980 S6:$::::" 4UUt*~*.~4t*4t4t" ; S$"""~"

6990 saSUB 4220 : REM - DISPLAY MATRIX A
7000 PRINT "CONTINUE (V IN)";: INPUT 54.
7010 IF S4$="N" THEN RETURN : REM - GO BACK TO MENU
7020 IF K5=IQ THEN GOTO 7160 = REM - DON"T NORM BEN INVERSE MATRIX
7030 REM - EUCLIDEAN NORMALIZATION OF COLUMNS OF A <NORMALS)
7040 FOR J=1 TO J9
7050 H=O
7060 FOR 1=1 TO 19
7070 H=H+A(l,J)*A<I,J)
7080 NEXT I
7090 IF H<>O THEN GOTO 7110
7100 PRINT "COLUMN ";J9;" IN MATRIX. A WAS NULL. ABORTED." RETURN
7110 H=5GR<Hl : REM - EUCLIDEAN NORM
7120 FOR 1=1 TO 19
7130 A<I,J)=A(I,J)!H
7140 NEXT I
7150 NEXT J
7160 5$=="0" 59$="A": GOsue 1640 : REM - O",A
7170 5$:::"D" GQSUB 2540 : REM - TRANSPose D
7180 S$"'''C'' 59$="A" aOsUB 1640 REM - C=A
7190 Gosue 3090 : REM A=O_C
7200 5$="B" : 59:f="A" GOSUB 1640 REM - B"'A
7210 BOSUS 3290 : REM O=invCB)
7220 S$:=" C" : BOSUe 2~40 ; REM - TRANSf'OSE C
7230 BOSUe 3090 • REM - A=D*C IS GENERALIZED INVERSE
7240 IF K5=10 THEN RETURN
7250 5$="0" S9:f="C": sosue 1640 : REM - D=C
7260 5$="0" = GOSUe 2540 : REM - TRANSPOSE 0
7270 S$="C" : S9$="A" aOSUS 1640 : REM - C=A
7280 eOSUB 3090 ; REM - A=O*C PROJECTION PER RANGE OF GIVEN MATRIX
7290 S$="C" ; S9$="A" ; 60SUB 1640 : REM - C=A
7300 El=-1 : S$="C" : GOSUB 3960 : REM - C=-C
7310 5$="S" : 59$"="1" : M5:::.M9 : GDSUEl 1640 : REM - B=1
7320 GOSUe 2940 = REM - A"'B+C, PROJECTION INTO MANIFOLD
7330 RETURN
7340 END

5 REM - 8503021330. COPYRIGHT T.R. CUTHBERT. 1985.
1099 REM - fORM LU FACTORIZATION OF MATRIX D -IC3-11 'LUFAC'
1100 pRINT "10. LU FACTORIZATION OF MATRIX D"
1129 REM - FORWARD AND BACKWARD SUBSTITUTION OF LU IN 0 FOR VECTOR IN C
1130 pRINT "13. LU SOLUTION OF MATRIX IN 0 FoR VECTOR IN C
1270 ON K GQSUB 1330,1410,1470,2470,4580,3870,2890,3040,3220,6960,

5360,5820,7190,4150,4180,4070,4110,6030,6050,6370
6950 REM - COMMANDS 10 AND 13 - ANSWERS IN 0 & C, RESPECTIVELY
6960 56$="ft8".#ft.... " : 5$="0"
6970 GOSUe 4220 : REM - DISPLAY MATRIX 0
6980 pRINT "CONTINUE (V/NJ";:INPUT 54$
6990 IF S4$="N" THEN RETURN : REM - GO BACK TO MENU
7000 REM - LU SIMILAR TO GAUSSIAN. INPUT TO D AND OUTPUT TO D
7010 FOR K=1 TO M8-1
7020 K5=K+l
7030 FOR J=K5 TO M8
7040 H=DCK,J)/D(K,K)
70se D(K,J)=H
7060 FOR I=K5 TO M8
7070 D(I,J~=DCI,J)-H*D(I,K)

- - - - - - -------~

C3·2 407

7080 NEXT I
7090 NEXT J
7100 NEXT K
7110 H=l
7120 FOR I=1 TO MB : REM - CALC DETERMINANT
7130 H=H*D(I,I)
7140 NEXT I
7150 PRINT "0 NOW IN LU FACTORED FORM"
7160 PRINT" DETERMINANT = ";H
7170 RETURN
71BO REM - FWD AND BKWD SUBSTITUTION - INPUT C & OUTPUT C
7190 IF CM9=M8) AND (N9=1) THEN GOTD 7210
7200 PRINT "c DIMENSIONS DON'T MATCH D - ABORT" : RETURN
7210 REM - FORWARD SUBSTITUTION
7220 C(l,I)=C(l,l)/D(l,l>
7230 FOR 1=2 TO M9
7240 H-=C(I,L)
7250 FOR J=l TO 1-1
7260 H-=H-D(I,J>*C(J.l)
7270 NEXT J
7280 C(I,l)=H/D(I,I)
7290 NEXT I
7300 REM - BACKWARD SUBSTITUTION
7310 FOR K=1 TO M9-1
7320 I = M9-K
7330 H=C(I,I)
7340 FOR J=I+l TO M9
7350 H=H-D(I,J)*CtJ,l)
7360 NEXT J
7370 C(I,l>:;;:H
7380 NEXT K
7390 RETURN
7400 END

385 DIM H(21),T(6),E(b) = REM - FOR LOLT FACTORIZATI~, uyOATE, & SOLN
1099 REM - LDLT FACTORIZATION, UPDATE, & SOLUTIONS. C3-2 'LDLTFAC'
1100 PRINT "10. LDLT FACTORIZATION & UPDATE (WITH B) OF MATRIX D"
1129 REM - SOLUTION OF C FOR MATRIX D '(in H), ANSWER IN C, BY LOLT
1130 PRINT "13. LDLT SOLN OF C FOR MATRIX D (in H), ANSWER IN C"
1270 ON K BOSUB 1330,1410,1470,2470,4580,3870,2890,3040,3220,6960,

5360,5820,7810,4150,4180,4070,4110,6030,6050,6370
6950 REM - COMMANDS 10 AND 13 - ANSWERS IN D (&H) & C, RESPECTIVELY
69bO 56$=" •••••* = 5$="0"
6970 BOSU8 4220 : REM - DISPLAY MATRIX D
6980 PRINT "CONTINUE (YIN) ";: INPUT S4$
6990 IF S4$="N" THEN RETURN : REM - GO BACK TO MENU
7000 REM - LOLT PERFORMED IN VECTOR H BUT CAN BE VIEWED IN D
7010 IF MB=NB THEN GOTO 7040 : REM - MATRIX D MUST BE SQUARE
7020 PRINT "MATRIX D NOT SQUARE - ABORTED." : RETURN
7030 REM - PLACE SYM LWR TRIANG MATRIX D IN VECTOR H
7040 K=O
7050 FOR J=l TO N8
7060 FOR 1=1 TO M8
7070 IF I<J THEN GOTO 7100
70BO K=K+1
7090 H(K)=D(I,J)
7100 NEXT I
7110 NEXT J
7120 REM - LDLT FACTORIZATION OF MATRIX IN SITU IN VECTOR H
7130 KS.. 1
7140 FOR 1=2 TO NB
7150 Z""H(K5)
7160 IF 1<=0 THEN GQTO 7340
7170 K5=K5+1
7180 I1=KS
7190 FOR J=l TO HB
7200 ZS=H(K5)

408 Program Listings

7210 HCKS)=H(KS)/Z
7220 J5=K5
7230 15=11
7240 FOR K=l TQ J
7250 J5=J5+N8+1-K
7260 H(J51=H(J5l-HC!51.ZS
7270 15=15+1
7280 NEXT I<
7290 K5=K5+1
7300 NEXT J
7310 NEXT I
7320 IF H(K5}{=O THEN GOTO 7340
7330 GOTO 7350
7340 PAINT"HC";K5;") IS NEGATlVE - ABORT" : RETURN
7350 PRINT "NEED RANK-l UPDATE OF D USING VECTOR B (YIN)";
7360 IF 54;f<')"Y" THEN GOTD 7690
7370 PRINT"SCALAR Q .. "; : INPUT Q
7380 REM - SOLN OF LV=Z FOR V BY FWD SUBSTITUTION
7390 T<I)=6(1,1)
7400 FOR 1= 2 TO N8
7410 14""1
7420 Z:B(I,I)
7430 FOR J=l TO 1-1
7440 Z=Z-H(I4)*T(J)
7450 14=I4+N8-J
7460 NEXT J
7470 T (I) =Z
7480 NEXT I
7490 REM - UPDATE dii IN H DIAGONAL & FILL E(.>
7500 14=1
7510 FOR I=L TO N8
7520 Z=H(I4)+Q*T(Il*TCIl
7530 IF Z<=O THEN GOTD 7790 REM - dii NEGATIVE
7540 H C14)'=1
7550 E(I),=T(I).Q/Z
7560 Q=Q-E(1)*ECI)*Z
7570 14=I4+N8+1-1
7580 NEXT I
7590 REM - UPDATE L* ~ LLhat
7600 14=1
7610 FOR 1=1 TO NB-1
7620 14=14+1
7b30 FOR J=I+1 TO NB
7640 BCJ y 1l=BCJ,l)-H(14)*T(Il
7650 H(14)=HCI4)+E(I)*BCJ.ll
7660 14'=14+1
7670 NEXT J
7680 NEXT I
7690 k=O : REM - RETURN DECOMPOSITION TO MATRIX D
7700 FOR J=1 TO N8
7710 FOR 1=1 TO N8
7720 D(I.Jl=O
7730 IF I<J THEN GOTO 7760
7740 K=K+l
7750 D(I.J)=H(K)
7760 NEXT I
7770 NEXT J
7780 RETURN
7790 PRINT"HC"; I; ") IS NEGATIVE - ABORT" : RETURN
7800 REM - SOLUTION OF DX=C GIVEN C WITH ANSWER X IN C
7810 FOR 1=2 TO NB
7820 14=1
7830 V""C(I.1)
7840 FOR J=l TO 1-1
7850 V=V-H<I4>*C(J,ll
7860 1. 4::: I 4+NS-J
7870 NEXT J
7880 C(I,1)=V

INPUT 54$

- --~~----------------------

C3-3 409

7890 NEXT I
7900 C(N8,l)=C(NB,l)/H(I4)
7910 FOR K~2 TO N8
7920 r=<N8+1-K
7930 11=14-1<
7940 V=C(I,l)/H(Il)
7950 14=11
7960 FOR J=I+l TO N8
7970 11=11+1
7980 V=V-H(Il>.C<J,l)
7990 NEXT J
8000 C(I.l)=V
8010 NEXT K
8020 RETURN
8030 END

10 REM - SINGULAR VALUE DECOHPOSITION -/C3-3/'SVD'
20 OPTION BASE 1 : REM - FORTRAN-TYPE SUBSCRIPTS
30 CLS : KEY OFF : LS=O : REM - INIT PRINT FLAG
40 PRINT "*********** SINGULAR VALUE DECOMPOSITION *************"
50 PR1NT "NOTES:"
60 PRINT "I. USE ONLY UPPER CASE LETTERS"
70 PRINT "2. MERGE MATRIX DATA STATEMENTS"
80 PRINT INTO RESERVED LINE RANGE 400-620 (OPTIONAL)"
90 PRINT "3. IF 'BREAK' OCCURS. RESTART WITH 'GOTO 999 -<RTN>'"
100 DEFDBl A-H,Q-R,T-Z
110 DEFINT I-N
120 REM - DIMENSIONED FOR MAXIMUM OF 6x6 SYSTEM
130 DIM A(6,6) ,Ul6,6) ,V(6,6) ,S(6,6) ,W(6) ,R(6)
390 REM *it** LINES 400-620 RESERVED FOR MERGING PROBLEM DATA ****
400 REM - THE BYPASS CASE IS SHOWN HERE AS FOLLOWS
410 N$ = "NONE" : REM - A NAME: FOR PROBLEM MERGE FILE MUST BE HERE
420 DATA 0,0 : REM - MATRIX A *ROWS,*COLS - HAVE AT LEAST ONE PAIR
630 REM ***************.****************.*•••**
640 REM - READ MATRIX A
650 PRINT = PRINT "WORKING WITH DATA SET; "jN$
660 READ 19,J9 ; REM - DIM OF A
670 IF 19=0 THEN GOTO 1160 : REM - MATRIX A NOT LOADED THIS WAY
680 PRINT" A("jI9;","jJ9;")"
690 FOR 1=1 TO 19
700 FOR J=l TO J9
710 READ A(I ,J)
72.0 NEXT J
730 NEXT I
740 GOTO 1160 : REM - TO MENU AND SELECTION
990 REM - RE-ENTRY FOR INVALID COMMAND NUMBERS ~ CONTINUING
999 CLS
1000 PRINT "*******it**. COMMAND MENU ***********"
1010 PRINT "0. DISPLAY A MATRIX IN FIxED FORMAT"
1020 PRINT "1. MATRIX TO/Fr<OM DISK"
1030 PRINT "2. SINGULAR VALUE DECOMPOSITlON OF MATRIX A"

,1040 PRINT "3. PRINT A MATRIX IN FIXED FORMAT"
1050 PRINT "4. EXIT"
1060 PRINT"***********.************************
1070 REM - SOLICIT INPUT COMMAND NUMBER AND CHECK VALIDITY
lOBO PRINT"INPUl COMMAND NUMBER:";:INPUT S$
1090 K=LEN(S$) ; IF K=O THEN GOTO 999 : REM - AVOID <CR>
1100 K=ASC <SS)
1110 IF K<48 OR K>52 THEN 60TO 999 : REM - 1ST CHAR MUST BE O-~

1120 K=VAL<S$l
1130 IF k=O THEN K=5 : REM - GOSUB CAN"T USE 0
1140 IF K>5 THEN GOTD 999 : REM - CAN'T EXCEED MENU #'5
1150 ON K GOSUB 3970,1220,3530,4730,3570
1160 PRINT "PRESS {RETURN> KEY TO CONTINUE -- READY".
1170 INPUT 84$
I1BO IF 54$<>"" THEN BEEP: REM - <RETURN> BEFORE NEXT CMO NUMBER

1190 GoTo 999
1200 REM••••*•••*•••••••••••••**.*•••****••_**_
1210 REM - PERFORM SVD ON MATRIX A
1220 13:0 : K9:I9 : L9:J9 : M9:J9 : Nq~Jq : M6:J9 N8 =J9
1230 pRINT" SVD WORKING - PLEASE WAIT"
1240 FOR 1=1 TO 19
1250 FOR J=1 TO J9
1260 U(lsJ)=A(I,J)
1270 NEXT J
1280 NEXT 1
1290 REM - BEGIN HOUSEHOLDER TRANSFORMATION TO BIDIAGONAL FORM
13006=0; 81=0 :.Al~O

1310 FOR 1=1 TO J9
1320 L=I+l
1330 R(I)~SI*G

1340 G=O = 5=0 : 51=0
1350 IF 1>19 THEN GoTO 1620
13bO FOR K=1 TO 19
1370 Sl=S1+ABS(UCK s I»
1380 NEXT K
1390 IF 81=0 THEN GOTO 1620
1400 FOR K=I TO 19
1410 U(K s I)=U(K,I)/SI
1420 S=S+U(K,I)*U(K,I)
1430 NEXT K
1440 F==U(I,I)
1450 G=-SGN<F)*SQR(S)
1460 H=:F*6-S
1470 un s Il""F-G
1480 IF I=J9 THEN GOTO 1590
1490 FOR JcL TO J9
1500 8=0
1510 FOR K=I TO 19
1520 8=S+UtK,I).U(K,J)
1530 NEXT K
1540 F::-5/H
1550 FOR K=I TO 19
1560 U<K,J)=UtK,J)+F*UtK,I)
1570 N£XT K
1580 N£XT J
1590 FOR K::-I TO 19
1600 U(K,I)=51*UtK,I)
1610 NEXT K
1620 W(I)=Sl*G
1630 G~O : 5=0 ; 51=0
1640 IF 'I~I9l OR tl=J9) THEN GoTO 1930
1650 FOR K=L TO Jq
1660 SI=Sl+ABStU(I,K»
1670 NEXT K
1680 IF 51=0 THEN GOTO 1930
1690 FOR K=L TO J9
1700 U(I,K)=UtI,Kl/51
1710 5=5+U(I,K)*U(I,K)
1720 NEXT K
1730 F=U(I,U
1740 G=-5GNtF)*SQR(S)
1750 H=F*G-S
1760 U(I,U=F-G
1770 FOR K=L TO J9
1780 R(K):U(IsK)/H
1790 NEXT K
1800 IF 1=19 THEN GOTO 1900
1810 FOR J=L TO 19
1820 5=0
1830 FOR K=~ TO J9
1840 5=S+UCJ,K)*Utl,K)
1850 NEXT K
1860 FOR K=L TO J9

,
1870 U(J,K)=U(J,K)+S*R(K)
IBBO NEXT K
1890 NEXT J
1900 FOR K~L TO J9
1910 U(I,K)=Sl*U(I,K)
1920 NEXT K
1930 T=ABS(W<I»)+ABS(R(I)'
1940 IF T>Al THEN Al=T
1950 NEXT I
1960 REM - PRODUCT OF RIGHT-HAND TRANSFORMATIONS
1970 FOR 12=1 TO J9
19BO I=J9+1-12
1990 IF]=J9 THEN GOiD 2160
2000 IF 6=0 THEN GOTO 2130
2010 FOR J=L TO J9
2020 V(J.I)=(U(I,J)/U(I.L»/G
2030 NEXT J
2040 FOR J=L TO J9
2050 5=0
2060 FOR K=L TO J9
2070 S=S+UCI,K)*VIK,J)
2080 NEXT K
2090 FOR K=L TO J9
2100 V(K.J)=V(K,J)+S*V(K.!)
2110 NEXT K
2120 NEXT J
2130 FOR J=L TO J9
2140 V(I,J)=Q V(J,I)~O

2150 NEXT J
2160 V(I,I):::1
2170 G==R(l)
2180 L=l
2190 NEXT 12
2200 REM - PRODUCT OF LEFT-HAND TRANSFORMATIONS
2210 Ml=J9
2220 IF 19<J9 THEN Mi=!9
2230 FOR 12==1 TO Hi
2240 1=Ml+1-I2
2250 L=I+1
2260 a=W(I)
2270 IF I=J9 THEN GOTO 2310
2280 FOR J=L TO J9
2290 U(I,J)'=O
2300 NEXT J
2310 IF G=O THEN Gora 2470
2320 IF I=Ml THEN GOTO 2430
2330 FOR J=L TO J9
2340 S=O
2350 FOR K=L TO 19
2360 S=S+UCK,I)*UCK,J)
2370 NEXT K
2380 F=(S/U(I,I»)/B
2390 FOR K~1 TO 19
2400 U(K,J>=U(K,J>+F*U(K,I)
2410 NEXT K
2420 NEXT J
2430 FOR J=1 TO 19
2440 UCJ,I)=UCJ,I)/G
2450 NEXT J
2460 GOTO 2500
2470 FOR J=1 TO 19
2480 U(J,lJ=O
2490 NEXT J
2500 U(1,1)=U(1,1)+1
2510 NEXT 12
2520 REH - DIAGONALIZE THE BIDIAGONAL FORM
2530 FOR K2=1 TO J9
2540 K1=J9-K2

CJ-J 411

412 ~gr... Lutings

2550 K=Kl+1
2560 14=0
2~70 REM - SPLITTING TEST
2580 FOR L2=1 TO K
2590 Ll::::K-L2
2600 L==Ll+l
2610 IF AB5(RCL)+Al)=Al THEN GOTO 2830
2620 REM - NOTE THAT R(l)=Q ALWAYS
2630 IF (ABS<W(Ll»+Al)=Al THEN GOTO 2650
2640 NEXT L2
2650 C=O : 5:::1
2660 FOR l=L TO K
2670 F=5*R(I)
2680 R <I) =C*R (I)

2690 IF CABS(F)+Al)=Al THEN 60To 2830
2700 G=W(Il
2710 H=SGR(F*F+G*G)
2720 W(I)=H
2730 C=G/H
2740 S=-F/H
2750 FOR J=l TO 19
2760 y==U (J ,Ll)
2770 Z=U(J,I)
2780 U(J,Ll}=Y*C+Z*S
2790 U(J,I)=-Y*S+Z*C
2800 NEXT J
2810 NEXT I
2820 REM - CONVERGENCE TEST
2830 Z=W(Kl
2840 IF <L=K) THEN GOTO 3360
2850 REM - SHIFT FROM THE BOTTOM DIAGONAL 2x2 SUBMATRIX
2860 IF 14=30 THEN GOTO 3500 : REM - 30 ITERATION LIMIT
2870 14=14+1
2880 X=W(U
2890 Y=W (Kl)
2900 G=R(KU
2910 H=R(K)
2920 F=«V-Z)*(V+Z)+(G-H)*(G+H»/(2*H*V)
2930 G=SQR(F*F~1)

2940 F=«X-Z)*(X~Z)+H*(Y/<F+SBN(F)*ABS(G»-H»/X

2950 REM - NEXT QR TRANSFORMATION
2960 C=l : 8=1
2970 FOR Il=L TO Kl
2980 1=11 +1
2990 So::R(I)
::5000 V=W (1)
3010 H=S*B
3020 G""C*G
3030 Z=SQR(F4F+H*H)
3040 R (It) ""z
3050 C=F/Z
3060 S"'HtZ
3070 F=X*C+G4S
3080 G=-X*S+G*C
3090 H=V*S
3100 Y=Y*C
3110 FOR J=l TO J9
3120 X""V (J ,I 1)

3130 Z=V(J,Ii
3140 V<J,Il>=X*C+Z*S
3150 V(J,I)",,-X*S+Z*C
3160 NEXT J
3170 Z""SQR(F*F+H*H)
3180 W(I U ""Z
3190 IF Z=O THEN GOTO 3220
3200 C=F/Z
3210 S=H/Z
3220 F=C*G+S*Y

,
0-3 413

3230 X=-S*G+C*Y
3240 FOR J=l TO 19
3250 Y=U(J,Ill
3260 Z=U(J,Il
3270 UCJ,11)=Y*C+Z*S
3280 UCJ,I)=-Y*S+Z+C
3290 NEXT J
3300 NEXT 11
3310 RCU=O
3320 R(K)=F
3330 W(K)=X
3340 GOTO 2580
3350 REM - CONVERGENCE OBTAINED
3360 IF 1>=0 THEN GOTO 3410
3370 W00 =-Z
3380 FOR J=l TO J9
5390 V(J.K)=-VCJ,K)
3400 NEXT J
3410 NEXT K2
3420 FOR 1=1 TO J9 REM - SIGNA'S FROM VECTOR TO MATRIX
3430 FOR J=l TO J9
34405(I,J)=O
3450 IF l=J THEN S(I,J)=W(I)
3460 NEXT J
3470' NEXT I
3480 PRINT "END OF SINGULAR VALUE DECOMPOSITION"
3490 RETURN
3500 PRINT" SINGULAR VALUE DECOMPOSITION FAILED AFTER 30 ITERATIONS!"
3510 RETURN
3520 REM*******_**_****_******_********_******
3530 REM - PRINT ARRAY IN FIXED FORMAT
3540 IF lB=O THEN LB=l : BOTD 3570
3550 REM.*********************••******_•••*****
3560 REM - DI5PLAV ARRAY IN FIXED FORMAT
3570 56$"==" ftfUtftft••••••• "
3580 PRINT "SEE A, U. V. OR S"; : INPUT 5$
3590 IF S$="A" OR S$="U" OR S$="V" OR 8$="5" THEN GOTO 3620
3600 GOTO 3580
3610 REM ** ENTRY POINT IF PRESET PARAMETERS
3620 IF S$<>"A" THEN GOTO 3640
3630 M5=I9 : M6=J9 ; GOTO 3700
3640 IF 5$<>"U" THEN GOTO 3660
3650 M5=K9 : M6=L9 : GOTO 3700
3660 IF S$<>"V" THEN GOTO 3680
3670 M5=H9 : M6=N9 : GOTO 3700
3680 IF S$<>"S" THEN GOTO 3700
3690 M5=HB ; M6=N8
.3700 PRINT "MATRIX ";5$;"(";1'15;",";1'16;") -
3710 IF L8>O THEN LPRINT "MATRIX ";5$;" (";M5;".";M6;") -"
3720 FOR 1=1 TO M5
3730 J=M6 : IF J=l THEN GOTO 3840
3740 FOR J=1 TO M6-1
3750 IF S.:f="A" THEN PRINT USING Sb.:fj A(I .J) j
3760 IF 5$="A" AND L8>O THEN LPRINT USING S6$; A<I.J);
3770 IF 5$="U" THEN PRINT USING 56$; U <I ,J);
3780 IF S$"""U" AND L8>0 THEN lPRINT USING 86$: U(I ,J);
3790 IF 5$="V" THEN PRINT USING 56$; V<I.J);
3800 IF S$="V" AND LB>O THEN lPRINT USING 86$.; V<I ,J).;
3810 IF 5$="5" THEN PRINT USING 56$; S(I .J);
3820 IF 5$:"5" AND L8>O THEN lPRINT USING 56$; 5(I.J); \
3830 NEXT J
3840 IF 5$="A" THEN PRINT USING 56$; AII.Jl
3850 IF S$="A" AND L8>O THEN lPRINT USING 66$; A<I,J)
3860 IF 5$:"U" THEN PRINT USING 56$; U<I.J)
3870 IF S$="U" AND L8>O THEN LPRINT USING 86$; U(I,J)
3880 IF S$="V" THEN PRINT USING 56$; V(I ,J)
3890 IF S$="V" AND L8>O THEN lPRINT USING 86$; V(! ,J)
3900 IF 5$="5" THEN PRINT USING 56$; 5 (I .J)

414 Program Listings

INPUT 55$

GOTO 4720

",

LINE INPUT 53$

INPUT 54:f

";S8$(N7)

";S8S(N7)

#1,A(I,J)
#l.U<I.J)
#l,V(l,J)
tH,S(I,J)

4210
4270
4230
4270
4250'
4270
4270

GOTo
GOTo
GOTo
GOTo
GOTO
GOTO
GOTO

WRITE
WRITE
WRITE
WRITE

IF 5$-"""5" AND L6>O THEN LPRINT USING 56$; S<I,J)
NEXT I
IF LB~l THEN L8=O ; REM - TURN OFF LOCAL PRINT FLAG
RETURN
REM*.**********************.********.****·
REM - MATRIX TO/FROM DISK
PRINT"SEE DIRECTORY (YIN)"; : INPUT 54$
IF 541'< >" Y" THEN 60TO 4050
F'RINT"FILENAl1E. SPECIFIER (LIKE it_* OR <RETURN»

IF 5SS="" THEN 55$="•• *"
FILES 55$
PRIN! "SEE DIRECTORY AGAIN (YIN)";
IF 54$<)"Y" THEN GOTO 4050
GOTO 3990
PRINT "MATRIX 1NVOLVED 15 A, U, V, DR S"; : INPUT S$
IF S$='''A'' DR S$=:"U" DR S$="V" DR 6$="S" THEN GOTa 4080
GoTO 4050
PRINT "RECALL OR SAVE MATRIX ";S$;" (RIS)"; : INPUT SU
IF S1$="R" OR 51$=:"5" THEN GOTO 4110
GOTO 4080
PRINT "FILE NAME IS", : INPUT 52$
PRINT" !! I WARNING - DO NOT <CNTRL><BREAK> DURING THIS STEP ! ~!"
IF Sl$="R" THEN GOTO 4410
REM - SAVE MATRIX TO DISK FILE
PRINT "COMMENT LABEl- FOR FILE 15 «96 CHAR): 'OJ
REM ** ENTRY POINT IF PRESET PARAMETERS
OPEN 52$ FOR OUTPUT AS ~l

WR ITE "tH, 83$
IF 5:$<>"A" THEN
M5=19 : M6""J9 :
IF S$<)"U" THEN
M5=K9 : 1"16=L9 :
IF 5$<>"V" THEN
M5=M9 : M6='N9 :
IF 5$<)"S" THEN
1"15=M8 ~ M6='N6
WRITE #1,M5,M6
FOR 1=1 TO M5
FOR J=l TO 116
IF S$="A" THEN
IF S$="U" THEN
IF S$="V" THEN
IF 6$="5" THEN
NEXT J
NEXT I
N7=N7+1 : S8$(N7)="SAVED MATRIX "+5:$+" IN FILE "+52$
PRINT" ";5e$~N7)

IF L8>O THEN LPRINT
CLOSE #1 : RETURN
REM - RECALL MATRIX FROM DISK FILE
OPEN 52$ FOR INPUT AS #1
INPUT #1,53$
PRINT "READY TO READ FILE ";52$;" INTO MATRIX ".5$;" TITLED: ".
PRINT ";53$
PRINT "PRESS <RETURN) K.EY IF OK, ELSE "ABORT" <RETURN)";
INPUT 54$
IF 54$="" THEN GOTO 4520
PRINT "ABORT RECALL; MATRIX ";5$;" NOT CHANGED"
REM ** ENTRY POINT IF PRESET PARAMETERS
OPEN 52$ FOR INPUT AS #1
INPUT #1,53$
N7""N7+1 : 5B$(NY)="READ FILE "+52:(+" INTO MATRIX "+5$
PRINT" ";58$(N7l
IF L8>0 THEN LPRINT
INF'UT #1,M5,M6
FOR 1=1 TO r15
FOR J=l TO M6
IF S$="A" THEN INPUT #l,A(I.J)

3910
3920
3930
3940
3950
3960
3970
3980
3990
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140
4150
4160
4170
4180
4190
4200
4210
4220
4230
4240
42:;;0
4260
4270
4280
4290
4300
4310
4320
4330
4340
4350
4360
4370
4380
4390
4400
4410
4420
4430
4440
4450
4460
4470
4480
4490
4500
4510
4520
4530
4540
4550
4560
4570
4580

~'..
4590 IF S$="U" THEN INPUT .1,U<I,J)
4600 IF S.$="V· THEN INPUT 4t,VCI,J)
4610 IF 5$="5" THEN INPUT #l,S<I,J)
4620 NEXT J
4630 NEXT I
4640 IF S$<>"A" THEN GOTO 46bO
4b50 199<:; , J9~ , GOTO 4720
4bbO IF S$<>"U" THEN GOTD 46BO
4670 K9=t15 , L9=t16 , GOTD 4720
4bOO IF S$<>"V" THEN BOTD 4700
4690 119=/'15 , N9=t16 , GOTD 4720
4700 IF 5$<>"5" THEN GOTO 4720
4710 /"IB=I'l5 , NfFI'Ib
4720 CLOSE #1 , RETURN
4730 KEY ON , PRINT "END OF RUN" END

Cf4 415

1129 REf'f - EXAI1PLE5 3.2.12 & 3.3.4; NR ITERS -fC3-1I"LAGRANBE'
1130 PRINT "13. LAGRANBE EXAI'IPLE USING NEWTON ITERATIONS"
1270 ON K GOSUB 1330, 1410, 1470,2470,4SBO.3B70,2B9013040,3220,~O,

5360,5820,6960,4150,4160,4070,4110,6030,6050,6370
6950 R8'I - INPUT STARTING Xl,X2,X3 VECTOR
6960 PRINT"INPUT STARTING Xl,X2,X3:" : INPUT Xl,X2.X3
6970 L'7=O : REM - INIT tlER# & PUT -F VECTOR INTO C
bWO IF XDO THEN SQTO 7QOO
6990 PRINT .. Xl<=0 I SO LOG (X 1) IMPOSSIBLE" : RETURN
7000 t19:::3 :: N9=1 : L7=L7+1 : REf'! - SET DII'!"S AND INCR ITER#
7010 C(1,1}~-(-X2+X3*(-4+2.Xl+1/Xl»

7020 C(Z,l)=-(-Xl+X3)
7030 C(3,1)=-(2-Xl*(4-Xl)+LOG(Xl)+X2J
7040 REJ1 - PUT JACOBIAN INTO 9
7050 K9=3 : L 9=3
7060 B(I~I)=X3*{2-1/(Xl*Xl» ~ B(I,2)=-1 B(I,3)=-4+2*Xl+I/Xl
7070 B(2~1)=-1 : B(2,2>=0 : B(2,3)=1
7080 8(3,1)=B(I,3) : 8(3,2>=1 : B<3,3)=O
7090 GOSU8 3290 : REM - INVERT JACOBIAN
7100 GOSUB 3090 : REM - A=D*C TO CALC DX
7110 REM - UPDATE X VECTOR BY DX COMPONENTS
7120 Xl=Xl+A<1,1> : X2=X2+IH2, t} : X3=X3+A(3~ 1)

7130 PRINT
7140 PRINT "AFTER ITER'ATION .";L7;" TRANSPOSED X VECTOR IS:"
7150 PRINT USING" .##### ;Xl;X2;X3
7160 PRINT-CONTINUE <YIN)" : INPUT 54$
7170 IF S4$="N" THEN RETURN
7180 BOTO 6980 : REM - NEXT ITERATION
7190 END

list of Variable Names Used in Program C4-t: NEWTON

Cl Fl 15 L1 56$
C2 FNACS() 11 M TO
C3 G() J Ml T1
C4 Gl J5 N V
D5 G2 K PI X()
D6 HO Kl Q Z
E() I K2 5$ Z5
E1 II K5 S4$
F 14 L 55$

416 Program Luting>

10 REM - NEWTON OPTIMIZER - PROGRAMIC4-1 \ 'NEWTON'
20 OPTION BASE 1 = REM - NO SUBSCRIPT 0
30 C:LS ; KEY OFF
40 PRINT "********. NEWTON OPTIMIZER **.*******.*."
50 PRINT "NOTES:"
bO PRINT "1. USE ONLV UPPER CASE LETTERS"
70 PRINT "2. IF 'BREAK' OCCURS, RESTART WITH 'SOTO 999'"
80 PRINT "3. USER MUST PROVIDE SUBROUTINE 5000 FOR FUNCTION EVALUATION"
90 PRINT AND SUBROUTINE 7000 FOR GRADIENT EVALUATION"
100 PRINT "4. ENTER DEFAULT ANSWERS TO QUESTIONS BY <RETURN>."
130 REM USE OF MAJOR VARIABLES AS FOLLOWS -
140 REM E() SEARCH STEP VECTOR
150 REM F FUNCTION VALUE RETURNED BY USER SUBROUTINE 5000
IbO REM a(> GRADIENT VECTOR RETURNED BY USER SUBROUTINE 7000
170 REM HC) VECTOR CONTAINING SYMMETRIC HESSIAN - SEE (4.1.14)
leo REf'! I,J WORKING Rrn«t-, COL•• RESPECTIVELY
190 REM K COMMAND # & LOOP INDEX
200 REM L7 ITERATION •
210 REM N NUMBER OF VARIABLES IN VECTOR X(J
220 REH X() VECTOR OF VARIABLES RELATED TO PARTICULAR PROBLEM
230 REM IN USER-SUPPLIED SUBROUTINES 5000 AND 7000.
240 PEFDBL A-H.Q-R.T-Z : REM - NOTE THAT P IS SNGL PRECISION
2'50 DEFINT I-N
260 DEFSTR S
270 56$=" #####•• ##ft##."
280 OEF FNAC5<XI=1.570796-ATN(X/SQRCI-X*X» : REM - ARC cos
290 Ml=50 : £1=.0001 : 06=.0001 : 17=1 : REM - SET DEFAULT PARAMETERS
300 REM - FOLLOWING DIMENSIONS ARE FOR N(=30. THE HESSIAN VECTOR
310 REM H() MUST BE DIMENSIONED N*<N+l)/Z.
320 DIM XC30J,G(30).HC465J,T<30).EI30)
330 REM - HESSIAN H(.' STORED AS AS VECTOR; SEE EQUATION (4.1.14)
340 GOTO 1150 : REM - TO MENU & SELECTION
350 REM - RE-ENTRV FOA INVALID COMMAND NUMBERS & CONTINUING
999 CLS : K2=0 : REM - INIT FUNCTION EVALUATION COUNTER
1000 PRINT "******...*••*- COMMAND MENU ••*.*.*••*"'."
1010 PRINT "I. ENTER STARTING VARIABLES CAT LEAST ONCE)"
1020 PRINT "2. REVISE CONTROL PARAMETERS' 10PTIONAL) ,
1030 PRINT "3. START OPTIMIZATION"
1040 PRINT "4. EXIT (RESUME WITH 'GOTO 999')"
1050 REM
1060 PRINT .. * *.* *.*..*.*•••* * * •••
1070 PRINT"INPUT COMMAND NUMBER:";:INPUT S$
10eo K=LEN(S$l : IF K=O THEN GOTO 999 ; REM - AVOID <CR>
1090 K=ASCIS$'
1100 IF K<4B OR K>57 THEN GOTO 999 : REM - 1ST CHAR MUST BE 0-9
1110 K=VAL (S$'
1120 IF K=O THEN K= 15 : REM - ALTERNATIVE DISPLAY NUMBERS
1130 IF K>20 THEN GOTO 999 : REM - CAN'T EXCEED MENU #'S
1140 ON K GOSUB 1210,1300,1450.1420
1150 PRINT "PRESS <RETURN> KEY TO CONTINUE -- READY".
1160 INPUT S4$
1170 IF S4$()-"" THEN BEEP : REM - <RETURN> BEFORE NEXT eMD NUMBER
1180 GOTO 999
1190 REM••••**.*"**.*••"*••*.***•••*••••**•••"*
1200 REM - ENTER VARIABLES
1210 PRINT"NUMBER OF VARIABLES = "; : INPUT N
1220 PRINT "ENTER STARTING VARIABLES X(I);"
1230 FOR 1=1 TO N
1240 PRINT" XC";I;")=";: INPUT XII)
1250 NEXT 1
1260 PRINT "TRUST REGION RADIUS ="; INPUT Tl
1270 IF T1=0 THEN Tl=1000000! ; REM DEFAULl TO UNBOUNDED NEWTON
1280 RETURN
1290 REM •••*••*•••*.**.*•••*.*-.*••*••*••
1300 REM - REVISE CONTROL PARAMETERS
1310 PRINT "MAXIMUM *I OF ITERATIONS (DEFAULT=50): "; : INPUT 54$
1320 111=50 : IF S4$<>"~ THEN Ml=VAL<54$)
1330 PRINT "STOPPING CRITERION <DEFAULT=.OOOt>: "; INPUT S4$

r--------- - - -

C4-1 417

1340
1350
1360
1370
13BO
1390
1400
1410
1420
1430
1440
1450
1455
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
ITJO
1740
1750
1760
1770
1780
1790
'BOO
1810
1820
1830
1835
1840
1850
1860
1870
18BO
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990

El==.OOOt : IF 54$<>"" THEN El=VAL(S"\$)
PRINT "ENTER FINITE DIFF FACTOR CDEFAULT=.OOO1J="; : lNPUT 54$
06=.0001 : IF 54$(>" .. THEN D6=VAL (54$)

PRINT "PRINT EVERY Itn ITERATION fDEFAUL T=1): "; : INPUT 54$
17=1 : IF 54$<)"" THEN I7=VAL(S4$)
RETURN
REM .*••••••*•••••••••••••••*•••**••*••
REM - NORMAL STOP
kEY ON = PRINT "END OF RUN" : END
REM **•••**************.***••••*••*****.
REM - MAIN OPTIMIZATION ALGORITHM - SEE CHAPTER FOUR
GasUB 5000 = REM - GET INITIAL FUNCTION VALUE
K2=K2+1 : REM - INCREMENT FNCN EVAL COUNT
L7=O = REM - INITIAL ITERATION COUNT
REM - RE-ENTRY POINT FOR NEW ITERATION
L7=L7+1 : M=Q : REM - INCREMENT ITER • ~ INIT CUTBACK COUNT
F1=F : REM -SAVE FOR DOWNHILL COMPARISON
GOSUB 7000 = REM - CALC GRADIENT
IF«L7-1) MOD 17):0 THEN SOSUB 2320 : REM - RPT F, X, AND G
BOSUB 2410 REM - CALC HESSIAN IN VECTOR Hi.) &Y DIFF'G G
BOSUB 2710 REM - FACTOR H=lDLT IN SITU IN H(.)
FOR 1=1 TO N : E(I)=-G(I) = NEXT I : REM - NEG GRADIENT
GOSUB 2100 REM - CALC Q DENOM FOR CAUCHY POINT
REM - CALC LENGTH OF GRADIENT
81=0 : FOR I~1 TO N : G1=G1+G(I).G(I) : NEXT 1 : G1=SQR(G1l
IF 61<>0 THEN GOTo 1600
PRINT .,*...... GRADIENT IS ZERO *****" : GOTO 2050
C4~G1 : REM - SAVE GRADIENT LENGTH FOR ANGLE CALC
G2~G1*G1*Gl/Q : REM - LENGTH OF CAUCHY STEP
S4$="CAUCHY"
55$=" (BOUNDED)"
IF G2>T1 THEN GOTO 1700 : REM - CP IS OUTSIDE TRUST RADIUS
eOSUB 2990 = REM - CALC NEWTON STEP IN E()
S4$:"NEWTON"
Gl~O : FOR 1=1 TO N : Gl=Gl+E{I>.E(!) : NEXT Z : Gl=SQR{Gl)
IF 61<T1 THEN 55s=" (UNBOUNDED)"
IF 61<T1 THEN GOTO 1710 : REM - NEWTON STEP INSIDE TRUST RADIUS
FOR 1=1 TO N : E(I)=E(I)*T1/61 : NEXT I : REM - STEP lENBTH=RADIUS
PRINT ..* ***..* ..**** ** ****** ":54$+55$
IF S4$="CAUCHY" THEN GOTO 1820
REM - CALC NEWTON-TO-GRADIENT DEGREES
C2=0 : C3=O
FOR I~l TO N : C2=C2+GCIJ*E(I) = C3=C3+ECI)*EtI) NEXT I
Pl~-C2/C4/SQRCC3) : IF Pl<l THEN GOTO 1780
Pl=O : GOTO 1790 ; REM - AVOID /0 IN ACS
Pl=57.29578*FNACStPl)
PRINT" NEWTON-TO-GRADIENT DEGREES=";
PRINT USING" ••••";Pl

REM - TAKE STEP WITH INCREMENT IN Et.)
FOR 1~1 TO N : XtI)=X{I)+E(I) ; NEXT I
SOSUB 5000 : REM - CALC F(X+dX)
K2=K2+1 = REM - INCREMENT FNCN EVAL COUNT
IF F<Fl THEN GOTO 1900
REM - GET BACK TO LAST TURNING POINT & CUTBACK dX
FOR 1=1 TO N : X(I)=X(l)-E(1) : EtI)=E(I)/4 : NEXT 1
PRINT .*••*. CUT BACK STEP SIZE BY FACTOR OF 4 "*###"
M=M+1 : IF M<11 THEN GOTO la20
PRINT "STEP SIZE TOO 5I'1ALL - TERMINATED" : GOTO 2070
IF S4$="CAUCHY" THEN GOTo 1960 : REM - BYPASS QUAD FACTOR REPORT
REM - CALC QUADRATIC BEHAVIOR FACTOR R
Bosue 2100 ~ REM - CALC QUAD DELTA F USING NEWTON STEP
IF Q<.OOOOOI THEN GOTO 1960 : REM - PROBABLY RESET HESSIAN
Pl=(F1-F)/(Q/2) : REM - SEE CHAPTER FOUR
PRINT" QUADRATIC E1EHAVIOR FACTOR R=";Pl
IF L7<M1 THEN GOTD 2010

PRINT "STOPPED AT GIVEN LIMIT OF";M1;" ITERATIONS; RESULTS ARE:"
L7=L7+1 : GOTO 2060

2000 REr1 - TEST CONVERGENCE OF BOTH F AND £ACH l((1)
2010 IF ABS(FI-F)/el+ABSeFl»)El THEN SOTO 1480
2020 FOR 1=1 TO N
2030 IF ABS(EeI»/el+ABS(X(I»)>El THEN SOTO 1480
2040 NEXT I
2050 L7==L7+1 : PRINT "CONVERGED; SOLUTION IS:"
2060 GOSUB 7000 : REt1 - BET GRADIENT AT Sm..UTION POINT
2070 60SUB 2320 : REM - REPORT CONDITIONS AT STOPPING POINT
ZOn'): PRINT "TOTAL NlJI'1BER OF FI..JNCTION EVALUATIONS =-;K2
:zoao RETURN : REM -- RETURN TO MENU
2090 REM ••••••••••* ...
2100 REM - CALC QUAD FORM Q FOR E USING LDLT I!'. H(.)

2110 REM - CALC Tel)
2120 FOR 1=1 TO N TCl)=O ~ KEXT I ~ K=O ~ REM - INIT
2130 FOR J=1 TO N : REM - COLUMN LOOP
2140 FOR 1=1 TO N : REM - WORK DOWN COLUKN J OF MTRIX L <3.1.12)
2151') IF I<J THl::N GOTO 2200
21!oO K;«+1
2170 Cl="H(K)
2180 IF I=J THEN Cl=1
2190 TeJ)=TeJ)+Cl*EeI)
Z200 NEXT I
2210 NEXT J
2220 REM - 5Ut1 ox T"'2 TERHS FOR g
2230 K=O : Q=Q : REM - INlT
2240 FOR J=1 TO N
2250 FOR 1=1 TO N
2260 I F 1< J THEN GOTo 2290
2270 K=K+l
22BO IF I=J THEN IpQ++HK).TII).T(I)
2290 MEXT 1
2300 NEXT ,]
2310 RETURN
2320 R8M
2330 REf1 - PRINT FlJNCTION. VARIABLES. AND GRADIENT
2340 PRINT "AT START OF ITERATION NlA'IBER";L7
2350 Pl-=F : PRINT FUNCTION VALUE =",Pl
2360 PRINT" I XII) S(I,"
2370 FOR 1=1 TO N
2380 PRINT I; PRINT USING S6$;Xel) ,G(I)
2390 NEXT I
2400 RETURN
2410 REt1 - ..
2420 REI"I - OBTAIN HESSIAN IN He.) BY DIFFERB«:ING GRADIENT
2430 FOR 1=1 TO N : EII)=6eI) : NEXT I : REM - SAVE -NOMINAL GRADIENT
2440 KeO : REM - INDEX FQRH(KI
2450 FOR J=1 TO N : REM -COLUMNS OF HESSIAN
2460 05=D6*ABS(XCJ» : REM - INCREMENT FOR X(J) USING PARAMETER 06
2470 IF 05<.000001, THEN D5=.000001 : REM - MINIMUM PERTURBATION
2480 X{J)=xeJ)+D5 : REM - PERTURB xeJ)
2490 GOsue 7000 : REM - GET ALL G<I) FOR PERTURBED X(J)
2500 FOR 1=1 TO N : REM -ROWS OF 3th HESSIAN COLUMN
2510 Te!>=(GeI)-E(I»/D5 : REM - DELj(DELiF) APPROXI~ATE DERIVATIVE
2520 IF l<J THEN GOTO 2550 : REM - ABOVE HESSIAN MAIN DIAGONAL
2530 K=K+l : HeK)=T<I) : REM - STORE UNAVERAGED VALUE IN H VECTOR
2540 GOTO 2640 ': REM - NExT I
2550 Kl=O : REM - COMPUTE SVMMETR1C E~EMENT INDEX
2560 FOR L=1 TO I
2570 FOR M=l TO N
2580 IF M(L THEN GOTO 2610
2590 Kl=Kl+1
2600 IF M=J AND L=I THEN GOTa 2630
2610 NEXT M
2620 NEXT L
2630 HCK1)=(HeKl)+T(I»/2 : REM - AVERAGE SYMMETRIC ELEMENTS
2640 NEXT I
2650 X(J)=X(J)-DS : REM - RESTORE TO NOMINAL
2660 NEXT J

L _

I--~
---------- - - -

C4-2 419

2670 FOR 1=1 TO N : 6(1)=£(1) : NEXT I : REM - RESTORE NOMlNAL
2600 RETURN
2690 REM * .
2700 REM - LDLT FACTORIZATION OF MATRIX IN SITU IN VECTOR H
2710 K5=1
2720 FOR 1=2 TO N
2730 IF H(KS»O THEN GOTO 2760
2740 PRiNT .. HESSIAN MADE P.O."
2?C~ H(K5l=.OOOOOl REM - FORCE POSITIVE DEFINITENESS
276Q Z=H(K5l
2770 K5==KS+1
2780 Il'=t<5
2790 FOR J=I TO N
2800 Z~(K5)

2910 H(k5)=H(K5)/Z
2B2O JS"=f(5
2B3O 15=I1
2840 FOR K=I TO J
2850 J5=.J5+N+ l-K
2860 H(JS)=H(J5)-H(IS)*Z5
2870 15:15+1
2BBO NEXT K
21190 K5=1<5+1
2900 NEXT J
2910 NEXT I
2"7.ZO IF H{K:n<==o THEN GOTO ~40

2930 RETURN
2'l40 PRINT .. HESSIAN I1ADE PO_D."
2950 HU(S)=.OOOOOI : REt1 - FORCE POSITIVE DEFINITENESS
?>bO RETURN
2970 REM ..
2990 REIf - SOLUTION E=Inv(H)E FOR NEWTON STEP
2990 FOR 1=2 TO N
3000 14=1
3010 V=:£(l)

3020 FOR J=l TO [-1
3030 V=Y-tH 14H£ (J)

3040 14=I4....N-J
3050 NEXT J
3060 En)=\,'
3070 NEXT I
3080 E(N)=E(N)/H(!4)
3090 FOR K=2 TO N
3100 I=N+l--t<
3110 I1=I4-K
3120 V==E(U/H(llJ
3130 14=11
3140 FOR J=I+l TO N
3150 11=11+1
3160 V~V-H(I1)-e(J)

3170 NEXT J
3180 E(I)""V
3190 NEXT f<
3200 RETURN
3210 END

7 REI'l - ROSENBROCKS FUNCTION IN TWO-SPACE -IC4-2\'RQSEN'
5O()0 REM _ ...

5010 REI1 - R05ENBROCK BANANA F1..JNCTION - OBJECTIVE
5020 F""100.CX(2)-X<1)*X<I»A2+<I-XCl"A2
5030 RETURN
7000 REI't .
7010 REI't - ROSENBROO< BANANA FUNCTION - GRAD tENT
7020 G(I)""-400.(X(1).X(2)-X(1)~3l-2.(I-X(lll

7030 G(2l""200*(X(2)-X(1).X(1)l
7040 RETURN

420 Program Luting>

7 REM - WOODS FUNCTION IN FOUR-SPACE -IC4-~1 'WOODS'
5000 REM **************************************
5010 REM - WOOD'S FUNCTION
5020 F~100*(X(2)-X(1)A2)A2+(1-X(1,)A2+90*(X(4)-X(3)A2)A2

+(1-X(3j)A2+10.1*«X(2)-1)A2+(X(4)-1)A2~+19.8*(X(2)-1)+(X(4)-1)

5030 RETURN
7000 REM *******************~*******************
7010 REM - GRADIENT Qr WOOD'S FUNCTION
70206(1):-400*X(1)+<X(Z)-XCl)AZ)-2*<1-XCl)}
7('30 G (2) =200* ex (2) -x (1) 2) +20. 2* ex (2) -1) +19. 8* (X (4) -1)
7040 G(3)=-360*X(3>+(X<4)-X(3I A Z)-2*(1-X(3')
7050 G(4)=180*(X(4)-X(3)~2)+20.2*(X(4)-1)+19.8*(X(2)-1)

7060 RETURN

5 REM - 8512100909. COPYRIGHT T.R.CUTHBERT. 19a5.
7 REM - ADDS TO NEWTON - SIMPLE BOUNDS ON VARIABLES - PRGMIC4-4I 'NBOUNDS

325 DIM L5(30) ,P5<30,2) : REM - THE SET ON/OFF AND LOWER/UPPER ARRAYS
335 N;30 : SOSUB 3210 : REM - UNBOUND ALL POSSIBLE VARIABLES
99q CLS : K2=0 : L6=0 : REM - INIT FNCN COUNT L BINDINB BOUND(S) FLAB
1050 PRINT ~5. SEE L/OR RESET LOWER/UPPER BOUNDS ON VARIABLES"
1140 ON K BOSUB 1210,1300,1450,1420,3320
1635 IF L6<>0 THEN GOTO 1700 I REM - FORCE CAUCHY IF BOUNDS ARE BINDINB
1820 BOSUB 3515 : REM - CHECKISET BINDING BOUNDS IN STEPS IN E()
1825 FOR 1;1 TO N : X(I);X(I)~E(I) : NEXT I
lBaO M;M+l : IF M<ll THEN GOTO 1825 : REM - TRY FEASIBLE CUTBACK STEP
3210 REM•••••••••••••••••••••••••••••••••••••••
3220 REM - INIT FLAGS AND LOWERIUPPER BOUNDS
3225 16;0 : REM - CLEAR THE 'BINDING BOUND<S)' FLAG
3230 JR 1;1 TO N : LS(I)=O
3240 P5(I,I);-10000 : P5(I,Z)=+10QOO
3250 NEXT I
3260 RETURN33QO REM. •• ._.__••••_••_••• •••_.__._.__

3310 REM - SEE OR RESET LOWER/UPPER BOUND ON VARIABLES
3320S4J:="NONE. PRINT "BOUNDS NOW SET ARE:"
3330 PR I NT " I . LOWER UPPER"
3340 FOR 1;1 TO 30
3350 IF L5(I);0 THEN GOTO 3370
336054$="" : PRINT I;" "; PRINT USING S6$;P5n,l)jP'5(I,2)
3370 NEXT I
3380 PRINT S4$;"SET DR RESET ANY BOUNDS (YIN)"; ; INPUT 54$
3390 IF 54$(>"Y" THEN RETURN
3400 REM - RE-ENTRY FOR MORE BOUND SETTING
3""10 PRINT "ENTER 0 TO RETURN TQ MENU .. ELSE ENTER VARIABL.E .. ;";
3420 INPUT I : IF 1=0 THEN RETURN
3430 PRINT "PRESS <RETURN> IF NO BOUND DESIRED"
3440 PR1NT LOWER BOUND ="; ~ INPUT 54$
3450 P5(I,I);-10000 : IF 84$<>"" THEN PS(I.;I);VAL(S4$)
3""55 IF 54$<>'''' THEN L5(O=1
3460 PRINT" UPPER BOUND ="; : INPUT 54$
3470 P5(1,2)=+10000 : IF S"":f<>"" THEN P5<I,2)=VAL(S4$)
3475 IF 54$<>"" THEN L5(IJ=1
3480 GOTO 34103500 REM._. ._••• ••••• ••_*. • ••*.
3510 REM - CHECK BOUNDS AND RESET STEP IN E(l IF BINDING
3515 L6=O : REM - CLEAR THE "BINDING BOUND(S)" FLAG
3520 FOR 1=1 TO N
3530 IF L5tI);O THEN GOTO 3560
3540 IF eXCI)+E<I»)<PS(I,l) THEN L6=1
35""5 IF (X(I)+E(!»)<P5(I,I) THEN E(I)=PS(I.1)-X(I)
3550 IF (X(I)+E(I»>P5(I.2) THEN L6=1
3555 IF (XCI)+ECI»)>PS(I,Z) THEN E(I);PS(I,2)-XCIl
3560 NEXT I
3570 RETURN
3580 END

1--- - ---_.

01-5 421

List of Variable Names Used in Program C4-S: LEASTP

A() FI 17 L7 S$
C2 F2 J M SO
C3 FNACS() 11 Ml 54$
D() G() J5 M3 S6$
DI GI K M7 V
D2 H() K2 N V5
D5 I K5 N$ XO
E() 11 K7 N5 Z
£1 14 L PI Z5
F 15 Ll R()

10 REM - LEASTP OPTIMIZER - PROBRAt1!C4-5I'LEASTP'
20 OPTION BASE 1 : REM - NO SUBSCRIPT 0
30 CLS : KEY OFF; 1"17=0 ; REM - DEFAULT NUMBER OF SAMPLE DATA
40 PRINT "*****.*** LEASTP OPTIMIZER **....*.....****.... : PRINT
50 PRINT "NOTES;"
60 PRINT "1. USE ONLY UPPER CASE LETTERS"
70 PRINT "2. IF "BREAK' OCCURS, RESTART WITH 'GOTO 999'"
80 PRINT "3. USER MUST PROVIDE SUBROUTINE 5000 FOR RESIDUALS,"
90 PRINT SUBROUTINE 7000 FOR THE JACOBIAN MATRIX, AND"
95 PRINT SAMPLE DATA IN LINES 400-600 IF REQUIRED"
100 PRINT "4. ENTER DEFAULT ANSWERS TO QUESTIONS BY <RETURN>."
110 PRINT
130 REM - USE OF MAJOR VARIABLES AS FOLLOWS -
140 REM At,> JACOBIAN MATRIX. A(K,J) IS DERIV OF Kth RESIDUAL
142 REM WITH RESPECT TO Jth VARIABLE. IS DIM MxN.
144 REM D() VECTOR FOR LM DIAGONAL SCALING MATRIX.
146 REM 01 DETERMINANT OF LDLT FACTORIZATION.
148 REM E() SEARCH STEP VECTOR.
150 REM F HALF THE SUM OF Pth POWER RESIDUALS.
152 REM Fl SAVED VALUE OF F FOR DOWNHILL COMPARISON.
154 REM FNACS INVERSE COSINE FUNCTION
156 REM G() GRADIENT OF F.
158 REM 61 LENGTH OF GRADIENT.
160 REM H() VECTOR STORAGE OF APPROXIMATE HESSIAN MATRIX.
162 REM K2 COUNT OF NUMBER OF F EVALUATrONS.
164 REM K7 EXPONENT P - POWER TO WHiCH RESIDUALS RAISED.
166 REM L7 ITERATION COUNTER.
168 REM M NUMBER OF DATA SAMPLES.
170 REM 1'13 NUMBER OF DATA SAl'tPLES READ IN I="RDI1 DATA STATEMENTS.
172 REM N NUMBNER OF VARIABLES.
174 REM Rf) RESIDUALS, DIM M.
176 REM S<,) SAMPLES 5<1,1) IS INDEPENDENT lit 5<1,2) IS DEPENDENT.
178 REM V LEVENBERG-MARQUARDT flM) PARAMETER.
180 REM X() VARIABLES VECTOR, DIM N.
240 OEFOBL A-H.Q-Z : REM - NOTE THAT P IS SNGl PRECISION
250 OEFINT I-N
270 56$=" # ..
280 DEF FNACSfX)=1.570796-ATN(X/SQR(1-X*Xl) : REM - ARC CDS
290 1"11=50 : El=.OOOl : 17=1 : Ll=O : 1"13=0 : V=.OOl# ; REM - INIT PARAM5
300 REM - ~OLLOWING DIMENSIONS ARE FOR N<=20. THE HESSIAN VECTOR
310 REM H() MUST BE DIMENSIONED N*(N+l)/2. # SAMPLES 1"1<=40.
320 DIM X(20),G(20),HC210) ,E(20),A(40,20),S(40,2) ,0(20) ,R(40l
330 REM - HESSIAN H(.) STORED AS AS VECTOR; SEE EQUATION (4.1.14)
340 READ N$; PRINT "WORKING WITH DATA SET ";N$: PRINT
350 READ M7 : REM - 1"17 SHOULD EQUAL 1"1 SET BY USER IN SUBROUTINE 5000
360 FOR K=l TO 1"17 : READ S(K,l) ; NEXT K

370 FOR K=l TO M7 : READ S{K,2) : NEXT K
375 BOTO 1160 ~ REM - TO MENU t. SELECTION
380 REM - SAMPLE DATA WILL BE EKPLOYED BY USER IN SUBROUT lNE 5000
390 REM - ENTER FOUR DATA STATEMENTS FOR SAMPLE PAIRS AS FOLLOWS
400 DATA "Dl.II'1t'tY" :. RE/'t - THE NAI1E OF THE DATA SET
410 DATA 5 : REM - THE NUt'lBER OF SAMPLE PAIRS <=40
420 DATA 1. 2 • 3 , 4 • 5 REM - THE INDEPENDENT DATA VALUES
430 DATA 1.1,2.2,3.3,4.4,5.5 : REM - THE DEPENDENT DATA VALUES
990 REM - RE-ENTRY FOR INVALID COI'1I"IAND NUMBERS l!< CONTINl,.IING
999 CLS : K2=O :. REI't - INIT FlINCTICIN EVALUATION COUNTER
1000 PRINT ".............. CIJI'1I'IAND I'1ENU
1010 PRINT "1. ENTER STARTING VARIABL£S (AT LEAST ONCE)"
1020 PRINT "2. REVISE CONTROL PARAl'lETER$ (OPTIONAU"
1030 PRINT "3. START OPTIrtIZATIDN-
1040 PRINT "4. EXIT (RESl..II1E WITH 'BOTO 999') "
10'50 PRINT "5. SPARE"
1060 PRINT "0. DISPLAY DATA PAIRS"
1070 PRINT......_**.............,...........,••~.~.H.H.~.~......*............
1080 PRINT" INPUT COI'U'IAND NlII'IBER:"; : INPUT S$
1090 K=LEN<$$) :. IF K=O THEN SOTa ~ :. REf1 - AVOID <CR>
1100 K=ASC (5$)

1110 IF K<48 OR K>57 THEN 6OTO CJ<I9 : REI'1 - 1ST CHAR MUST BE 0--9
1120 K=VAL <5$)
1130 IF K=O THEN K=" 15 : REJ'I - At.TERNATIVE DISPLAY Nt..JKBERS
1140 IF K>20 THEN 6OTO 999 :. ~ - CAN'T EXCEED I'lENU O'S
11:50 ON K 60SLJB 1220,1290,1420,l::S90, 999,3000
1160 PRINT "PRESS <RETURN> KEY TO CONTINUE - READY";
1170 INPUT 54$
1180 IF 54$()·..• THEN BEEP :. REM - (RETURN> BEFORE NEXT om NUt'lBER
1190 GOTO 999
1200 RE,.,..... _ ~ ...
1210 REM - ENTER VARIABLES
1220 PRINT"NUtmER OF VARIABLES = "; , INPUT N
1230 PRINT "ENTER STARTING VARIABLES X (J):"

1240 FOR 1=1 TO N
1250 PRINT" X<";I;"'=";: INPUT XCI)
l2bO NEXT I
1270 RETURN
1280 REM * *•••~.
1290 REM - REVISE CONTROL PARAMETERS
1300 PRINT "MAXIMUM # OF ITERATIONS tDEFAULT=50): "; : INPUT 54$
1310 Ml=50 : IF 54$<>"" THEN 111=VALCS4$)
1320 PRINT "STOPPING CRITERION CDEFAULT=~OOOl):"; : INPUT 54$
1330 E1=.OOOl : IF S4$<)~" THEN El=VAL(S4$)
1340 PRINT "PRINT EVERY Ith ITERATION (DEFAULT=I):"; : INPUT 54$
1350 17=1 : IF 54$()"- THEN 17=VAL(S4$)
1360 RETURN
1370 REM *••*•••*••**••*••* ..
1380 REM - NORMAL STOP
1390 KEY ON , PRINT "END OF RUN" -: END
1400 REM *.** .
1410 REM - MAIN OPTIMIZATION ALGORITHM - SEE CHAPTER FOUR
1420 IF N>O THEN GOTO 1450
1430 PRINT "--- NUI'1BER OF VARIABLES N NOT SET; USE COt1l1AND #1
1440 RETURN
1450 PRINT "EXPONENT P <2,4,6,8, OR 10) - • : INPUT K7
1400 FOR 1=1 TO M : REM - NULL A(I,J) JACOBIAN MATRIX
1470 FOR J=1 TO N
1480 A(I,J)=O
1490 NEXT J
1500 NEXT 1
1510 GOSUB 5000 : REM - FIRST CALC OF RESIDUALS
1520 PRINT "USER SET NUMBER OF sAt1PLES '" =" ;t1;" IN SUBROUTINE 5000"
15"30 PRINT IS THIS CONSISTENT WITH THIS PROBLEM (YIN)";
1540 INPUT S4$: IF S4$=-N" THEN RETURN
1550 K2=K2+1 :. REI1 - INCRE F E\lAL COUNT
1560 IF Lt=O THEN SOTO 1S80 : REI1 - NO FAILURE IN RESIDUALS SUBROUTINE
1570 PRINT "SUBROUTINE 5000 UNABLE TO CDPtPUTE.. : RETURN

.-- ---_.-------- - - ---- - - ----------- - - -

C4-S 413

1580 F=O : REM - CALC FIRST Sl.JI1 pth RESIDUALS
1590 FOR K=t TO ,., : F"=F+R (KjK7 : NEXT K: F"=F/0
1600 SOSUB 7000 : REJ1 - CALC FIRST JACOBIAN
1bl0 GOSUB 2bOO : REJ't - CALC/STORE IIIIlRNAl. MATRIX IN H{)
Ib20 REI"! PUT NDRI'tALlZED SCALING FACTl:mS INTO D ()
1630 L=O D2=<>0
1640 FOR J=l TO N
1650 FOR 1=1 TO N
1660 IF 1<.1 THEN GOTO 1690
1670 L=L+l
1680 IF I=J THEN D(JJ='HCLJ
1690 NEXT I
1700 IF D<J)(=O THEN D(J)=1
1710 D2=D2+D(J)*D<JJ
1720 NEXT J
1730 D2=SQR (02)
1740 FOR .1=1 TO N ; D(JJ=D(J)/D2 : NEXT J : REM - NORf'tALIZE
1750 BDSUB 2750 : REJ't - CALC GRADIENT G () AND LENGTH 61
1760 REM - COMPARE GRADIENT TO FINITE DIFFERENCES
1770 PRINT "GRADIENT VIA SUB7000 VIA DIFFERENCES"
1780 FOR .11=1 TO N
1790 D5=.OOOl_*ABS(X(JIJJ : IF D5<.000001# THEN D5=.000001.
1800 X(J1J:l:'X(JU+DS : GDSUB 5000 : REf'{ - PERTURBED RESIDUALS
lal0 F2=O : FOR 1=1 TO '" : F2=F2+R<I)AK7 : NEXT I : F2=F2/K7
1820 PRINT USING" ###••#.0-#######";G(Jl).<F2-F)/D5
1830 X(Jl)=X(Jl)-D5
1840 NEXT J1
1850 PRINT "PRESS <RETURN> KEY TO CONTINUE - REA.DY"; INPUT 54$
1860 L7=0 : REM - INIT ITERATION COUNT
1670 REM * ** .
la80 REM - RE-ENTRY POINT FOR NtW ITERATION
1890 L7=L7+1 : Fl==F : REM - INCRE ITER COUNT 8,. SAVE LAST F VALUE
1900 IF M3==0 THEN V~V/I0 : REM - LAST STEP WAS A GOOD ONE SO REDUCE V
1910 IF V<lD-20 THEN V~lD-20 : REM - V~O NOT ALLOWED
1920 IF M3<>O THEN V=10*V : REM - LAST STEP REQ<D CUTBACK. SO INCREASE V
1930 M3=0 : REM - CLEAR CUTBACK COUNTER
1940 IF L7=1 THEN GOTO 1980 : REM - ELSE CALC GRADIENT
1950 BOSUS 7000 REM GET JACOBeAN
1960 GDSUB 2750 REM - CALC GRADIENT
1970 GOSUB 2600 REM - CALC/STORE NORMAL MATRIX INTO H()
1980 IF (L7-1) MOD 17)=0 THEN GOSUB 2500 : REM - RPT F.X. ~ G
1990 sosue 2870 REM - ADD LM PARAM TO H()
2000 GOSUB 3110 : REM - FACTOR (H+~Dl=LDLT IN SITU IN Ht)
2010 IF N5=O THEN 6OTO 2060 : REM - FACTORIZATION OK
2020 V=lOO"'V ; REM - INCREASE LM PARAI1 V
2030 GDSUB 2600 : REM - CALC/ST~E NORMAL MATRIX INTO H(,
2040 GOTO 1990 : REM - REVISE NORMAL MATRIX AND RE-FACTOR
2050 REM - SET RIGHTHAND SIDE ~ -G()
2060 FOR I~1 TO N : E(I):l:'-G(I) : NEXT I
2070 Gosue 3390 : REM - CALC STEP d~ IN E()
2QBO REM - CALC STEP-TO-GRADIENT DEGREES
2090 C2=O : C3""O
2100 FOR 1=1 TO N : C2=C2+S(l)*E(n = C3=C3+Ecn*'£(l) NEXT 1
2110 Pl=-c2/Gl/SQRCC3) : IF P1<1 THEN GOTO 2130
2120 P1=O : BOTO 2140 : REM - AVOID /0 IN ACS
2130 Pl=57.~S(P1)
2140 PRINT STEP-TD-GRADIENT DEGREES=";
2150 PRINT USING ,. ".#O#O-;Pl ,
2160 REI't - TAKE STEP WITH INCREl'IENT IN E (J
2170 FOR I~l TO N : X(!)=XCI)+E(!) : NEXT I
21ao GOSUB 5000 : REt1 - CALC RESIDUALS
2190 K2=t<2+1 : F=:> : REM - INCRE F EVAL CmJNT " CALC 5UJ'I, P"th RESIDUALS
2200 FOR K=1 TO 1'1 : F=F+fHKJK7 : NEXT K : F=F/K7
2210 IF F<Fl THEN GQTC 2270
2220 REf'(- SET BACK TO LAST TURNING POINT" CUTBACK dx
2230 FOR !=1 TO N : X(I)=X(I)-ECIJ : E<I'=£(1)/4 : NEXT I
2240 PRINT" CUT BACK STEP SIZE BY FACTOR OF 4 ######"
2250 1'13=M3+1 : IF ,.,3(11 THEN GOTO 2170 : REM - TRY CUTBACK STEP

424 Program Lis.iJItp

2260 PRINT "STEP SIZE TOO SMALL - TERMINATED" :: GaTO 2390
2270 IF L7<Ml THEN GOTO 2320 :: REM - NDT AT MAX ITERATIONS
2280 PRINT "~!!!! ~ ! ! ! ! ! ~ ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !"
2290 PRINT "STOPPED AT GIVEN UNIT Of";Mlj" ITERATIONS; RESULTS ARE:"
2300 L7~L7+1 :: GOTO 2370
2310 REM - TEST CQNVERGENCE OF BOTH F AND EACH X(!)
2320 IF ABS<FI-F)/(l+ABS(FI»>El THEN 60TO,1890
2330 FOR 1=1 TO N
2340 IF ABS(E(I»/(1+A6S<X(!»»El THEN GOTO 189Q
2350 NEXT I
2360 L7=L7+l : PRINT "CONVERGED: SOLUTION IS:"
2370 Bosue 7000 REM - GET JAC08IAN
2380 Gosue 2750 : REM - GET GRADIANT
2390 sosue 2500 : REM - REPORT FfX, ~ G AT STOPPING POINT
2400 PRINT "PRESS <RETURN> KEY TO CONTINUE -- READY"; : INPUT 54$
2410 K::Q :: PRINT "RESIDUALS ARE;"
2420 FOR 1=1 TO M ; PR1NT I,R(I) : REM - PRINT RESIDUALS
2430 IF 1<21 DR K~1 THEN GOTO 2460
2440 PRINT "PRESS <RETURN> KEY TO CONTINUE -- READY"; : INPUT 54$
2450 K=l : REM - DON"T PAUSE FOR 2ND HALF OF DISPLAY
2460 NEXT I
2470 PRINT "TOTAL NUMBER OF FUNCTION EVALUATIONS =";1<2
2480 PRINT "EXPONENT P """;K7
2490 RETURN
2500 REM *******************.***••••* •••••••
2510 REM - PRINT FUNCTION, VARIABLES, AND GRADIENT
2520 PRINT "AT START OF ITERATION NUMBER"; L7
2530 PI==F : PRINT FUNCTION VALUE """;Pl
2540 PRINT " I X(I) G (I) "
2550 FOR 1""1 TO N
2560 PRINT I; PRINT USING S6$;X(IJ ,G(I)
2570 NEXT I
2580 RETURN
2590 REM **************************************
2600 REM - CALC/STORE NORMAL MATRIX IN H{)
2610 FOR l=! TO N.(N+1)/2 : H(I)=O : NEXT I
2620 FOR K=l TO M
2630 L==O
2640 FaR J=l TO N
2650 FOR 1==1 TO N
2660 IF l{J THEN BOTO 2690
2670 L=L+l
2680 H(L)=H(L)+A(K,I).A(K,J)*R(K)A(K7-Z)
2690 NEXT I
2700 NEXT J
2710 NEXT K
2720 FOR L=l TO N~(N~lJ/2 1 H(L)=(K7-1)*H(L) : NEXT L
2730 RETURN
2740 REM*******.***.*•••****.****.*********.*.*
27~0 REM - CALC GRADIENT AND ITS LENGTH
2760 61=0
2770 FOR 1=1 TO N
2780 6(1)=0
2790 FOR K=l TO M
2800 G(I)=G(I)+A(K.I)*R(K)~(K7-1)

2810 NEXT K
282061=61+6(1)*6(1)
2830 NEXT I
2840 G1=SQR <G 1)

2850 RETURN
2860 REM**_*.***•••*******.******.******.******
2870 REM - ADD LM PARAM TO NORMAL MATRIX
2880 L=O : PRINT " LM PARAM V=";
2890 PRINT USING "##. #" ,,; V
2900 FOR J==l TO N
2910 FOR 1=1 TO N
2920 IF l(J THEN GOTD 2950
2930 L=::L+1

C4-S

2940 IF l=J THEN HtL)=H<L)+V*D(J)
2950 NEXT I
2960 NEXT J
2970 RETURN
2980 REM********.************.******.*.*~**.*****
2990 REM -.DISPLAY SAMPLE DATA FROM LINES 400
3000 PR I NT .. I I NDEPENDENT DEPENDENT"
3010 K=O
3020 FOR 1=1 TO M7
3030 PRINT I.; : PRINT USING " 4HH*###.#####~";5'1.1l_;S(J.2)

3040 IF 1<21 OR K~l THEN GOTo 3070
3050 PRINT "PRESS <RETURN> KEY TO CONTINUE -~ READY"; : INPUT 54$
3060 K=l : REM - DON'T PAUSE POR 2ND HALF OF DISPLAY
3070 NEXT I
3080 RETURN
3090 REM ***************.*.****.**********
3100 REM - LDLT FACTORIZATION OF MATRIX IN SITU IN VECTOR H
3110 K5=1 : 1'45=1 : 01=1 : REM - 1'45=1 NOT PO OR DET=Dl<lD~6

3120 FOR 1=2 TO N
3130 IF H<K5}>0 THEN GOTO 3150
3i40 GOTO 3340
3150 Z=H<KS) : Dl=Dl*H(K5)
3160 K5=K5+1
3170 I1=K5
3180 FOR J=I TO N
3190 Z5=H(K5)
3200 H(KS)=HCKS)ll
3210 J5=K5
3220 15:=11'
3230 FDA K=1 TO J
3240 J5""JS+N+ l-K
3250 HCJ5)=H(JS)-H(15)*Z5
3260 15=15+1
3270 NEXT K
3260 KS""K5+1
3290 NEXT J
3300 NEXT I
3310 Dl=Dl*H(K5) : IF D1>.0000000001# THEN N5=0
3320 IF N5=1 THEN BOTO 3340
3330 RETURN
3340 PAINT "HESSIAN NOT PO DR TOO SMALL DETERMINANT ot:"j

3350 PRINT USING .. ##.####""..........."''';01
3360 RETURN
3370 REM **
3380 REM - SOLUTION E=InvCH)E FOR SEARCH STEP
3390 FOR 1=~ TO N
3400 14=1
3410 V5=E<I)
3420 FOR J=1 TO I-I
3430 V5=V5-H(I4)*EIJ)
3440 I4=I4+N-J
3450 NEXT J
3460 E (1) =V5
3470 NEXT 1
3480 E(N)=EtN>!H(14>
3490 FOR K=2 TO N
3500 I=N+l-K
3510 Il-=14-K
3520 V5=E(Il!HCIl)
.3530 14=11
3540 FOR J=I+l TO N
3550 11"'11+1
3560 V5=V5-H(ll)*E(J)
-3570 NEXT J
3580 E (1) =V5
3590 NEXT K
3600 RETURN

425

-------_.- -

B REI't - ROSENJ3ROCK IN RESIDUAL FOR1"I (l/2'.F - PR6MtC4-6I'ROSENPTH'
5000~.........._*-.....*........_
5010 REt1 - ROSENBROD::: BANANA FUNCTION RESIDUALS
5020 """'2 ; Rat - THE NlJI'tBER OF SAHPLES - NO DATA REQUIRED IN THIS CASE
5030 Ll==O : REM - NO LOGS OR SQR INVOLVED HERE SO ALWAYS OK
5040 RO)::lO*(X(Z)-X(U*X(l»
5050 R(Z)=l-X(U
5060 RETURN
7000 REM .
7010 REt1 ROSENBROCK BANANA FUNCTION JACOBIAN
7020 A(191)~-20.X{1)

7030 A(Z,U==-l
7040 A<1,2'=10
7050 A(2,2)=O
7060 RETURN
707Q END

8 RErt - I3ENERAl. 6AUSS mJADRATURE COEFF-S YIA LEASTP.!C4-71·GAUSs·
SOOO~••* .

-------- - - - - - - -------

8 RKtI-OSJi: WIm LKASTP OPTIHIZIm. FOR SARGKSON PRDBLIH.JC4-81- 'SABGKSON'
325 DIH Y4(33).Y5(33) : RKH-SAVE~ SUBRSOOO fOB SOBH1000-ErrICIKHCY
4.00 DATA "SABGESQM"
410 DATA 33
420 DATA 0.10.20,30,40,50.60.70.80.90.100
430 DATA 110,120,130,140,150,160.170,180.190,200
440 DATA 210,220.230,240,250.260.270,280.290,300
~5C DATA 310.320
460 DATA .844,.908, .932,.938,.925 •. 908 •. 881 •. 850, .818 •. 784 •. 751
470 DATA .718 •. 685 •. 658, .628 •. 603,.580,.558,.538 •. 522 •. S06,. 490 •• 478
480 DATA. 467, .<157, .448,.438, .431, .424,.420, .414,.411, .406
5000 ~***.*******.**.*******.**.****.*******.
5010 RJ:M,-BESIDOALS roll SARGKSOM IN LOOTSMA 1972: 185. N=5 VARIABLES
5020 K=33 : REM - NDHBJm OF SAHPLE POINTS
5030 FOR 1:::1 TO H
5040 Y4(1)~EXP(-X(<I)*S(I.l})

5050 Y5(I)=KXP(-X(5)*S(I,I»

so.o
5020
5025
5030
5040
5000
5070
5OBO
SOqO
5'00
5.05
5110
5'20
5130
7000
7010
7015
7020
7040
70:50
7060
7070
7075
7080
7085
7090
70qs
7110
7120
7130

REM - RESIDUALS FOR GENERAL GAUSS
rt=N = REJ1 - 5AttE NlA'IBER OF SAt'lPLE5 AS VARI ABLES
Kl=t1'\2 : REH - NI.JI'mER OF PRODUCT TERI"tS
FOR K=l TO t1
RCK>""O
FOR J=l TO Kl
R(K)~(K)+2.X(2·J-[)·X(2·J'h(2.(K~1»

NEXT J
R(K)~(K)-2/(2*K-l)

IF t1=Z* (P1'\21 THEN GOTO 5120
IF K<>l THEN BOTO 5120
R (K>:oR CK) ...X UU
NEXT K
RETURN
RE"* • * •••••••·.* *
REM - JACOBIAN FOR GENERAL GAUSS
Kl=ot1\2
FOR K=l TO M
FOR J=l' TO Kl
ACK,Z*J-l)=2.XC2.J)A(2.(K-l»
A(K,2.J)=2*C2.(K-l»*X(2.J-l).X(2.J)~(2.(K-l)-1)

NEXT J
IF M=Z*CM\2) THEN GOTO 7095 : REM - M 15 EVEN

A(K,I"l)=O
IF K=l THEN ACK,M)=l
GOTO 7110

IF K=l THEN A(K,M)=O
NEXT K
RETURN
END

-_._--_._----------

CI-9

5060 R(I):X(1)+X(Z).Y4(I)+X(3)*Y5(I)-S(1.2)
5070 rmrr I
5080 Ll=D : REK - HOTBIRG TO BLDW UP HERE
5090 RETUIIH
7000 ~************.************.***********
7010 RDf-JAOOBIAR roB: SARGES01I PROBLDf-OSES T4() • Y5e) J"BOt S0BR5000
1020 Jnll 1=1 TO H
T030 4(1.1)=1
7040 A(I.2)=Y4(I)
7050 A(I.3)=T5(I)
706D A(r •.4):::-I(2)*S(I .1)*Y4('I)'
7070 A(I.5)=-X(3).sCI.I)*Y!i(I')
7080 REXT I
7090 RI!:TDBB
7100 ERD

4:l7

B REJ'I - USE WITH LEASTP OPTII"IIZER FOR QiEBVSHEV PROBl...Et1IC4-91- 0CHEBY'
400 DATA -QiEBY-
410 DATA 11
420 DATA O•• 1 •• 2~.3,.4,.5,.6,.7,.8,.9.1
430 DATA -1,0,0,0,0,0,0,0,0,0,0
5000~ _*_* .
5010 REM - RESIDUALS FOR CHEBYSHEV APf'ROXIJ'lATION (LEAST Pth). N=3.
5020 1"==11 : REI'I - NUI"IBER OF SAJ1PLE POINTS
5030 FOR 1=1 TO "
5040 Y=SCl,l)
5050 R(I'=-!+Y*Y*CX(l'+V*Y*CX(Z'+Y*Y*X(3J)) - 5(1.2J
SObO NEXT I
5070 Ll==O : REf'(- NOTHING TO BLOW uP HERE
5080 RET1JRN
7000 REft* ** _ .
7010 REl'I - JACOBtAN FOR CHEBYSHEV APPROXII1ATI[)N
7020 FOR 1~1 TO "
7030 V=SCI,l)
7040 ACI,I)=Y"V
7050 A(1,2)=Y.Y~(I,1)

7060 A(I,3)=Y"Y6A(I,Z)
7070 NEXT I
7080 RETURN
7090 END

Us! of Variable Names Used in Program C5-1: QNEWT

B() F GS() 17 Ml T
C2 Fl G6 J M3 TO
C3 F5 H() J5 N V
D2 F6 I K Pl V5
D3 FNACS() n K2 Q W()
D4 GO I2 K5 S$ X()
E() Gl 14 L S4$ 2
El 03 IS L7 S6$ Z2

25

10 REf' - QUASI--NEW1llN OPTI"IZER - PROGRAt'IIC5-11 'QNEWT"
20 IlPTIDH BASE 1 : REI'I - NO SlJ8SCRIPT 0
30 a...s : kEY IFF
-40 PRINT gJ£WT OPTIMIZER PRINT
50 PRINT "NOTES:"
6J:J PRINT "1. USE lJNL.., LIPPER CASE l.ETTEftS ..

428 Program Lis/mJl$

VECTOR

INPUT 54$

REM - ARC COS
INIT PARAMS

THE. HESSIAN

IF 'BREAK' OCCURS, RESTART WITH ·GOTO 999·"
USER MUST PROVIDE SUBROUTINE 5000 FOR FUNCTION VALUE"

AND SUBROUTINE 7000 FOR THE GRADIENT VECTOR."
ENTER DEFAULT ANSWERS TO QUESTIONS BY <RETURN>."

70 PRINT "2.
80 PRINT "3.
90 PRINT.
100 PRINT "4.
110 PRINT
120 REM - USE OF MAJOR VARIABLES AS FOLLOWS -
130 REM BC) VECTOR FOR RANK-l UPDATE OF HESSIAN MATRIX
140 REM 03 DELTA FNCN VALUE USED WITH LINQUAD & LINCUBIC
150 REM D4 DIFFERENCE BETWEEN CURRENT AND TURNING-POINT SLOPES
160 REM Ee) SEARCH DIRECTION VECTOR.
170 REM F OBJECTIVE FUNCTION VALUE USER COMPUTES IN SUB~OOO

180 REM F5 OBJECTIVE FUNCTION VALUE USED INTERNALLY
190 REM FNACS INVERSE COSINE FUNCTION
200 REM Be) GRADIENT OF F USER CONPUTES IN 5UB7000
210 REM 62 SLOPE AT CURRENT X POINT
220 REM 63 SLOPE AT TURNING FOINT
230 REM GSC) GRADIENT OF F USED INTERNALLY
240 REM H() VECTOR STORAGE OF APPROXIMATE HESSIAN MATRIX.
250 REM K2 COUNT OF NUMBER OF F EVALUATlONS.
260 REM L7 ITERATION COUNTER.
270 REM M3 NUMBER OF DATA SAMPLES READ IN FROM DATA STATEMENTS.
2BD REM N NUMBER OF VARIABLES.
290 REM g SCALAR COEFFICIENT IN RANK-1 UPDATE OF HESSIAN
300 REM T LINE SEARCH METRIC <VARIABLE)
310 REM T<) WORKING VECTOR USED IN VARIOUS WAYS
320 REM W() WORKING VECTOR USED IN VARIOUS WAYS
330 REM X<) VARIABLES VECTOR. DIM N.
340 DEFDBL A-H,Q-Z : REM - NOTE THAT P IS SNGL PRECISION
350 DEFINT I-N
360 56$""" :It.ttt:lt":It. :It:lt:lt:lt:lt#ft:lt"
370 DEF FNACS<X):1.570796-ATN<X/SOR<1-X*X»
38(1 Ml==50 : El=.OOOI : 17=1 : V=.OOl# : REM
390 REM - FOLLOWING DIMENSIONS ARE FOR N<=20.
400 REM H<) MUST BE DIMENSIONED N*<N+l)/2.
410 DIM X(20),G<20) ,H<ZlO),E<20),G5<20),W<ZO) ,T(ZO),B(ZO)
420 REM - HESSIAN H<.) STORED AS AS VECTORj SEE EQUATION (3.1.14)
430 GOTO 1150 : REM - TO MENU ~ SELECTION
990 REM - RE-ENTRY FOR INVALID COMMAND NUMBERS & CONTINUING
qqq CLS : K2:0 : REM - INIT FUNCTION EVALUATION COUNTER
1000 PRINT "************* COMMAND MENU ************"
1010 PRINT "1~ ENTER STARTING VARIABLES <AT LEAST ONCE)"
1020 PRINT "Z. REVISE CONTROL PARAMETERS <OPTIONAU"
1030 PRINT "3~ START OPTIMIZATION"
1040 PRINT "4. EXIT (RESUME WITH 'GOTO 999')"
1050 PRINT "5. SPARE"
1060 PRINT"*****....*.***************************....
1070 PRINT"INPUT COMMAND NUMBER:.";:INPUT S$
1080 K~LEN<S$) ; IF K=O THEN GOTO 999 : REM - AVOID <CR>
1090 K=ASC(S$I
1100 IF K<48 OR K>S7 THEN GOTO 999 : REM - 1ST CHAR MUST BE 0-9
1110 K=VAL(S$)
1120 IF K=O THEN K= 15 :. REM - ALTERNATIVE DISPLAY NUMBERS
1130 IF K>20 THEN 60TO 999 : REM - CAN·T EXCEED MENU .·S
1140 ON K GOSUB 1210,1280,1410,1380, 999
1150 PRINT "PRESS <RETURN> KEY TO CONTINUE -- READV";
1160 INPUT S4:f
1170 IF S4:S<> THEN BEEP: REM - <RETURN> BEFORE NEXT CMD NUMBER
1180 6OTO 999
1190 REM***************************************
1200 REM - ENTER VARIABLES
1210 PRINT"NUHBER OF VARIABLES = "; : INPUT N
1220 PRINT "ENTER STARTING VARIABLES X(I):."
1230 FOR 1=1 TO N
1240 PRINT" X<";I;")""";: INPUT XCI>
1250 NEXT I
1260 RETURN
1270 REM *********************************
1280 REM - REVISE CONTROL PARAMETERS
1290 PRINT "MAXlHUM. OF ITERATIONS <DEFAULT=50):";

C5-1 429

1300 Hl=50 : IF 54$<)"" THEN Ml=VAL (54$)

1310 PRINT -"STOPPIN5 CRITERION (DEFAUL T=. 0001):"; = INPUT 54$
1320 El=.OOOI : IF 54$<}"" THEN El=VAL(S4$)
1330 PRINT "PRINT EVERY Ith ITERATION !DEFAULT=l);"; : INPUT 54$
1340 17=1 ; IF 54$<>"" THEN I7=VAL<S4$:)
1350 RETURN
1360 REM *.************.********************
1370 REM - NORMAL STOP
1380 KEY ON : PRINT "END OF RUN" ; END
1390 REM *.****************************.*****
1400 REM - MAIN OPTIMIZATION ALGORITHM - SEE CHAPTER FIVE
1410 IF N>O THEN GOTD 1433
1420 PRINT ,,----- NUMBER OF VARIABLES N NOT SET; USE COMMAND #1
1430 RETURN
1433 REM - INITIAL HESsiAN COULD BE MADE EXACT DR APPROXIMATE
1440 aOSUB 2860 REM - INITIALIZE HESSIAN IN H(.)
1450 Bosue 29ao ; REM - LDLT FACTORIZATION OF HESSIAN
1460 REM - FIND ~ SAVE MIN POSITIVE DIAB ELEMENT IN H
1470 12=N+l : D2=H< 1)
14BO FOR 1=2 TO N
14~O IF H(12»=D2 THEN GOTO 1510
1500 D2=H(IZ) : REM - THE MIN POSITIVE DIAGONAL ELEMENT
1510 12=12+N+I-1
1520 NEXT I
1530 IF 02>0 THEN GOTO 1550
1540 PRINT "STARTING HESSIAN NOT POSITIVE DEFINITE." : RETURN
1550 Gosun 5000 : K2=K2+1 : F5=F : REM - STARTING FUNCTION VALUE
1560 D3=.1.AB5<F) : REM - PREDICT lOr. FNCN REDUCTION ON ITER #1
1570 L7=O : REM INITIALIZE ITERATION COUNTER
1572 G05UB 7000 : REM - CALC GRAOlENT VECTOR
1574 FOR 1=1 TO N : 65(1)=G(I) : NEXT I
15BO L7=L7+1 : REM ~ Rf:-ENTRV POINT FOR lTERATION LOOP
1600 IF «L7-1) MOD 17)=0 THEN GOSUS 2770 : REM - REPORT F, X AND G
1610 FOR 1=1 TO N : E<lj=-G5(rl : NEXT I : REM - RHS OF NEWTON EQUATION
1620 GOSUS 3260 : REM - SOLVE FOR SEARCH DIRECTION VECTOR
1630 GOSUB 2480 1 REM - PRINT STEP-TO-GRADIENT DEGREES
1640 RE"*••*••*..***** **.*** .
1650 REf1 - BEGIN LINE SEARCH USING ONLY CUTBACKS
1660 RE" - CALC SLOPE AT TURNING POINT
1670 63=0
1680 FOR 1=1 TO N
1690 63=G3+G5(1).E<I)
1700 T<I)=65<1) : REM - SAVE GRADIENT AT TURNING POINT
1710 W<I)=X(I) I REM - SAVE TURNING POINT
1720 NEXT I
1730 IF G3(0 THEN GOTO 1750
1740 PRINT "pas SLOPE @ TURNING POINT STARTING ITER #";L7 : 60TO 2700
1750 M3=0 : T=l : REM - INITIAL COUNTER ~ STEP METRIC
1760 ~EM - RE-ENTRY IN LINE SEARCH USING ONLY CUTBACKS
1770 FOR 1=1 TO N : X<l)=W<I)+T*E(I) : NEXT I : REM - STEP
1780 GOSUB 5000 : K2=K2+1 : Fl=F : REM - TRIAL FNCN
1790 IF Fl>=F5 THEN GoTO 1810 : REM - CUT BACK STEP SIZE
1800 F5=Fl : GOTo 2610 : RE" - TEST FOR TERMINATION
1810 M3=1'13+1 : REM - INCREMENT CUTBACK COUNT
1820 IF M3<11 THEN GOTO 1850
1830 FOR 1=1 TO N : X(I)=WCI) : NEXT I : REM SET X AT TURNING POINT
1840 PRINT " STEP SIZE TOO SHALL - TERMINATED" : GOTO 2710
1850 T=T/4
1860 PRINT" tUt#.'. CUT BACK STEP SIZE BY FACTOR OF 4 ##......
1870 GOTO 1770 : REM - TRY REDUCED STEP
2300 REM_•••••••••••••••*••••••••••••••••••••••••**
2310 REM - BEGIN TWO RANK-ONE UPDATES USING BFGS FORMULA
2320 GOSUB 7000 REM - NEW GRADIENT
2330 66=0 1 REM - CALC CURRENT SLOPE
2340 FOR 1=1 TO N : REM - LAST GRADIENT WAS SAVED IN T<I)
2350 W<I)=T(I) : G5(I)=G(I) : 66=66+65(1)*E<I)
2360 NEXT I
2370 D3=F6-F5 REM - NEW DIFFERENCE FOR IN IT STEP CALC
~3BO D4=66-63 REM - CURRENT SLOPE MINUS OLD SLOPE

430 Ph""um Listings

2390 IF 04<0 THEN GOTD 1580 : REM - START NEXT ITERATION
2400 FOR 1=1 TO N : BCI)=G5(I)-WCI> : NEXT I ; REM - SRADIANT DIFF
2410 (;1:11 n*D4J REI"I = OCAL.AR I'IlJLTIPLIER IN FIRST RANK-t UPDATE
2420 GOSUB 3520 REM - PERFORf'1 FIRST BFBS RANK-l UPDATE
2430 FOR 1:1 TO N : 8(1J=W(I) : NEXT I : REM - VECTOR FOR 2ND UPDATE
2440 Q=1/63 : RE/"'I - SCALAR MULTIPLIER IN 2ND RANK-l UPDATE
2450 GOSUB 3520 : REM - PERFORtt SECOND BFGS RANK-l UPDATE
2460 GOTO 1580 ; REM - START NEXT ITERATION
2470 REM* ** .
2480 REM - CALC STEP-TD-GRADIENT DEGREES
2490 C2=O : C3=O : 61:o<Q
2500 FOR 1=1 TO N
Z510 C2~2+G(I)*E(I) ; C3=C3+E(I>.E(I) 61=61+6(1)*6(1>
2520 NEXT I
2525 IF (:3==0 OR 83=0 THEN RETURN : REM AVOID DIVISION BY ZERO .
2530 Pl=-C2/SQR<C3*Sl) : IF Pl(l THEN BOTO 2550
2540 Pl=O ; seTa 2500 : REI'1 - AVOID 10 IN ACS
2550 PI=57 ~ 2957B*FNACS (P1)
2500 PRINT .. 5TEP-TO~GRADIENT DEGREES=";
2570 PRINT USING ;Pl
2580 RETURN
2590~
2600 REI'I - TEST FOR TERl'tINATION
2610 IF L7<PlI THEN GOTD 26bO : REI'I - NOT AT I'fAX ITERATIONS
2b2O PRINT "!!!!!!!!.!!!!!!!!!!!!!!!!!!!!!!!"
2630 PRINT "STOPPED AT· GIVEN LIPIIT OF"; Pll;" ITERATIONS; RESULT5 ARE:"
2640 L7=t..7+1 : GOTO 2710
2650 REPI - TEST CONVEREiENCE OF BOTH F AND EACH X CI)
2660 IF ABSCFI--F)I"U+ABSCFU)>El THEN EiOTO 2320
2670 FOR 1=1 TO N
2680 IF ABSCT.ECI))I"Cl+AB5CXCI))))El THEN BOTO 2320
2690 NEXT I
2700 L7=L7+1 : PRINT "CONVERGED; SOLUTION IS:"
2710 60SUB 5000 FS=F: R8'I - GET FUNCTION VALUE
2720 60SUB 7000 : REI1 - BET GRADIANT
2~ 60SUB 2780 : REI1 - REPORT F,X, &l Ii AT STOPPINB POINT
2740 PRINT "TOTAL Nl.mBER OF FUNCTION EVALUATIONS ="; K2
2750 RETURN
2760 REM
2770 REI1 - PRINT FUNCTION, VARIABLES, AND GRADIENT
2700 PRINT "AT START OF ITERATION NI..JI'1BER";L7
2790 Pl=F5 PRINT FUNCTION VALUE =";Pl
2800 PRINT Of I XCI) 6(1)"
2810 FOR 1=1 TO·N
2820 PRINT I; PRINT USING S6S;XCIJ,6CI)
2830 NEXT I
2640 RETURN
2850 REM .
2860 REl'I - STORE UNIT MATRIX IN H ()
2870 L=O
2880 FOR J=1 TO N
2690 FOR 1=1 TO N
2900 IF I <J THEN GOTO 2940
2910 L=L+l
2920 HCU==O
2930 IF I~J THEN HCL)=1
2940 NEXT I
2950 NEXT J
2960 RETURN
2970 REM *** .
2980 REPI - LDLT FACTORIZATION OF MATRIX IN SITU IN VECTOR H
2990K5=1
3000 FOR I =2 TO N
3010 IF HCK5»O THEN GOTO 3040
3020 PRINT .. HESSIAN MADE P. D."
3030 HCK)=.OOOOOI : REM - FORCE POSITVE DEFINITENESS
3040 22=HO:'S)
3050 K5=K5+ 1

1-- - -- ------- -- - -

C5-1 431

3ObO 11'*=5
3070 FOR J::! TO N
3080 Z5=:HCK5)
3090 HCKS)=H(KS)/Z2
3100 JS==K5
3110 15=:=11
3120 FOR K=l TO J
3130 J5=:=J5+N+t-K
3140 H(JS)=H(JS)-HcIS)*ZS
3150 J5==I5+1
3160 NEXT K
3170 K5=1C5+1
3180 NEXT J
3190 NEXT 1
3200 IF H (,K5> <==0 THEN SOTD 3220
3210 RE1\JRllI
3220 PRINT· HESSIAN I'tADE P.D.·
3230 H(K5)=.OOOOOl = ~. -- FORCE POSITIVE DEFINITENESS
3240 RETURN
~ REM ...
3240 REJ1 -- SOLUTION E=lnv(H)E FOR SEARCH STEP
3270 FOR 1=2 TO N
3280 14=1
3290 vs--e: (I)
3300 FOR J=1 TO I-I
3310 \15--\1'5-+1(14)*£(J)
3320 I4=I4+N-J
3330 NEXT J
3340 E (I)::V5

3350 fEXT 1
33bO E(N)=ECN)FH(!4)
33'70 FOR 1(.=2 TO N
3380 I~l-K

33~O Il==I4-K
3400 V5=ECI)/HeJl)
3410 14=11
3420 FOR .1"'1+1 TO N
3430 I1=I1+1
3440 V5=V5-H(Il>*E(J)
3450 NEXT J
3460 E(1)=\015
3470 NEXT K
34BO RtTlJRN
3490 RE"..... *** _ .
3500 REI'I - RANK 1 uPDATE OF H WITH QBBT
3510 RErI -- SOLN OF LV=Z FOR V BY FWI) SUDSTITUT ION
3520 T (1) =1:1< 1)

3S3O FOR I"" :z TO N
3540 14=1
3'550 Z=B(I)
3560 FOR J=1 TO I-I
3570 Z=I-HCI4)*Te,)
3580 I4=I4....N--J
3590 NEXT J
3600 T (I)::Z
3610 NEXT I
3620 REM - uPDATE £Iii IN H DIAGONAL L FILL E()
3630 14=1
3640 FOR 1=1 TO N
3650 Z=H(I4)+g.T(I)*T(I)
3660 IF Z<=O THEN GQTO 3830 REM - dii NEGATIVE
3670 H<I4)=Z
3680 ECI)=TCIJ*Q/Z
3690 Q=Q-E(I)*E(I)_Z
3700 14=I4+N+l-:-I
3710 NEXT I
3720 REI't - UPDATE L* LLhat
373q 14=1

432 Program Listings

3740 FOR 1=1 TO N-l
3750 14=14+1
3760 FOR J=I~l TO N
3770 B(J}~BtJ)-H(14)*T(I}

3780 HCI4)=H(I4)+ECI)*BIJ)
3790 14=14+1
3800 NEXT J
3810 NEXT I
3820 RETURN
3830 PRINT"H("; I; ") IS NEGATIVE - ABORT" : RETURN
3840 REM - END QF QUASI-NEWTON MINIMIZATION MAIN PROGRAM
3850 REM ••**••********************************

STEP=" ;

INTERPOLATE"

••••.•••••*.. ;1
REM - TEST FOR TERMINATION

ACCEPT STEP

STEP I1ETRIC
METRIC DOUBLED
NEXT I : REM -

1660 REM - LINE SEARCH, NO DERIYS & QUAD INTERP -I C5-Z I 'LINGUAD <

1670 REM - CALC SLape AT TURNING POINT
1&80 6:;3"'0
1690 FOR 1=1 TO N
1700 G3=G3+GSCI)*ECIJ
1710 T([)=G5CI) : REM - SAVE GRADIENT ~T TURNING POINT
1720 WCI)=XCIl = REM - SAVE REFERENCE POINT
1730 NEXT I
1740 IF 63<0 THEN GOTO 1760
1750 PRINT "PCS SLOPE @ TURNING POINT STARTING ITER tf";L7 : RETURN
1760 T=-Z*D3/G3 : REM - CALC INITIAL STEP METRIC
1770 IF T>1 THEN T-"1
1780 F6=F5 : T5=0 : 13=0 : REM - SAVE FNCN VALUE & IN IT ACCUM
1790 REM - RE-ENTRY IN LINE SEARCH WITHOUT DERIVATIVES
1800 FOR lEI TO N = X(Il=WCI)+T*E(I) = NEXT I = REM - STEP
1810 GOSUB 5000 ~ K2=K2+1 ; FIDF : REM - TRIAL FNCN AT UNIT METRIC STEP
1820 IF 13>2 THEN 60TO 1840 : REM - ALLOW ONLY 3 CONSECUTIVE INTERPOLATIONS
1830 IF F1)~F5 THEN 60TO 2010
1840 F2=FS
1850 T5=T5+T : REM - ACCUMULATE
1860 REM - RE-RENTRY AFTER STEP
1870 FOR 1=1 TO N = WCI)=X<!l :
1880 F5=F1
1890 IF 13>=1 THEN GOTD 2180 : REM - END LINE SEARCH
1900 FOR 1=1 TO N : XCI)=W(Il+T.ECI) NEXT I ; REM - STEP
1910 PRINT" REPEAT STEP"
1920 BOSUB 5000 : K2=K2+1 : Fl=F : REM - T~IAL FNCN
1930 IF F1>=F5 THEN GOTO 2170 : REM - EXIT EXTRAPOLATION
1940 REM - SET 13=2 IF N£~T EXTRAPOLATION MIGHT BOUND MINIMUM
1950 IF CcFl+F2)=fZ*Fl AND C7*Fl+S*FZ1)<IZ*FS) THEN 13=2
1960 T5=T5+T : REM - ACCUMULATE LINE METRIC
1970 T=2*. ~ REM - DOUBLE STEP SIZE <EXTRAPOLATE}
1980 f"R I NT .. DOUBLE STEP"
1990 GOTO 1870
2000 REM - ENTRY FOR INTERPOLATION AFTER UNIT STEP FAtLED
2010 T=T/2 : REM - CUT STEP SIZE IN HALF
2020 PRINT" HALVE STEP"
2030 FOR 1=1 TO N : XCI)=W{I)+T*ECI) : NEXT I : REM - STEP
2040 BOSUe 5000 : K2=K2+1 : F2=F : REM - FNCN EVALUATION
2050 IF F2 >= F5 THEN GOTO 2100 : REM - TO QUADRATIC INTERPOLATION
2060 T5=T5+T : REM - ACCUMULATE STEP METRIC
2070 F'5=F2
Z080 GOTO 2180 : REM - EXIT LINE SEARCH
2090 REM - CALCULATE QUADRATIC INTERPOLATION WITH LOWER BOUND
2100 Z=.1
2110 IF C(FI+FS»CZ*F2)) THEN Z=I+(F5-Ft)jIF5+FI-2*F2)/2
2120 IF Z<.I THEN Z=.l : REM - LOWER BOUND
;2130 PRINT "
2140 T=Z*T :~REM - INTERPOLATE ON STEP SIZE
2150 13=13+1 : REM - LIMIT TO 1 EXTRAPOLATION & 3 INTERPOLATIONS
2160 GOTO 1800 : REM - END INTERPOLATION
2170 FOR 1=1 1D N : X(I}=WII) : NEXT 1 : REM - MOVE BACK
2180 T=T5 ; REM - FINAL LINE-SEARCH METRIC
2190 PRINT"
220Q PRINT USING
2210 GOTO 2610

C5-3 433

REM - LINEAR EXTRAP aN SLOPE

RETURN

UP

SLaPE FAILED"

: NEXT I
INTERPOLATIONS

FNCN FAILED"

EXTRAPOLATE"

STEP=":;

- IF NOT, EXIT LINE SEARCH

: X(I)=X(I}-T*E(I) : NEXT I : REM - BACK
GOTO 1800 : REM - GET FNCN VALUE & EXIT

INTERPOLATE"
INTERPOLATION

1660 REM - LINE SEARCH USING DERIVS & CUBIC INTERP -lcs-31 'LINCUBIC'
1670 REM - CALC SLOPE AT TURNING POINT
1680 63=0
1690 FOR 1=1 TO N
1700 G3=G3+G5(ll*E(I)
1710 T(I);65<1) = REM - SAVE GRADIENT AT TURNING POINT
1720 W(I)=X(I) ; REM - SAVE TURNING POINT
1730 NEXT I
1740 IF 63{0 THEN GOTO 1760
1750 PRINT "pas SLOPE @ TURNING POINT STARTING ITER *";L7
1760 T=ABS(Z*03/G3) : REM - CALC INITIAL STEP METRIC
1770 IF T>1 THEN T=1
1780 62=63 : REM - SAVE SLOPE
1790 F6=F5 : T5=0 : 13=0 : REM - SAVE FNCN VAL, INrT ACCUN, SET FLAG
1800 REM - RE-ENTRY IN LINE SEARCH WITH DERIVATIVES
IBI0 FOR 1=1 TO N : xeJ)=XC!)+T*E(!) : NEXT I : REM - STEP
1820 aOsUB 5000 K2=K2+1: Fl=F ; REM - TRIAL FNCN
1830 BOSUB 7000 REM - GET GRADIENT
1840 66=0 : REM - GET SLOPE
1850 FOR 1=1 TO N : B6=G6+G<I}*E(I) 65<1}=G<I)
1860 IF 13>2 THEN GOTO 2130 : REM - ALLoW ONLY 3
1870 IF Fl>=F5 THEN PRINT"
1880 IF Fl>=F5 THEN GOTO 2010
1890 IF ABS(G6/G3}(=.9 THEN GOTO 2140
1900 IF G6>0 THEN PRINT"
1910 IF G6>0 THEN GOTO 2010
1920 PRINT "
1930 T5=T5+T
1940 Z=10
1950 IF (6Z(G6) THEN 1=66/(82-66)
1960 IF Z>10 THEN Z=10
1970 T=1*T
1980 F5=Fl
1990 62=66 : REM - UPDATE REFERENCE SLOPE
2000 GOTO 1800
2010 FOR 1=1 TO N
2020 IF 13>2 THEN
2030 PRINT "
2040 1=3*(F5-F1)/T+G6+G2 : REM - CUBIC
2050 Q=1*1-62*66
2060 IF Q)O THEN GOTO 2080 : REM
2070 13=3 : GOTO 1800
2080 Z3=SQR(Q)
2090 Z=1-(G6+Z3-Z) 1 (2*13+G6-G2l
2100 T=Z*T
2110 [3=13+1 : REM - COUNT INTERPOLATIONS
2120 GOTo 1800
2130 FOR 1=1 TO N : X(!)=W(I) : NEXT I : REM - SET X TO TURNING POINT
2140 T=T5+T
2150 F5=Fl
2160 PRINT U

2170 PRINT USING" ####.######";T
2180 GoTO 2610 : REM - TEST FOR TERMINATION

7 REM - FINITE DIFF GRADIENT FOR QNEWT -ICS-41 "QNEWTGRD"
7000 REM *************************************
7010 REM - FINITE DIFFERENCES FOR GRADIENT FOR QNEWT
7020 F9=F : REM - SAVE NOMINAL FUNCTION VALUE
7030 FOR 11=1 TO N : REM - CALC POS ~ERTURBATIONS

7040 OX=AB5<X(II~~/10000

7050 IF DX<.OOOOOI THEN DX = .000001 : REM - IF X NEARLY ZERO
7060 X<II)=X<II)+DX
7070 GOSUB 5000 : K2=K2+1 : REM - GET PERTURBED FUNCTION VALUE

J

434 Progrwn L#ting3

7080 G<II)=(F-F9)/DX : REM - FIRST-QRDER DIFFERENCE
7090 Xtll)=X(ll)-DX : ~ - RESTORE X(II) VALUE
7100 NEXT II
7110 F=PI : REt1 - RESTORE NDJ1INAL FNCN ...,ALUE
7120 RETURN

7 REM - CAJ1ELBACK FNCN, BRANNIN 1972 - PRGr'III:5-5I .CAI'IEL
5000 R£t1
5010 R£T1 - CAtELBACK Fl.JMCTION WITH PARA11ETERS A-E
50Z0 rl~-4:B=+2.1:C=-1/3:D=+4:E=-4

5030 U=X(1)"'X<l) :' xz.=X(Z)*X(Zl
5040 F=Xl.<A+Xl"'(B+Xl*C)}-X(I)*X(Z)+XZ*(O+X2*E)
5050 RETURN
7000 REM .
7010 REf1 - CAJ'lELBACK GRADIENT WITH PARAl'lETERS A-E
7020 G(1)=X(I) ... (2~+Xl.(4.B+Xl.6-e»-X(2}
7030 6(2)=-X(I)+X(2).(2.O+X2.4*E)
7040 RETURN

7 ~ - ADDS TO QNEWT - SII'IPLE BOUNDS ON VARIABLES - PRGr'IIC5-6! "BOXt'lIN"
415 01" L4(20) ,L5(20) ,P5(20,2) : Rat - CONSTRAINT AND BOl.INDS ARRAYS
425 SDSUB 2030 : Ref - l.INBOlWD ALL POSSIBLE YARIABLES
10:10 PRINT -5. SEE loIOR RESET LDWERIUF'PER BIJUNDS ON VAlUABLES
1140 ON K GOSUB 1210,,1280,1410,1380,,2090
1435 GOSUB~ : REt1 - RESET .. RECORD BINDING VARIABLES
lS7b FOR 1=1 TO N : L5U):;::() : NEXT I : Ret - UNBIND ALL CONSTRAINTS
1602 REt1 - RELEASE NON-f(-T CONSTRAINTS
1604 FOR 1=1 TO N
1606 IF L5(1)*6<I) >0 THEN LS(J)zQ
1608 NEXT 1
1610 FOR 1=1 TO N : REPt - PROJECT GRADIENT INTO FIXED SUBSPACE
161255(I)=G(I).CI-ABSCLS(I»)
1614 E (I) =--65 (I) : REI1 - RIGHTliAND SIDE OF NEWTON LlNEM EQUATIONS
1616 NEXT 1
Ib22 FOR 1=1 TO N : REf't - PROJECT SEARCH DIRECTION INTO SUBSPACE
1624 E(I)=E(I)*(I-ABS(L5<!»)
1626 NEXT I
1775 60SUB ISBO : REM - CHECK/SET ANY ADDITIONAL BOUNDS
1875 REM ..
1880 REJ'I' - CHECK FOR t1IJRE BOUNDS AND RESET STEP SIZE T IF BlNDIN6
1900 FOR 1=1 TO N
1905 IF E (I) =0 THEN SOTO 1990 : R8'I - TEST ONLV SUBSPACE BOUNDS
l<i'07 L5Cll=O : REI1 - CAMCEl.. BOUNDS, THEN RETEST l'HEt"l
1910 REM - PROCESS LOWER BOUNDS
1920 IF (W(I)+T*E(I»}CPSCI,I)+P2) THEN GDTO 1960
1940 X(I)=PS(1,,11
194::i L5(l)=-1 : REf'l - NOW AN ACTIVE CONSTRAINT
1948 PRINT" ACTIVATED X(";I;") LOWER BOUND"
1950 BOTO 1990 : REM - NO NEED TO PROCESS UPPER BOUNVS
1960 IF (WCI)+T4EtI»(P5(I,2) THEN GOTD 1990
1980 X(I)=P5(1,2)
198::i L5<Il=+l : ~ - NOW AN ACTIVE CONSTRAINT
1900 PRINT ... ACTIVATED X ("; I; .. , LJPPER BOlJND"
1990 NEXT I
2000 RETURN
2010 REt1** _ *....
2020 REM - INIT FLAGS AND LOWERIUPPER BOUNDS
2030 REI1 - CLEAR THE 'BINDING BOUND(S) " &: SET DEFAULT LIMITS
2040 FOR 1=1 TO 20 ; L4(1)=O : L~(I)=O

2050 P5(1,,1)=-10000 : PS(I,2'=+I0000
2060 NEXT I
2070 RETURN
2080 REt1
2090 REM - SEE OR RESET LOWER/UPPER BOUND ON VARI ABLES

C5-7 43S

2100 S4$;"NONE. PRINT "BOUNDS NOW SET ARE:"
2110 PRINT " I L.OWER uPPER"
2120 FOR I~l TO 20
2130 IF L4(I)=Q THEN GOTO 2150
2140 S4$;n~ : PRINT Ij" "; PRINT USING Sb$;P5(I.l);P5(I.2)
2150 NEXT 1
2100 PRINT 54$; "SET OR RESET ANY BOUNDS (VI'N) "; : INPUT 54$
2170 IF S4$(>"Y" THEN RETURN
2180 REM - RE-ENTRY FOR I"IOf(E BOUND SETTING
2190 PRINT "ENTER 0 TO RETURN TO MENU. ELSE ENTER VARIABLE. =";
2200 I NPUT I : IF I =0 THEN RETURN
2210 PRINT "PRESS <RETl..IRN> IF NO BIJl.JND DESIRED"
2220 PRINT LONER BOUND =="; : INPUT sq..
2230 P5(I.l)==-l0000 : IF 54$<>"" THEN PSU.l)=VALIS4$)
2240 IF 64$(>"· THEN L4(IJ==1
2250 PRINT" UPPER BOUND .en; : INPUT 54.
2260 PS(I.2)=+10000 : IF 54$<> THEN P5(I,2'=:VAL.(S4S)
2270 IF 54$<> THEN L4(I'==1
2280 BOTD 219Q
2350 N(!)=TCI) : 65Cll=GCIJ*Ct-ABSCL5(I») : G6=Gb+65(Z1*E<ll
3840 REM * .
3B5O REJ1 - RESET & RECORD BINDING VARIABLES
3BbO FOR 1=1 TO N
3870 REl'f - PROCESS LOWER BOUNDS
3880 IF XC!»P5CI.l) THEN GOlD 3920
3890 X(I1::F5CI,U : L5([)=-1
3900 PRINT "SET XC .. ; I; ") ="; X(1) ;" (L..OWER BOUND)"
3910 60TO 3950 : REM - NO NEED TO PROCESS UPPER BOUNDS
3920 IF X(I)(P5(I,2) THEN GOTO 3950
3930 XCI)=P5CI,2) : L5(1)=+1
3940 PRINT "SET X(";I;")=";X(J);" (UPPER BOUND)"
3950 NEXT I
3960 RETURN
3970 REM - END OF QUASI-NEWTON OPTIMIZER WITH BOXMIN CONSTRAINTS

7 REM - FNCN FOR QNEWT+BOXMIN+QNEWTGRO - PRGRMfC5-B 'PAVI7'
5000 REM - FNCN SUBROUTINE FROM QNEWT - FROM HIMMELBLAU P.416
5010 F=O : A3~1 = REM - INITIALIZE
5020 FOR I9~1 TO 10
5030 Al=LOB(X(I9)-2) = A2=LQG(10-X(I9» A3=A3*X(I9)
5040 F=F+Al*Al+A2*A2
5050 NEXT 19
5060 F=F-A3A (.2)
5070 RETURN
7000 REM ***************************************
7010 REM - GRADIENT FOR PAV17 FUNCTION
7020 FOR 19=1 TO N
7030 G(19)~2*(LOG(X(Iq)-2)/(X(I9)-2)-LOB(10-X(I9»/(lO-X(19»)

-.2*A3A (.2)/X(I9)
7040 NEXT 19
7050 RETURN

7 REM - ADDS TO QNEWT WITH BOXMIN - I1ULTIPL:::ER PENALTIES -IC5-s) 'I'IULTPEN

40 PRINT ·.-"••...-QNF.WT WITH BOX"IN AND I1ULTPEN************"
SO PRINT "3. USER I'fUST PROVIDE SUBRDUTINE 5500 FOR OBJECTIVE FNCN"
90 PR:rn " AND SUBROUTINE 7500 FOR ITS GRADIENT VECTOR."
105 PRINT "S. USER I'fUST SUPPLY SUBROUTINE aooo FOR CONSTRAINT FNCNS"
107 PRINT .. AND SUBROUTINE 9000 FOR CONSTRAINTS GRADIENTS"

436 Program Listings

ESTIMATE

CASECONSTR
MIN
OFFSET

EQUALITY
- CHOOSE
RESIDUAL

PENALTY LOOP COUNT
oADJUST SCHEME
THEN GOTO 4310

417 DIM C(30),A(ZO,30),U(30).U9(30) ,5(30) : REM - MAX OF 30 CONSTRAINTS
1030 PRINT "3. STARr BOUNDED OPTIMIZATION"
1052 PRINT "6. START CONSTRAINED oPTIMIZATION"
1140 ON K SOSUS 1210, 1280. 1410, 1380, 2090, 4000
1573 IF L8=! THEN SOSUS 4900 : REM - CHECK USER'S GRADIENT BY DIFF'S4000 REM__* ._._.__*_._. *_
4010 REM - START MULTIPLIER PENALTY FUNCTION METHOD
4020 PR INT "************.**************•••*'Ir.******".********••"
4040 11=0 • REM - INIT TOTAL NUMBER OF CONSTRAINTS TO CHECK USER
4045 C6=lE+20 : K7=O : REM - CONSTR CONVERGENCE CONSTANTS
4050 FOR 1=1 TO 30
4055 UCI)=O : REM INIT CONSTRAINT RESIDUAL OFFSET
4057 5(1)=1 : REM - FOR CALes AT LINE 4092
4060 FOR J=l TO N
4070 AeJ.Il=O : REM - IN!T CONSTRAINT JACOBIAN
4080 NEXT J
4090 NEXT I
4092 GOSUB 4700 REM - SET INlTIAL CONSTR RESIDUAL WEIGHTS
4095 L8~1 : REM - INIT PENALTY LOOP COUNT
4100 BOSUe 1400 ; REM - MIN F(X) FROM COLD START
4110 REM - RE-ENTRY FOR OUTER PENALTY LOOP
4120 PR I NT "************-'1-**-11-*********************************"'."
4122 BEEP
4125 GOSU6 4800 : REM - FINO MAX PNLTY MODULUS & EST I LAGR MULTIPLIERS
4130 PRINT "AFTER "; La; " PENALTY MINIMI ZATIONS,"
4140 PRINT THE MAX CONSTRAINT MODULUS #";1(8;" "'''iPS
4150 PRINT "CONTINUE PENALTY MINIMIZATIONS (YIN)"; : INPUT 64$
4160 IF S4$~"N" THEN RETURN
4170 L8=L8+1 : REM - INCREMENT
4180 REM - POWELL'S PARAMETtRS
4190 C7~C6 : C6=P8 ; IF C6>~C7

4200 IF K7=1 THEN GOTO 4460
4210 FOR 1=1 TO M ; REM - ADJUST ALL OFFSETS
4220 U9<I)=U(II : REM - SAVE OFFSETS
4230 C8=C(I)
4240 IF I<=Kl THEN GOTO 4260 : REM
4250 IF U{l)<C<l) THEN C8=Utl) : REM
4260 U(I)=U(I)-CB : REM - NEW CONSTR
4270 NEXT I
4280 K7=1 : REM - JUST RESET ALL OFFSETS
4290 Gosun 1460 : REM - MIN FCX> START'S WITH CURRENT HESSIAN
4300 GOTO 4120 : REM - CLOSE OUTER PENALTY LOOP
4310 ReM ~ DIVERGING CAS£
4320 C6=C7 : REM -USE PRIOR MAX ec) NORM
4330 IF k7=O THEN GOTO 4350
4340 FOR 1=1 TO M : UCI)=U9(1) : NEXT I REM - USE PRIOR OFFSETS
4350 REH - SELECTIVELY INCREASE WEIGHTS ON CONSTR RESIDUALS
4360 FOR 1=1 TO M
4370 C9=C (I>
4380 IF I<=Kl THEN GOTO 4410 : REM - EQUALITY GGNSTR
4390 IF C9<0 THEN GOTO 4410 : REM - BIND'S INEQUALITY CONSTR
4400 SOTO 4430 : REM - UNBINDING INEQUALITY CONSTRAINT
4410 IF AB8cC9>«C7/4> THEN GOTO 4430 : REM - WEIGHT IS OK
4420 5(1)=8(1)*10 : U(I)=UCI)/10 : REM - FORCE CONVERGENCE
4430 NEXT I
4440 K7=0 : GOTo 4290 : REM - TO START OF PENALTY LOOP
4450 REM - TEST FOR MIN CONVERGENCE RATE
4460 IF C6>(C7/4) THEN GOTO 4350 : REM - FORCE GREATER CONVERGENCE RATE
4470 60TO 4210 : REM - IS OK - ADJUST ALL OFFSETS
4700 REM••••*****.***•••**••••* ••__•
4705 REM - INIT PENALTY WEIGHTS SCI
4710 Bosue 5000: REM - CALC F(X> WITH 5(1)=1
4715 REM - C8=SUM C(I)~2 FROM SUBSOOO
4720 REM - F9= UNCONSTR'D OBJECTIVE FNCN VALUE
4725 REM - UCI)=O NOW
4730 REM CHANGE WEIGHTS ON BINDING CONSTRAINTS - LEAVE REST =1
4735 K9=0
4740 FOR I= K1+1 TO M : REM - TEST FOR ~ BINDING INEQUALITIES

---_._- --------_. - -

C5-8 437

4745 IF C(I){O THEN K9=K9+1
4750 NEXT I
4755 IF {Kl+K9}=O THEN RETURN REM - NONE BINDING SO S{'~l

4757 C8=2*ABS<F9)/(Kl+K9) : REM - AVERAGE ALLOWED EACH C(11 A 2 TERM
4760 FOR 1=1 TO M
4770 IF I<=Kl THEN GOTD 4785 : REM - 15 AN EQUALITY CONSTRAINT
4775 IF CCI1>O THEN GOTO 4790 : REM - UNBINO"G INEQUALITY CONSTR
4785 5(I)=CB/(Cll,*CC!)+.OOl#) : IF 5(1»1000 THEN 5(1)=1000
4790 NEXT I
4795 RETURN
4800 REM*********************************
48\0 REM - FIND MAX CONSTR RESID MAGNITUDE P8=ABSCC(KB»
4820 P8=Q ; KB=O : REM - INIT
4825 PRINT "ESTIMATED LAGRANGE MULTIPLIERS
4830 FOR 1=1 TO M
4840 C9=C (I)
4850 I~ 1<==Kl THEN GOTD 4870 REM - IS EQUALITY CONSTRAINT
4860 IF C9>O THEN C9=O
4870 C9=ABS (C9)
4880 IF C9<=PB THEN GOTD 4887
4B85 PB=C9 : KB=I : REM - NEW MAX MODULUS
48B7 PRINT" CONSTRAINT #"; I;":";
48BB PRINT USING "#####.#tUUt#";U(I)*S(l}
4890 NEXT 1
4895 RETURN
4900 REM••*••••••••••••••••••*••••••••••**••••*
4910 REM - COMPARE USER"S GRADIENT WITH FINITE DIFFERENCES
4920 PRINT "GRADIENT VIA SUD9000 VIA DIFFERENCES"
4930 FOR Jl=1 TO N
4940 D5=.OOOU·*AElS(X(Jl» : IF D5<.000001# THEN D5=.OOOOOU
4950 X (Jl) ==X (J 1) +D5 BOSUE! 50(i(1 ; REt"j - PERTURBED FUNCTION
4960 PRINT USING" #####tL###..#tHt#";G(J1}.(F-FS)/D5
4970 X(Jll==X(JU-D5 REM - RESTORE ND:lINAL X(Jll
4980 NEXT Jl
4982 F = F5 : REM - RESTORE NOMINAL FNCN
4985 PRINT "PRESS <RETURN> VE'I' TO CONTINUE -- READY".: INPUT 54$
4990 RETURN
5000 REM*********.*******************
5010 REM - STND MULTIPLIER PENALTY FUNCT[ON
5020 CB=O : REM - IN IT SUM OF PENALTIES
5030 GOsue 8000 : REM - CALC CONSTRAINTS C()
5040 IF M>O THEN GOTD 5050
5045 PRINT "WARNING USER FAILED TO ASSIGN M 8< Kl VALUES IN SUBBOOO~"

5050 FOR 19~1 TO H
5060 C9=C(I9)-U<I9> REM - OFFSET CONSTRAINT RESIDUAL
5070 IF I9<=K1 THEN GOTO 5100 : REM - IS EQUALITY CONSTRAINT
5080 IF C9<0 THEN GOTO 5100 : REM - PENALIZE
5090 BOTO 5110
5100 CB=C8+SlI9>*C9.C9 : REM - ACCUMULATE PENALTIES
5110 NEXT 1.9
5120 Bosue 5500 REM - CALC UNCONSTR'D OBJECTIVE FNCN
5125 ~9=F : REM - SAVE OBJECTIVE VALUE TO INIT S<) IN SUB4700
5130 F=F+C8/2
5140 RETURN
7000 REM*******.******.**************.*
7010 REM - STND MULT PENALTY GRADIENT
7020 GOSUB 7500: REM - CALC UNCONSTR'D F GRADIENT
7030 GOSUB 9000 ; REM - CALC CONSTRAINTS GRADIENTS
7040 FOR J9=1 TO N REM - VARIABLES LOOP
7050 69=0
7060 FOR 19=1 TO M REM - CONSTRAINTS LOOP
7062 C9=C<I9)-U<19) : REM - OFFSET caNSTR RESIDUAL
7064 IF I9<=K1 THEN GOTO 7070 : REM - IS EQUALITY CONSTR
7066 IF C9<O THEN GOTO 7070 : REM - IS BIND"G INEQUALITY CONSTR
7068 GOTO 7080
7070 G9=G9+S(I9)*C9*A<J9.I9)
7080 NEXT 19
7090 G(J9)-==GeJ9)+G9

4J8 p,ogrum Listings

709S NEXT J9
7100 RETURN

7 REM - HIMMELBLAU P360 OBJ~CONSTR F~GRADS -lcs-91 'HIM36Q'
5500 REM *••
5510 REJ't - HIMl'IELBLAU P.360 OBJECTIVE FUNCTION.
SS20 F=4*X(1)-X(2)*X(2)-12
5530 RETURN
7500 REM*-.*****-*._-"•••***"'******
7510 REM - HIHMELBLAU P.360 GRADIENT OF OBJECTIVE FNCN
7520 G(I)=4 : G(2)~-2*X(Z)

753Q RETURN
BOOO REM******.***"'**.**"'***.-"**
BOlO REM HIMMELBLAU P.360 CONSTRAINT FUNCTIONS e()
BOZO REM K=# OF EQUALITY CONSTR'S (K(=N)
8030 REM M=TOTAL # OF ALL CONSTRAINTS
8040 REM - DEFINE EQUAL1TY CONSTR'S FIRST
8000 K=l M=2: REl1 - USER MUST SET THESE TWO VALUES HERE
8070 C{11=25-X(1)*X(1)-X(Z)*X(Z)
B080 C(Z)=10*X(1)-X(1)*X(1)+10*X(Z)-X(Z)*X(Z)-34
8090 RETURN
9000 REM*************************.****
9010 REM HIMMELBLAU P.360 CONSTRAINTS GRADIENTS (JACOBIAN)
9020 REM - COL J OF A<J.I) IS GRADIENT VECTDR OF C(I)
9025 REM - MAIN PGRM HAS SET ALL AC.)=O
9030 A(1.1)=-2*X(1)
9040 A(2.1)=-2*XiZ)
9050 ACl.Z)=10-Z*X<1)
9060 A(Z.2)=10-Z*X(2l
9070 RETURN

5 REf'l 8510071334. COPYRIGHT T.R. CUTHBERT 1985.
7 REl1 ROSEN SUZlD<I. LOOTst1A BOOK. ~. LOOT3S6 .
5500 REI1 -* *
5510 REM ROSEN-SUZUKI OBJECTIVE FUNCTION
5520 X1=X(1)*X(1) : X2=X(Z)*X(Z) : X3=X(3).X(3) : X4=X(4).X(4)
5530 F=Xl+X2+2*X3+X4-5*X(1)-S*X(2)-21*X(3)+7*X(41
5540 RETURN
7500 REM* ******** ***
7~10 REM ROSEN-SUZUKI OBJECTIVE FUNCTION GRADIENT
7520 6(1)=2*X(1)-5
7530 G(2)=2*X(2)-5
7540 G(3)=4*X(3)-21
7550 6(4)=2*XC4)+7
7560 RETURN
8000 REM******************.***********
BOlO REM ROSEN-SUZUKI CONSTRAINT FUNCTIONS
B015 1"'1==3 : Kl=O
B017 Xl=X(l)*X(ll : XZ=X(Z)*X(Z) : X3=X(3)*X(3) X4=X(4)*X(4)
8020 C(1)=-XI-X2-X3-X4-X(1)+X(2)-X(3)+X(4)+B
8030 C(2)=-Xl-2*XZ-X3-2*X4+X(1)+X(4)+10
8040 C(3)=-Z*XI-X2-X3-2*X(1)+X(2)+X(4)+5
8050 RETURN
9000 REM***••***"*,,*************_***
9010 REM ROSEN-SUZUKI CONSTRAINTS GRADIENTS (JACOBIAN)
9030 A(l,l)=-2*X(1)-1:A(2.1)=-2*X(2)+1:A(3.1)=-Z*X(3)-1:A(4.1)=-2*X(4)+1
9040 A(1.2)=-2*XCl)+1:A(Z.2)=-4*XC2):A(3.2)=-2*X(3):A(4,Z)=-4*X(4)+1
9050 A(l,3)=-4*XCl)-2:A<2.3)=-2*X(Z)+1:A{3.3)=-2*X(3):A(4.3)=1
9060 RETURN

.--~~- - - -- - _. -~--~-~~~- -- ~ -

C6-1 439

Basic Variable Names Used in Program C6-1. TWEAKNET

A() D5 J2 M R5 VI
A4 D6 J5 M$() R6 V2
AS D9 J9 M() S$ V3
B() E() K MI S() V9()
B4 E1 KI M2 SIO V
B5 F K2 M3 S2$ V5
CO F1 K3 N S3$ W
C2 G() K4 N$ S4 WO
C3 Gl K5 N$() S4$ X{)
C4 G9 K6 NI S5 X4
C5 H K7 N2 S5$ X5
C6 HO K8 N30 S6$ Z
C7 I K9 N5 S7$ ZO
C8 11 L PI S8$ Z5
C9 12 L1 PSO T
DO 14 lA() P8 TI
Dl 15 LSO Q n
02 17 L60 Q() T3
03 19 L7 R() T4
D4 J L8 R4 U{)

7 REI"I - BAUSS-NEWTDN WITH BNDD \lARS AND CNSTRS -I P6I"I Cb'-11 'TWEAKNET'
10 REP'I - LADDER NETWORK OPTIMIZER BASE PR08iRAPI 'TWEAI<NET'
20 OPTION BASE 1 : REM - NO stlBSCRIPT 0
30 CLS : KEY OFF ; tt=O : REM - DEFAULT Nl.II'IBER OF 5AI'IPLE DATA
40 PRINT NE11CCIRK OPTIf'UZER : PRINT
50 PRINT "NOTES:"
60 PRINT .. t _ USE ONLY UPPER CASE lETTERS-
70 PRINT "2. IF 'BREAK' DCCURS .. RESTART WITH ·BOTO ~ ...
eo PRINT "3. USER r1U5T PROVIDE SAP'IPLE DATA AND UNITS CFREQ .. "
53 PRINT L.C) AND TDPOUlBV DATA IN LINES 400-889."
85 PRINT OR RECALL THAT FROM DISK FILE USINS om 10."
90 PRINT AT LEAST CI1D 1 I'IUST BE USED TO SET VARIABLES."
100 PRINT "4. ENTER DEFAULT ANSWERS TO IAJE5TIONS BY <RETURN>."
110 PRINT
130 REJ"I - USE OF MAJOR VARIABLES AS FOLLDlrrIS -
140 REM A(,) JACOBIAN l'tATRIX. AO:',J) IS DERIV OF Kth RESIDUAL..
142 R£t1 WITH RESPECT TO Jth VARIABLE. IS DIM t1~N.

144 REJ"I D () VECTOR FOR LI1 DIAGONAL SCALING t1ATRIX.
140 REM Dl DETERt1INANT OF LDLT FACTORIZATION.
148 RD1 E () SEARCH STEP VECTOR.
150 REM F HALF THE St.JI"'I OF pth POWER RESIDUALS.
152 REI'f Fl SAVED VALUE OF F FOR DOWNHILL COf'IPARISON.
1~ REM FNACS INVERSE COSINE FUNCTION
156 REM 60 GRADIENT OF F.
158 RE1'I Sl LENEiTH. OF GRADIENT.
160 REM HO VECTOR STORAGE OF APPRDXIJ1ATE HESSIAN I'7ATRIX.
162 RE1'I K2 COUNT OF NLmBER OF F EVALUATIONS.
1M REM K7 EX'PONENT P - POWER TO WHICH RESIDUALS RAISED.
160 REI'l L7 ITERATION COUNTER.
'1Q8 REI'1 t"I NUMBER OF DATA SAI'1PLES.
170 REl'1 M3 NlJI'mER OF DATA SAMPLES READ IN FROM DATA STATEMENTS.

440 Program Listings

IN SHUNT, OR DUAL

REM NULL BRANCH
REM RESISTOR
REM INDUCTOR
REM cAPACITOR

REM - SERIES LC

172 REM N NUMBNER OF VARIABLES.
174 REM R() RESIDUALS. DIM M.
176 REM se,) SAMPLES 8(1,1> 15 INDEPENDENT & 50,2) IS DEPENDENT.
178 REM V LEVENBERG-MARQUARDT (LM) PARAMETER.
180 REM Xl) VARIABLES VECTOR, DIH N.
240 DEFDBL A-H,Q-R,T-Z : REM - NOTE THAT P IS SNGL PRECISION
250 DEFINT I-N
27055$=" ####.##t..t" : 56$=" *#####.###tUUt##" : 57$=" ##.#8ftAA-""'A"
280 OEF FNACS(Xl=1.57Q796-ATN(X/SQR(1-X*X) : REM - ARC COS
290 Ml=50 : £1=.0001 : 17=1 : K7=2 : M3=O ; V~.OOl# : REM - INIT PARANS
300 REM - FOLLOWING DIMENSIONS ARE FOR N<=20. THE HESSIAN VECTOR
310 REM H<} MUST BE DIMENSIONED N*(N+l)/2. .. SAMPLES M<=40.
320 DIM X(20),G(20),H(210),E(ZO),AC40,20),SC40,2),OC20>,R(40)
323 DIN L4(ZO>,L5CZO>,PS(ZO.2),W(ZO) : REM - CONSTR~ aND. & SAVE ARRAYS
325 DIM C(40) ,L6(40),U(40).U9(40).Sl(40) : REM - MAX OF 40 CONSTRAINTS
327 DIM M(3S).M$(3S).Q(35) ,N$(3S) : REM - MAX 20 NON-NULL BRANCHES
328 DIM N3t20,2).Z(40.2).B(40.20) : REM - STORAGE PER TELLEGEN DE~IVS

330 REM - HESSIAN H(.) STORED AS AS VECTOR; SEE EQUATION (4.1.14)
335 GOSUB 3800 : REM - UNBOUND ALL POSSIBLE VARIABLES
337 FOR I~1 TO 35 : M(I)=9 : NEXT I : REM - TOPOLOGY 'END' TYPE
340 READ N$: PRINT "WORKING WITH DATA SET ";N$: PRINT
350 READ M : R£M - M IS NUMBER OF SAMPLES
355 IF M=O THEN GOTO 1160 : REM - NO sAMPLES ~ TOPOLOGY FROM DATA STMNTS
360 FOR K=1 TO M : REAO StK.l) : NEXT K
365 FOR K:l TO M : READ s<K.2) : NEXT K
370 READ Ul .. U2,U3 = RErt-FREQ.,L"C UNITS
371 READ R6,R4,X4,K9 : REM - R SOURCE, R LOAD. X LOAD, • TOPOL LINES
372 FOR 1=1 TO K9 I REM - READ TOPOLOGY LINES
373 READ J,"$(I),Q(I),N$(I)
374 IF I"t$(I)="N" THEN M(I)::O
375 IF M$(l)="R" THEN tHl)=l
376 IF t1$(I)="L" THEN M(I)",,2
377 IF M$(l)="C" THEN M(I)=3
378 IF M$(I)="LC" THEN 1'1(1)=4
379 NEXT I
380 GOTO 1160 : REM - TO MENU " SELECTION
3BS REI'I - sAMPLE DATA WILL BE EMPLOYED IN SUBROUTINE 5000 ~ OTHERS
390 REM - ENTER DATA STATEMENTS IN LINES 400-8BB FOR SAMPLE PAIRS
395 REM - AND FREQ.L,C UNITS ~ TOPOLOGY
400 DATA "DUMMY"
4io UHIA 0 = REM - M=O. PROVIDE THESE LAST TWO LINES IF NO DATA FOLLOWS
990 REM - RE-ENTRY FOR INVALID COMMAND NUMBERS ~ CONTINUING
999 CLs = K2=O ~ REM - INIT FUNCTION EVALUATION COUNTER
1000 PRINT ""'''''''*'''''''''*''''''''''''''' COI'1r'1AND MENU "
1010 PRINT "1. ENTER STARTING VARIABLES (AT LEAST ONCE)"
1020 PRINT "2. REVISE CONTROL PARAMETERS (OPTIONAL)"
1030 PRINT "3. START OPTIMIZATION"
1040 PRINT "4. EXIT (RESUME WITH ·GOTO 999')"
1050 PRINT "5. SEE &;/OR RESET LOWER/UPPER BOUNDS ON VARIABLES"
1060 PRINT "6. DISPLAV DATA PAIRS"
1062 PRINT "7. SEE &/OR RESET CONSTRAINT ·SAMPLE NUMBER (51"
1064 PRINT "8. SEE FREQUENCY, L, & C UNITS & NETWORK TOPOLOGY"
1066 PRINT "9. SEE NETWORK RESPONSES FOR ALL SAMPLES"
1068 PRINT "10. RECALL SAMPLE. UNITS. & TOPOLOGY DATA FROM DISK"
1070 PRINT" * * ...
1080 PRINT" INPUT COMMAND NUMBER:"; :INPUT S$
1090 K=LEN(S$) : IF K=O THEN GOTO 999 : REM - AVOID <CR}
1100 K=ASC (5$)

'1110 IF K<48 OR K>S7 THEN GOTo 999 : REM - 1ST CHAR MUST BE 0-9
1120 K=VAL (8$)
1130 IF K=O THEN K= 15 : REM - ALTERNATIVE DISPLAY NUMBERS
1140 IF K>20 THEN GQTo 999 : REM - CAN·r EXCEED MENU _'5
1150 ON K GQSUB 1220,1290.4200.1390.3860.3000.4830.5310,2442,9800
1160 PRINT "PRESS <RETURN> KEY TO CONTINUE -- READY";
1170 INPUT S4$
1180 IF 54$<>"" THEN BEEP: REM - <RETURN> BEFORE NEXT CMD NUMBER
1190 GOTO 999
1200 REM*****"'************."**.****"".*********

C6-1 441

1210 REM - ENTER VARIABLES
1220 PRINT"NUHBER OF VARIABLES::: "; : INPUT N
1230 PRINT "ENTER STARTING VARIABLES XCI):"
1240 FOR I~l TO N
1250 PRINT" X(";I;")~";: INPUT XCI)
1260 NEXT I
1270 RETURN
1280 REM *********************************
1290 REM - REVISE CONTROL PARAMETERS
1292 PRINT "EXPONENT P (2,4,6,8, OR 10) ="; : INPUT 54$
1294 K7=2 : IF 54$< >"" THEN K7:::VAL (54$)
1300 PRINT "MAXIMUM' OF ITERATIONS CDEFAUL1=50):"; z INPUT 84$
1310 Ml=50 : IF 54$(>"" THEN Ml=VALCS4$)
1320 PRINT "STOPPING CRITERION <DEFAULT=.OOO1):"; : INPUT 54$"
1330 £1:::.0001 : IF 54$<>.... THEN El=VALCS4$)
1340 PRINT "PRINT EVERY Ith ITERATION (DEFAULT:::!);-; : INPUT 54$
1350 17=1 : IF 54$<>·..• THEN 17=\lAL~S4$)

1360 RETURN
1370 REM ******************************.*•••
1380 REM - NORMAL STOP
1390 KEY ON : PRINT "END OF RUN" : END
1400 REM ••••••••*•••••••••••••••••••••••••••
1410 REM - MAIN LEAST? OPTIMIZATION ALGORITHM - SEE CHAPTERS 4 & 5
1420 IF N>O THEN 60Ta 1445
1430 PRINT ,,----- NUM8ER OF VARIABLES N NOT SETI USE COMMAND *1 -----"
1440 RETURN
1445 K6=0 : REM - DEFAULT TO FINITE DIFFERENCES
1450 PRINT "DIFFERENCING OR EXACT LOSSLESS ELEHENT PARTIALS (O/E> ";
1452 INPUT 54$: IF 84$="E" THEN K6=1
1455 GOSUB 4080 REM - RESET &: RECORD BINDING VARIABLES
1460 FOR 1=1 TO M : REH - NULL A(I.J> JACOBIAN MATRIX
1470 FOR J=1 TO'N
14BO AO,J>==Q
1490 NEXT J
1500 NEXT I
1510 BOSUB 5000 : REM - FIRST CALC OF RES1DUALS
1550 K2=K2+1 : REM - INCRE F EVAL COUNT
15BO F=O : REM - CALC FIRST SUM Pth RESIDUALS
1590 FOR K=1 TO M : F=F+R(K>~K7 : NEXT K : F=F/K7
1600 SOSUB 7000 : REM - CALC FIRST JACOBIAN
1610 GDSUB 2600 : REM - CALC/STORE NORMAL MATRIX IN H()
1620 REM - PUT NORMALIZED SCALING FACTORS INTO D()
1630 L=O 02"'='0
1640 FOR J=1 TO N
1650 FOR 1=1 TO N
1660 IF I{J THEN GOTO 1690
1670 L=L+l
1680 IF I=J THEN D(J)=H(L)
1690 NEXT I
1700 IF D(J){=O THEN D(J)=l
1710 D2=D2+DeJ}.D(J)
1720 NEXT J
1730 D2=-SGlR(D2)
1740 FOR J~l TO N : DfJ)=DCJ)/D2 ; NEXT J : REM - NORMALIZE
1750 GOSUB 2750 ; REM - CALC GRADIENT G() AND LENGTH Gl
1760 IF 61<>0 THEN GOTO 1860
1770 PRINT "GRADIENT IS ZERO~ CONVERGED, ":RETURN:REM - MAYBE FEASIBLE XO
1860 L7~0 : V = ,01# : REM - IN IT ITERATION COUNT ~ LM PARAM
1665 FOR 1-1 TO N ; L5(I)=O : NtXT I : REM - UNBIND ALL CONSTRAINTS
1870 REM****_*•••****.*****************_.****••
1880 REM - RE-ENTRY POINT FOR NEW ITERATION
1890 L7=L7+1 : F1=F ; REM - INCRE ITER COUNT ~ SAVE LAST F VALUE
1900 IF M3=0 THEN V=V/1Q : REM ~ LAST STEP WAS A GOOD ONE 50 REDUCE V
1910 IF V<1D-20 THEN V=1D-?O : REM - V~O NOT ALLOWED
1920 IF M3<>O THEN V=10*V ; REM - LAST STEP REGl'D CUTBACK, 50 INCREASE V
1930 M3=0 ; REM - CLEAR CUTBACf(COUNTER
1940 IF L1=1 THEN BOTO 1980 : REM - ELSE CALC GRADIEN,T
1950 GOSUB 7000 : REM - GET JACOBIAN

1960 GIlSUB 2750 I ~ - CALC BRADIENT
1~70 GDSUB 2bOO I Rat - CAL.C/STDRE NIlRt'tAL rtATRIX INTO HO
1980 IF CCL7-1) ram 17)=0 THEN 605UB 2500 :. REPI - RPT J==".X, I.: B
1981 REt'I - RELEASE NON--K-T CONSTRAINTS
1982 FOR 1=1 TO N :. IF LSCIU6C1J)O TI£N L5CI)=O :. NEXT I
1983 FOR 1-1 TO N :. REI'I - PROJECT GRADIENT INTO FIXED SUBSPACE
1~ GCIl=G<ll*Cl-A8S<L5<lll)
1986 NEXT' I
1990 GOSUB 2870 :. REI'I - ADD U1 PARN1 TO H ()
2000 SIJSUB 3110 :. REtf - FACTOR CH+vDJ::::L.DL.T IN SITU IN HO
2010 IF N5=O THEN BOTO 2060 :. REI'I - FACTORIZATION (]I(

2020 V=100*Y :. REJ1 - INCREASE U1 PARAI'I Y
2030 60SUB 2600 :. Ret - CA1....CISTORE NIlRPIAL. PlATRIX INTO HO
2040 6DTO 1990 :. REI1. - REVISE NtJRl"IAL I1ATRIX AND RE-FACTOR
2050 ReI - SET RIBHTHAND SIDE = -G CJ
2ObO FOR 1=1 TO N :. E(I)=-GCIl :. NEXT I
2070 60SUB 33'90 :. R8'I - CALC STEP dx IN E ()
2072 FOR 1=1 TO N :. REl"I - PROJECT SEARCH DlRECTl1lN INTO SUBSPACE
2074 ECI)=ECI)*CI-ABSCLSCIJJJ
2076 NEXT I
2000 RE!'I - CALC STEP-TQ-GRADIENT DEGREES
2090 C2==O :. [;3::=0
2100 FOR 1=1 TO N :. C2=C2+G<I)4£<I) :. C3=C3--t-ECUiI£U) NEXT I
2105 IF 61=0 OR 0<=0 THEN 60TQ 2160 :. REl'I - CAN"T CALC ANGLE
2110 Pl=-CZJS1/SGRcC3) :. IF Pl<l THEN SDTO 2130
2120 Pl:(;J :. SOTO 2140 :. REJ'f - AVOID 10 IN ACS
2130 Pl=57. 29S7B-.FNACScPl)
2140 PRINT STEP-TO-GRADIENT DEGREE..S=''';
2150 PRINT USING .. H.M.... ;P1
2160 REI"I. - TAKE STEP WITH INCR81ENT IN EO
2165 FOR 1=1 TO N : WCI)=XCI) :. NEXT I :. Rat - SAVE BASE POINT
2170 FOR 1=1 TO N :. XCI)=WCIJ+E<IJ :. NEXT I
217:5 GOSUB 3620 REM - CHECK/SET ANY ADDITIONAL BOUNDS
2180 60SUB 5000 REPt - CALC RESIDUALS
2190 K2=K2+1 : F=O : REM - INCRE F EVAL COUNT '" CALC SUM Pth RESIDUALS
2200 FOR K=1 TO M :. F=F+R(K)~K7 :. NEXT K :. F=F/K7
2210 IF F<Fl THEN GOTO 2270
2220 REM - GET BACK TO LAST TURNING POINT I. CUTBACK dx
2230 FOR 1=1 TO til :. X(l)=W(1) :. E(l>=E(l)/4 ~ NEXT. I
2240 PRINT" CUT BACK STEP SIZE: BY FACTOR OF 4 M#"'''
22'50 113=t'O+1 :. IF 1"t3<11 THEN SOTO 2170 :. REI"l - TRY CUTBACK STEP
2260 PRINT "STEP SIZE TOO SI'IALL - TERl'tINATED" :. GeTO 23'70
2270 IF L7<Ml THEN GOTa 2320 :. REM _. NOT AT MAX ITERATIONS
2280 PRINT '"!! ~ ~!!!!!!!!! ~!! ~!!!! ~~!~ !-!!"!! ~ ...
Z2"iO PRINT '"STOPPED AT GIVEN LIMIT OFN;Ml; '" ITERATIONS; RESULTS ARE:"
2300 L7=L7+1 :. GOTO 2370
2310 REI'I - TEST CONVERGENCE OF BOTH F AND EACH X (I)
2320 IF ABS<FI-F>/Cl+ABSCF1»)>El THEN SOTO 1890
2330 FOR 1=1 TO N
2340 IF ABSCE(I»/{I+ABS(x<I»)>El THEN BOTO 1890
2350 NEXT I
2360 L7=L7+1 :. PRINT "CONVERGED; SOLUTION IS:"
2370 GOSU8 7000 REM - GET JACOBIAN
23BO GIJSUB 2750 :. REI'I - GET GRADIANT
:z3q() GOSUB 2SOO :. ~ - REPORT F,X, • G AT STOPPING POINT
2410 PRINT ooTOT.u.. N1Jt'IBER IlF FUNCTION EVALUATIONS' =.;1<2
2420 PRINT "EXPONENT P =";K7
2430 RE1lJRN.
2440 REn~'H'H'H'~'~''''.'.'.'H'H'~.'''•••••••••••••• II •• I.
2442 RErI - DISPLAY dB AND Zin OVER A FREQ RANEE
2444 IF N=O THEN GQTO 2494 : REf'l. - PlUST HAVE YARIABl.ES SET
2446 Kto;:Q : Kb=O :: REM - ~ING AND SUBBOOO FUtGS
2448 PRINT "START FREmJENCY =00; :. INPUT Tl
2450 PRINT "STOP FREmJENCy =00; :. INPUT T2
2452 PRINT ooNlJl1BER OF FREQS, MX 40 C+LIN. -LOB> =oo; : INPUT LJ
2453 IF L1<O AND Tl==Q 1lfEN Tl=.OOl :. RBi - DUE TO LOB CASE
2454 T3==Tl : 06=1 : IF ABS(L1>=l THEN GOTO 2468
2456 IF ABS<LU>40 THEN Ll=S6NCLJ)*'4Q

Cr.-I

2458 Db=ABS<Ll)-l : X5=T2-Tl
2460 IF Ll<O THEN X5=LDGlT2/TU
2402 Xs.:XS/D6
24M IF Ll<O THEN X5=EXP(X5)
2466 D6=X5
2468 PRINT ... FREQt..JENCY RESPONSE dB Rin 0HJ1S
2470 FOR 12=1 TO ABS(LU
2472 T4--SU2.U : S<IZ.1>=T3 REtt - SAVE SAI'1PLE DATA BASE
2474 60SUB 8000 : REM - GET dB & lin
2476 PRINT I2;:PRINT USINB S6.;S(I2~!),C(I2),A4,A5

2478 IF 12:<21 OR I2=ABSlLl) OR Kl=l THEN GOTC 2484
2480 PRINT "PRESS <RETURN> KEY TO CONTINUE -- READY" i INPUT 54$
2482 Kl=l : R£" - DON'T PAUSE FOR 2ND HALF OF DIsPLAY
2484 S(I2,1)=T4 : R8M - RESTORE SAMPLE DATA BASE
2486 If: Ll >0 THEN T3=T3+Dh : REM - INCREl"IENT FREIAJEN(:Y
2488 IF Ll<O THEN T3=T3*D6
2490 NEXT 12
2492 RETURN
2494 PfUNT MUST ASSIGN VALUES TO VARIABLES FIRST ..
2496 RETURN
2500 REM .* ~•••***.
2510 REI1 - PRINT FlD'ICTION., VARIABLES, AND GRADIENT
2520 PRINT "AT START OF ITERATION NlJI'18ER";L7
2530 Pl=F : PRINT FUNCTION VALUE =";F'l
2540 PRINT .. I XlI) (HI)"
2550 FOR 1=1 TO N
2560 PRINT Ii PRINT USINB SbS;X(I),BiI)
2570 NEXT I
25BO RETURN
2590 REM .~ ***•••
2600 REM - CALC/STORE NORMAL ~ATRrx rN H()
2610 FOR 1=1 TO N*<N+l)/2 ; H<I)=O ; NEXT I
2620 FOR K=l TO H
2630 L=O
2640 FOR J=l TO N
2650 FOR 1=1 TO N
2660 IF I<J THEN GOTD 2690
2670 L=L...1
2680 H(L)=H<L)+A<K.I).A(K.J)*R(K)~{K7-2)

2690 NEXT I
2700 NEXT .:J
2710 NEXT K
2720 FOR L=1 TO N*CN+t)/2 = HCL'=CK7-1htHU r NEXT L
2T3I:J RETURN
'Z140 REtt- * **
2750 REJ't - CALC GRADIENT AND ITS LENGTH
2700 810;;()
2770 FOR I~l TO N
2780 6(1)==Q

2790 FOR K==l TO 1'1
2BOO 8(1)=G(I)+A<K,I)*R(K)""(K7-1)
2810 NEXT K
2920 61==61+6(1)*6(1)
2830 NEXT 1
2840 G 1 '=SQR CB 11
2850 RETURN
2860 REM * _.* * ••••
2S70 REM - ADD LM PARAH TO NORMAL MATRIX
2S80 L==O : PRINT .. LH PARAH \1=:";
2890 PRINT USING ·O...........""... ,,;V
2900 FOR J=l TO N
2910 FOR 1=1 TO N
2920 IF I<J THEN.GOTO 2950
2930 L=L+l
2940 IF I=J THEN H<L)~H(L)+V.D(J)

2950 NEXT I
2960 NEXT J
2970 RETlJRN

443

444 Program Lis/inK'

2980 REM*••_*._*****.****.****.*****.**********.*
2990 REM - DISPLAY SAMPLE DATA FROM LINES 400
3000 PRI NT " I I NDEPENDENT DEPENDENT"
3010 K=O
3020 FOR 1=1 TO M
3030 PRINT I; ; PRINT USING" 1t-...4*....4.#"#*#",,"iS{I.1>;Sn,2)
3040 IF 1<21 OR K=l THEN GaTD 3070
3050 PRINT "PRESS <RETURN> KEY TO CONTINUE -- READY"; : INPUT 54$
3060 K=l : REM - DON"T PAUSE FOR 2ND HALF OF DISPLAY
3070 NEXT I
3080 RETURN
3090 REM *********************************
3100 REM - LDLT FACTORIZATION OF MATRIX IN SITU IN VECTOR H
3110 K5=1 : N5=1 : Dl~l : REM - N5=1 NOT PO OR DET=Dl<lD-6
3120 FOR 1=2 TO N
3130 IF H(K5»O THEN GOTO 3150
3140 GOTO 3340
3150 Z=H(K5) : Dl=Dl*H(K5)
3160 K5=K5+ 1
3170 11=K5
3180 FOR J=I TO I'll
3190 Z5=H(KS)
3200 H(K51=H(KS)/Z
3210 J5=K5
3220 15=11
3230 FOR K=I TO J
324(1 J5=JS+N+ 1-1(
3250 HCJ5)=HCJ5)-HCI5)*Z5
32bO 15=15+1
3270 NEXT K
3280 1<5=1<5+1
~290 NEXT J
3300 NEXT I
3310 Dt=Dt*HCkS) ; IF Dl>.OOOOOOOOOI# THEN N5=0
3320 IF N5=1 THEN 60TO 3340
3330 RETURN
3340 PRINT "HESSIAN NOT PD OR TOO SMALL DETERMINANT =";
3350 PRINT USING ..##.####"'................. ;01
3360 RETURN
3370 REM **
3380 REM - SOLUTION E=lnv(H)E FOR SEARCH STEP
3390 FOR 1~2 TO N
3400 14=1
3410 VS"'E(1)
3420 FOR J~1 TO 1-1
3430 V5=V5-H(I4}*E(J)
3440 14==14+N-J
3450 NEXT J
3460 E CJ) =V5
3470 NEXT I
3480 E(N)=E(N)/HCI4)
3490 FOR K=2 TO N
3500 I=N+I-K
3510 11=I4-K
3520 V5=E (I) /H (11)
3530 14=11
3540 FOR J=I+l TO N
3550 11=11+1
3560 V5=V5-H<ll)*£<J)
3570 NEXT J
3580 E (I> =V5
3590 NEXT K
3600 RETURN
3610 REM**
3620 REM - CHECK FOR MORE BOUNDS AND RESET VARIABLE IF BINDING
3630 FOR 1=1 TO N
3640 IF E<I)=O THEN GOTO 3760 : R£M - TEST ONLY SUBSPACE BOUNDS
3650 LS(IJ=O : REM - CANCEL BOUNDS, THEN RETEST THEM

--------- - -------- - ------------------

C6-1 445

PRINT USING S6$;PS<I,1)jP5(I,Z)'" .

3660 REM - PROCESS LOWER 80UNDS
3670 IF XIIl>P5CI.Il THEN GOTO 3720
3680 X(I)~P5{I.l)

3690 LS<!)=-l : REM - NOW AN ACTIVE CONSTRAINT
3700 PRINT" ACTIVATED X(";I;") LOWER BOUND"
3710 GOTO 3760 : REM - NO NEED TO PROCESS UPPER BOUNDS
3720 IF X<I)<P5<I.2) THEN GQTQ 3760
3730 X{I)~P5(I,2}

3740 L5(I)=+t : REM - NOW AN ACTIVE CONSTRAINT
3750 PRINT" ACTIVATED XC";l;") UPPER BOUND"
3760 NEXT I
.3770 RETURN
3780 REM********************••••***••*.********
3790 REM - INIT FLAGS AND LOWER/UPPER BOUNDS
3800 REM - CLEAR THE 'BINDING BOUNDeS)' & SET DEFAULT LIMITS
3810 FOR 1=1 TO 20 ; L4CI1=O : LSCI)=Q
3820 PSCI,l)=-l0000 : PS(I,2)=+10000
3830 NEXT I
3840 RETURN
3850 REM.*.*.*••**.****.****•••*.*.*.*.**.***••*
3860 REM - SEE OR RESET LOWER/UPPER BOUND ON VARIABLES
3870 S4$=="NONE. PRINT "BOUNDS NOW SET ARE:"
3880 PRINT " I LOWER UPPER"
3890 FOR 1==1 TO 20
3900 IF L4tl)=O THEN GOTD 3920
391054$="" : PRINT I;"
3920 NEXT I
3930 PRINT 54.; "5ET OR RESET ANY BOUNDS (YIN)"; : INPUT 54$
3940 1F 54$<)" Y It THEN RETURN
3950 REM - RE-ENTRY FOR MORE BOUND SETTING
3960 PRINT "ENTER 0 TO RETURN TO MENU, ELSE ENTER VARIABLE 4 >::";
3970 INPUT I : IF 1=0 THEN RETURN
3980 PRINT "PRESS <RETURN> IF NO BOUND DESIRED"
3990 PRINT LOWER BOUND ="; : INPUT 84$
4000 P5 (1,1) =-10000 : IF 84$<)"" THEN P5 (I,ll ""VAL (54$)
4010 IF 54$<>"u THEN L4(I)=1
4020 PRINT" UPPER BOUND ="; ; INPUT 84$
4030 PS(I,2l=+10000 : IF 64$<>"" THEN P5(1,Z)=VAL<54$)
4040 IF 54$< >"" THEN L4 (I) =1
4050 60TO 3960
4070 REM***••*************************~*******
4080 REM - RESET & RECORD BINQING VARIABLES
4090 FOR 1=1 TO N
4100 REM - PROCESS LOWER BOUNDS
4110 IF X(Il>PS(I,l) THEN GOTO 41S0
4120 X<I)=PS(I,ll : L5<I)=-1
4130 PRINT "SET X(";I;")""";XO);" (LOWER BOUND)"
4140 60TO 4180 : REM - NO NEED TO PROCESS UPPER BOUNDS
4150 IF X(I)<P5(I,2) THEN GOTO 4180
4160 X(I)=P5(I.2l : L5(I)="'1
4170 PRINT "SET X(";I;")==";XO);" (uPPER BOUND)"
4180 NEXT I
4190 RETURN
4200 REM*****.*.************--***••***--**
4210 REM - START MULTIPLIER PENALTY FUNCTION METHOD
4220 PRINT ''.************-It****.-ltff-******************.***********''
4230 C6=1E+ZO : K3=1 : REM _ CONSTR CONVERGENCE CONSTANT ~ FLAG
4240 FOR l~l TO 40
4250 U(I)~O ; REM - IN IT CONSTRAINT RESIDUAL OFFSET
4260 SI(I)~l : REM - INIT PENALTY MULTIPLIERS
4262 IF L6<I)<>O THEN K3=O : REM - CHECKING FOR ANY CONSTRAINTS
4264 NEXT I
4266 IF K3~1 THEN GOTO 1400 : REM - IS UNCONSTRAINED PROBLEM
4270 LB=1 : REM - INIT PENALTY LOOP COUNT
4280 GQSUB 1400 : REM - MIN F<X,S.U) BY LEAST?
4290 REM - RE-ENTRY FOR OUTER PENALTY LOOP
4-300 PRINT ,,*****************.***************.********...******.......
4310 BEEP

ALL OFFSETS
- MIN Fex.s,U) BY LEAST?
OUTER PEI'4ALTY LOOP

REM - NOT A CONSTRAINED SAMPLE
THEN C9=-C9 : REM - UNBIASED CONSTR'S
REM - IS EQUALITY CONSTRAINT

NOT Po CONSTRAINED RESIDUAL

- EQlJAl..ITY CONSTR CASE
- CHOOSE rlIN
RESIDUAL OFFSET ESTIMATE

REM

4320 GOSue 4690 : REM - FIND MAX PENALTY MODULUS
4330 PRINT "AFTER ";La;" PENALTY I'IINIMIZATIONS,"
4340 PRINT" THE MAX CONSTRAINT I'IIJDl..Il.US ."; KS;" ="; PS
4350 PRINT "CONTINUE PENALTY MINIMIZATIONS (YIN) "; : INPUT 54$.
4360 IF S4p"N" THEN RETURN : REM - GO TO CIlJ1J'IAND PIENU
4370 LB=LB+-1 : RErI - INCREJ1ENT PENALTY LOOP COUNT
4380 REt1 - POWELL' 5 PARAHETERS AOJUST SCHEttE::
4390 C7=C6 : C6==PS : IF C6>=C7 THEN GOTO 4510
4400 IF 1(3:=.1 THEN SOTO 4670
4410 FOR 1=1 TO M : REJ1 - AD.JUST ALL CONSTRAINT OFFSETS
4415 IF L6CI>=O THEN BOTO 4470 : REJ1 - UNCONSTRAINED SAt1PLE
4420 U9 (I) =U <I) : REJ'I - SAVE OFFSETS
4430 C8=e« I)
4440 IF L6(I)=2 THEN GOTO 4460 ~ R8I'1
4450 IF U(I)<C<I) THEN CB=UCI) : REM
4460 U (I);lJ (I) -ea : REM - NEW CONSTR
4470 NEXT I
4480 K3=1 : REM - JUST RESET
4490 Kb:O : Gosue 1455 : REM
4500 GOTO 4300 : REI'I - CLOSE
4510 REM - DIVERGING CASE
4520 C6~7 = REJ1 - USE PRIOR MAX C () NORM
4530 IF 1(3=0 THEN 6010 4550
4540 FOR 1=1 TO M : UCJ)=U9CI) : NEXT I REM - USE PRIOR OFFSETS
4550 REM - SELECTIVELY INCREASE WEIGHTS ON CDNSTR RESIDUALS
45bO FOR 1=1 TO M
457'0 IF Lb (l) =0 THEN GOTO 4640
4580 C9=C (I)
4590 IF Lh(I)=2 THEN GOTO 4620 REM EQUALITY CON5TR
4600 IF C9<O THEN GOTO 4620 = REM - BIND'a INEQUALiTY CDNSl'R
4610 GOTO 4640 : REM - UNBINDING, INEQUALITY CONSTRAINT
4620 IF ABS(C9)(CC7/4) THEN GOTO 4640 : REM - WEIGHT IS OK
4630 51(1)=51C1)*3 : U(I)=U(I)/3 = REM - FORCE CONVERGENCE
464Q NEXT I
4650 K3=0 = GaTO 4490 : REM - TO START OF PENALTY LOOP
4660 REM - TEST FOR MIN CONVERGENCE RATE
4670 IF C6)(C7/4) THEN GQTQ 4550 : REM - FORCE GREATER CONVERGENCE RATE
4680 GOTO 4410 : REM - IS OK - ADJUST CONSTRAINT OFFSETS
4690 REM****.** *•••••***.
4700 REM - RECONSTRUCT CONSTRAINTS ~ FIND MAX MAGNITUDE PB=ABS(C(K8')
4710 P8=O : K8=0 : REM - IN IT
4720 FOR 1=1 TO M
4730 IF L6(1)=0 THEN BOTO 4800
4740 C9=CCI)-S(I .. 21 : IF L6(I)=1
4750 IF L6{I)=2 THEN GQTO 4770 :
4760 IF C9>0 THEN C9=0
4770 C(II=C9 : C9=~BS(C9) ; REM - C<I)=CONSTRAINT; SEE TABLE 6.2.1.
4780 IF C9{=PB THEN BOTO 4800
4790 PS=C9 ; K8=I : REM - NEW MAX MODULUS
4BQO NEXT I
4810 RETURN
4820 REM•••••" •••***._.*••*,,*••••**.
4825 REM - SEE/RESET CONSTRAINT SAMPLE NUMBERS
4830 S4$="NONE. ": PRINT "CONSTR~rNTS NOW SET ~RE;"

4835 PRINT .. I SAMPLE LOWER EQUALITY UPPER"
4845 FOR 1=1 TO M
4850 IF L6 <I):=Q TIiEN GaTO 4B~

4855 S4$=n"
4860 IF L6 (I) >0 THEN SOTQ 4875
4865 PRINT I;:PRINT USING SS$.;S<I,I);:PRINT TAB<lS>;
4867 PRINT USING 55$;5(1,2)
4870 GOTD 489S
4875 IF Lb(l»l THEN GOTO 4890
4880 PRINT 1;:PRINT USING S5$;S(I,I);=PRINT TAB(37);
4BB2 PRINT USING 55$;50.2)
4B8S BOTO 4995
4890 PRINT I;:PR1NT USING S5S;5(I .. lt;:PRINT TAB(26);
4892 PRINT USING 55$;5(1,2)

C6-1 447

INPUT S4$

REM - CLEAR CONSTRAINT

OR BY CMD#10."LINES 600-8B8
NAME"

BRANCH COUNT

NEXT I
PRINT ,54$; uSET OR RESET ANY CONSTRAINTS (YIN)";
IF S4$<>"Y" THEN RETURN
REM - RE-ENTRY FOR MORE CONSTRAINTS
PRINT "ENTER 0 TO RETURN TO MENU. ELSE ENTER SAMPLE ~ =";
INPUT I ; IF I~O THEN RETURN
IF I<=M THEN GOrQ 4935
PRINT "..-*iI- YOU PROVIDED ONLY":M;" SAMPLES *4.. " ; GO TO 4915
PRINT"SAMPLE: PAIR #";1;" =";: ; f:>RINT USING 55$;5(1,1)j5(1,2)
PRINT "LOWER, EQUALITY. UPPER, OR GOAL (L.E,U,G>: "; ; INPUT 54$
IF S4$"'="L" THEN L6(I)=-1
IF 54$="£" THEN L6(I)==+2
IF 54$"'''U'' THEN L6(I)==+1
IF 54$"'''8'' OR 54$="" THEN l6(I>'='O
GOTO 4910 : REM - LOOP BACK
REM•••••******.*.*****.*********
REM - CALCULATION OF ALL RESIDUALS
IF M>O THEN GOTD 5040
PRINT "WARNING - USER FAILED TO ASSIGN 1'1 IN DATA STMN!, LINE 410"
FOR 12'='1 TO M
GOSUB BOOO ; REM - GETS NETWORK RESPONSE IN C(IZ,
C9=C(l2)-S<IZ,2) : REM - (RESPONSE-GOAU
IF L6(I2)=+1 THEN C9=-C9 : REM - IS INEQUALITY UPPER BOUND
C9=C9-U{IZ) ; REM - OFFSET CONSTRAINT RESIDUAL
IF L6{I2)=O THEN GOTO 5150 : REM - NOT A CONSTRAINED RESIDUAL
IF L6{IZ)=2 THEN GOTD 5140 : REM - IS EQUALITY CONSTRAINT
IF C9>O THEN C9=O ; REM -- INEQUALITY 15 SATISFIED
IF C9<O THEN GOTO 514.0 : REM - PENALIZE
GOTO 5150
C9=Sl(IZ)*C9: REM - PENALTY MULTIPLIER
R<I2) "" C9
NEXT 12
RETURN
REM***************************.***
REM - SEE UNITS AND NETWORK TOPOLOGY
PRINT PRINT "UNITS ARE; FREQUENCY ="; : PRINT USING S7$;U1
PRINT INDUCTANCE ="; : PRINT USING 87$;U2
PRINT CAPACITANCE """: : PRINT USING S7$;U3
R5=R6:IF NzK9 THEN R5=X{N):REM-R SOURCE MAY BE VARIA&LE
PRINT "R SOURCE, R LOAD, X LOAD """;:PRINT USING S5$;R5.R4,X4
PRINT
S4$="NDNE. USER MUST PROVIDE DATA IN
PRINT "BRANCH TYPE VALUE Q

N1=0 : N2=O : REM - LIST INDEX & NULL
FOR 1=1 TO 35 REM - BRANCH LOOP
N1=N1+1 : REM INCREMENT LIST INDEX
IF M(N1)=9 THEN GOTO 5540 : REM - REACHED NTWK INPUT END
IF M(N1)=O THEN N2=N2+L : REM - NULL BRANCH COUNT
54$="" : IF N1>N2 THEN T=X(N1-N2}
IF M(N1)=0 THEN T~O : REM - NULL BRANCH
IF (NI-NZJ=N+l AND MS(Nl)="R" THEN T=R6
PRINT" ";1;" "JM$(Nl),:PRINT USING S5$;T,Q(Nl);
PRINT" ";N$(N1l
IF M(Nl)<4 THEN GOTO 5530 : REM - ELE TYPE OCCUPIES ONLY 1 LINE
N1'='Nl+l : REM - POINT TO C IN LC BRANCH
PRINT TAB(15); : PRINT USING S5$;X(N1-N2) ,Q(Nl);
PRINT" "; N$ CNll
NEXT I
PRINT 54$: RETURN
REH*****************************
REM - CALCULATION OF PARTIAL DERIVATIVES OF ALL RESIDUALS
GOSUB 9000 : REM - GETS NETWORK RESPONSE PARTIALS IN A(,)
REM - PARTIAL OF Ito RESPONSE WRT Jth VARIABLE IN A(I,J)
FOR 19=1 TO M • REM - CONSTRAINTS LOOP
IF L6(I9)~0 THEN GO TO 7170 : REM - NOT A CONSTRAINED RESIDUAL
69=1
C9=C(I9)-S(I9,2) : REM - <RESPONSE-GOAL)
IF L6(I9)<>1 THEN GOTD 7100 : REM - IS NOT INEQUALITY UPPER BOUND

5390

4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5100
5110
5120
5130
5140
5150
515:5
5160
5300
5310
5320
5330
5340
5.350
5360
5370
5380

5400
5410
54~0

5430
54-40
54:50
5455
5460
5470
5480
5490
5500
5510
5520
5530
5540
7000
7010
7020
7030
7040
7050
7060
7070
7080

448 Program Listings

7090 C9=-C9 : G9=-89 : REM - REVERSE SIGN FOR INEQUALITY UPPER BOUND
7100 C9=C9-U(19) : REM - OFFSET CONSTRAINT RESIDUAL
7110 IF L6(I9)=2 THEN GOTO 7150 : REM - IS EQUALITY CONSTRAINT
7120 IF C9>0 THEN G9=0 ~ REM - INEQUALITY IS SATISFIED
7130 IF C9<0 THEN GOTO 7150 : REM - PENALIZE
7140 GOTQ 7160
7150 G9=51 (19)*G9 : REM - PENALTY MULTIPLIER
7160 FOR J9=1 TO N : A(19,J9)=G9*A(I9.J9) : NEXT J9 REM - VARS LOOP
7170 NEXT 19 : RETURN
8000 REM***********.**.****.*******.****
8010 REM - LADDER NETWORK ANALYSIS FOR TRANSDUCER TRANSFER FUNCTION
8020 REM ~ USER MUST SUPPLY SERIES SOURCE RESISTANCE IN TOPOLOGY
8030 REM - RESPONSE AT SAMPLE * 12 IS H IN C(IZ). ALSO Zin=A4+jAS
8040 W~6.28318530718#*S(I2,l)*Ul : IF W=O THEN W=.OOOOOOOOOOI#
8050 B4=1/SQR(2*R4) :B5=0 : D4~0 :05=0 : REM - LOAD POWER = 1/2 WATT
8060 C4=R4 :C5=X4 : REM - LOAD IMPEDANCE
8070 K~0:Nl=O:N2=O:K4=O:REM~ K=BR~,Nl~LlST#.N2=~NULL BR'S,K4~VAR~

8080 REM - RE~ENTRY TO PROCESS NEXT BRANCH
8090 K=K+i : Nl=Ni+l : M2~M(N1} : IF M2=O THEN M2=10 ; REM - NULL BRANCH
B100 GOSUE 8590 ~ REM - COMPLEX LINEAR UPDATE
8110 IF M2=9 THEN GOTO 8650 : REM - AT SOURCE, COMPUTE RESPONSE
8130 ON MZ GOSUB 8270,8330,8420,8480,8230.8230,8230,8230,8230,8230
8140 IF K6=0 THEN GO TO 8080 : REM - USING FINITE DIFF F'ARTIALS
8150 IF M2""10 OR MZ=l THEN GOTO 8080 : RE~l - WAS tJULL BRANCH DR RESISTOR
8160 K4=K4+1 : N3{\(4,l)=K : N3it'A,2).'=tH : REM - VAR~K4's BR~ t< LIST",
8170 A(I2,K4)=A4 ; B(I2.K4)=A5 : REM - SAVE VAR#K4's V OR I
BIBO IF M2<>4 THEN GOTO 8080 : REM - NOT LC BRANCH
8190 N3(K4,2)=Nl-t~\<4=K4+1:N3W4,11"""1<.:N3(1-~4,2~"'\'H~REM - SPECIAL LC CASE
6200 A(I2,K4)~A4 : B(I2.K4,=A5 : REM - REPEAT SAVE V OR I FOR LC BRANCH
8210 GOTD 80BO : REM ~ LOOP TO PROCESS NEXT BRANCH8220 REM***_**_* • * _

8230 REM - NULL BRANCH
8240 C4~0 ; G5=0 ; N2=N2+1 ; REM - NULL BRANCH HAS NO XC)
8250 RETURN8260 REM *_**_* **_* *.*_*_***.

8270 REM - RESISTOR
8280 C4=X(NI-N2) : C5=0 :IF (NI-N2>(=N THEN GOTO 8300: REM - VARIABLE R
8290 C4=R6 : REM - R SOURCE IS FIXED
8300 IF K=INT(K/2l_2 THEN RETURN: REM - K IS EVEN (SERIES) BRANCH
8310 C4~1/C4 : RETURN8320 REM*** *****__*.*_***_****_*__

8330 REH -INDUCTOR
8335 Q=Q(Nl) : IF Q<>O THEN Q=I/Q : REM - NOW DECREMENT=I/Q
8340 C5"'W*X(NI-N2}*U2 ; REM - REACTANCE
8350 C4=C5.Q : REM - SERIES RESISTANCE
8360 IF K=INT(K/2J*2 THEN RETURN
8370 03=Q*Q+l ; REM - INVERT THE IMMITTANCE
8380 C4=G!/D3/C5
8390 C5=-1JD3JC5
8400 RETURN
8410 REM_*******_******.****.*****••**
8420 REM - CAPACITOR
8425 Q=Q(N1) = IF Q<>O THEN G!=l/Q : REM - NOW DECREMENT~I/Q

8430 C5=W*X(N1-NZ)*U3 : REM - SUSCEPTANCE
8440 C4=C5*Q : REM - SHUNT CONDUCTANCE
8450 IF K=INT(K/2>*2 THEN GOTa 8370 : REM - INVERT ADMITTANCE
8460 RETURN
8470 REM****.*******••*******.*******.
8480 REM - SERIES-LC-IN~SHUNT OR PARALLEL-LC-IN-SERIES BRANCH
B490 K=K~1 : REM - MAKE BRANCH LOOK ODD IF EVEN OR VICE VERSA
8500 GOSUB 8330 ~ REM - INDUCTOR
8510 S4=C4 : S5=C5 : REM - SAVE PARTS
8520 Nl=Nl+1 ~ REM - SET LIST INDEX TO CAPACITOR
8530 GOSUB 8420 : REM - CAPACITOR
8540 K=K~1 = REM - RESTORE CORRECT BRANCH #
8550 C5=C5+55 : C4=C4+S4 ; REM - COMBINE IMMITTANCES
8560 S4=C4*C4+C5*C5 : C5~-C5/S4 ; C4=C4/S4 ; REM - INVERT
B570 RETURN

- - -- - - - - -----------------

C6-1 449

8580 REM••***.*••••••••••••••••*••••*.*
8590 REM - COMPLEX LINEAR UPDATE
8600 A4=B4*C4-B5*C5+D4
8610 A5=B5*C4+84*C5+D5
8620 D4=84 ~ D5=B5 :B4=A4 : B5~A5

8630 RETURN
8640 REM*••***************************
8650 REM - PLACE RESPONSE DECIBELS LOSS IN C(ll ~ SCALE V ~ I
8660 IF K=INT(K/2)*2 GOTO 8680
8670 A4=B4 : A5=B5 : B4~D4 : B5=D5 I D4=A4 : D5~A5 : REM - SWAP
8680 C5=D4*D4+D5*D5 : REM - E SOURCE ~ D4+jD5
8685 C(12)=C5/2/C4 : REM - C4 = R SOURCE
8690 C(I21=4.34294481904#*LOG(C(I2"
8700 A5=B4*B4+B5*B5 : REM - INPUT I MAG SGO
8710 A4=(D4*B4+D5*B5'/A5 I A4=A4-C4 : REM - Rin TO RIGHT OF R SOURCE
8720 A5=(DS*B4-D4*BS/IA5 : REM - Xin
8725 IF K6=O THEN RETURN : REM - USING FINITE DIFF PARTIALS
8730 Z(I2,1)=A4 : Z(I2,2)=A5 : REM - SAVE Zin FOR T£LLEGEN DERIVS
8740 REM - SUBTRACT Es ANGLE & THEN SQUARE Ik OR Vk
8750 FOR K4=1 TO N : REM - VARIABLES LOOP
8760 A4=A.'12,K4) : A5=B(I2,K4) : REM - BRANCH Ik OR Vk
8770 B4=D4*A4+D5*A5 ~ B5=D4*AS-D5*A4
8780 A(I2,K4/=B4/C5*B4-BS/C5*B5 I B(I2,K4/=2*B4/C5*B5:REM-AVOID OVRFLW
8790 NEXT K4
8800 RETURN
9000 REM*******_***********************
9010 IF K6~1 THEN GOTO 9180 : REM - EXACT PARTIALS FOR LDSSLESS NTWK
9020 REM - JACOBIAN OF RESPONSE PARTIALS BY DlrFERENCING
9030 REM - PARTIAL OF Ith SAMPLE WRT Jth VARIABLE IN A(I,J)
9040 FOR 12=1 TO M : Z(I2,1)=CCI2) : NEXT 12 : REM - SAVE UNPERTURBED
9050 FOR J2=1 TO N : REM - VARIABLES LOOP
9060 D9~ABS(X(J2»)/l0000#

9070 IF 09(.000001# THEN 09=.000001#
9080 X(J2)=X{J2/+D9 : REM - PERTURB VARIABLE
9090 FOR 12=1 TO M : REM - FREQUENCV SAMPLES LOOP
9100 BOSUS BOOO : REM - NETWORK ANALYSIS
9110 A<I2,J2) = (CCl2'-Z<I2,1l)/D9
9120 NEXT 12
9130 X(J2)=X(J2)-D9 : REM - RESTORE NOMINAL VARIABLE VALUE
9140 NEXT J2
9150 FOR 12=1 TO M : C(I2)=Z(I2,l' : NEXT 12 : REM - RESTORE UNPERTURBED
9160 RETURN
9170 REM*********************************
9180 REM - EXACT LOSSLESS NETWORK DERIVATIVES
9190 FOR 12=1 TO M I REM - FREQ SAMPLES LOOP
9200 FOR K4=1 TO N ; REM - VARIABLES LOOP
9210 K=N3{K4,1) : Nl=N3(K4,2) : REM - BRANCH & LIST NUMBERS
9220 IF M(Nl,<>1 THEN GOTO 9250
9230 PRINT "NO VARIABLE RESISTORS IN LOSSLESS MODE"
9240 A(I2,K4'=0 : GOTO 9370
9250 REM - RHO = A4+jA5
9260 84=Zl12,1> : 85=Z02,2> REM - Zin1I2)
9270 A5=(B4+R6)*(B4+R6)+B5*B5
9280 A4=(B4_S4-R6*R6+B5*BSJ/AS
9290 A5=2*R6*B5/A5
9300 B4=A(I2,K4) : B5~B(I2,K4) : REM - ROTATED, SQUARED BR V or I
9320 D5=B.685BB963806#*<A4*B5-A5*B4): REM - IMAG (RHO CONJG * Ik SQRD)
9330 IF K=INT(K/2i*2 THEN GOTO 9360 : REM - EVEN BRANCH
9340 A(I2,K4J=+D5 REM - ODD SR d(dB)/d(BK'
9350 GOTO 9370
9360 A(IZ.K4J~-D5 REM EVEN BR d(dB)fdeXKJ
9370 NEXT K4
9380 NEXT 12
9390 REM - APPLY CHAIN RULE PER BRANCH ~ VARIABLE
9400 FOR 12=1 TO M ; REM - SAMPLE LOOP
9410 W~6.28318530718#*SeI2.1'*U1 : IF w=o THEN W=.00000000001~

9420 FOR K4=1 TO N : REM - VARIABLES lOOP
9430 K=N3(K4,l) : Nl=N3CK4,2> : REM - BR# & LIST#

450 Program Listi,,1P

9440 A4=,ACIZ.K4) : A'I2,K4)=O
9450 M2=MtNl) : REM - ELEMENT TYPE*
9460 IF M2<2 THEN GOTa 9480 : REM - NQ NULL OR RESISTOR BRANCHES ALLOWED
9~70 ON M2 GQSUB 9500.951O.95~O.9610

9480 NEXT)(4
Q490 NEXT 12
9500 RETURN
9510 REM - INDUCTOR
9520 ACIZ.K4) = A4*W*U2
9530 IF K=INT(K/Z)*2 THEN RETURN: REM - EVEN BRANCH
9540 A<12,K4}=A<12,K4)/(W*X(K4)~2)~2

9550 RETURN
9560 REM - CAPACITOR
9570 ACI2.K4) = A4*W*U3
95BO IF K<>INT(K/2>*2 THEN RETURN: REM - ODD BRANCH
9590 A(IZ,K4) = A(I2,K4)/(W*X(K4)*U3)A2
9600 RETURN
9610 REM - LC BRANCH
9620 A5=(1-W*W*X(K4)*X(K4+1>*U2*U3)A2
9630 IF K<>INT(K/Z>*2 THEN GaTa 9670 : REM - ODD BRANCH
9640 A(I2,K4) = A4*W*U2/AS
9650 A(12,K4+1)=A(12,K4+1>.W*U3*(W*X(K4)*U2)A2/A5
9660 GOTD 9690
9670 A(I2,K4+1>=A(12,K4+1'.W*U3/A5
9680 A(12,K4):A4*W*U2i1- tW*X (K4+1) *U3) ...·2/A5
9690 K4:K4+! : REM = SET VAR* TO CAPACITOR
9700 RETURN
9800 REM*****************.*************.*.*****
9805 REM - READ SAMPLES, UNITS AND NETWORK TOPOLOGY FROM DISK
9810 PRINT "SEE DIRECTORY (V/N) "; : INPUT 94$
9815 IF 54$()"Y" THEN GOTD 9850
9820 PRINT "FILENAME SPECIFIER (I._IKE *.* OR <RETURN») "; INPUT 58$
9825 IF 58$="" THEN 58$="*.*"
9830 FILES 58$
9835 PRINT "SEE DIRECTORY AGAIN (VIN)"; INPUT 54$
9840 IF S4$<)"Y" THEN GOTO 9850
9845 GOTO 9820
9850 PRINT "FILE NAME IS"; ~ INPUT 52$
9855 PRINT" !~! WARNING - DO NOT <CNTRL><BREAK) DURING THIS STEP !~~"

9860 OPEN 52$ FOR INPUT AS #1
9865 INPUT #1,53$
9870 PRINT "READY TO READ FILE ";52$;" TITLED:";53$
9875 PRINT "PRESS <RETURN> kEY IF OK. ELSE "ABORT' <RETURN:>";
9880 INPUT 54$
9865 IF 54$="" THEN GOTa 9895
9890 PRINT "ABORT 0151< READ; NETWORk DATA NOT CHANGED" GOTO 9965
9895 PRINT "READ FILE"; 52;$";" INTO MEMORY."
9900 INPUT #l.M REM - M IS # SAMPLES
9905 FOR K=l TO 1'1 : INPUT#I,5(~,1) : NEXT K : REM - FREQUENCIES
9910 FOR K=l TO M : INPUT#I,S(~.2) ; NEXT I< : REM - TARGETS (dB)
9915 INPUT#I,Ul.U2.U3 : REM - FREQ. L. C UNITS
9920 INPUT#1,R6 y R4.X4.V.9 : REM - R SOURCE, R LOAD. X LOAD. # TOPOL LINES
9925 FOR I~l TO K9 : REM - READ TOPOLOGY LINES
9930 INPUT#l,J.M$(I>,Q(I).N$(I)
9935 IF M$(I)="N" THEN M(I)"OO REM - NULL BRANCH
9940 IF M$<I)="R" THEN 1'1\1:')=1 REM - RESISTOR
9945 IF 1'1$ (I) ="L" THEN M(I) =2 REM ~ INDUCTOR
9950 IF M$CI)="C" THEN 1'1(1)=3 REM - CAPACITOR
9955 IF M.i(U="LC" THEN M<U"'4 : REt1 - SERIES LC IN SHUNT DR DUAL
9960 NEXT I
9965 CLOSE #1 : RETURN
9970 END

7 REM - APFROX. ZVEREV P.201 ELLIPTIC FLTR -IC6-2J "LPTRAP 1 "
400 DATA "LPTRAP1" : REM - NAME DISPLAYED ON FIRST SCREEN
410 DATA 7 : REM ~ NUMBER OF FOLLOWING FREQ/TARGET DATA PAIRS

420
430
600
610
615
620
630
640
650
660
670
680

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

C6·2 451

.2, .4,. b, .B,l ,1.5,2
0, 0, O. 0,0, 40,40

.159155,1,1 : REM - FRED [1/(2PI»). L & C UNITS
1,1,0 : REM - R SOURCE, R LOAD, & X LOAD
7 ; REM - NUMBER OF FOLLOWING LADDER TOPOLOGY LINES
1,N,O,NULLl : REM - LIST.t. NULL BR, DUMMY Q. NAME
Z,L,O,L2 H REM - LIST#2, INDUCTOR, INFINITE Q, NAME
3,C,O,C3 F ; REM - LIST#3, CAPACITOR, INFINITE Q. NAME
4,LC,O. L4 H : REM - LIsr#4, INDue (PARALLEL), INF Q, NAME
5.LC,O, C4 F : REM - LIST#5, CAPAC (PARALLEL). INF 0t NAME
6,C,O, C5 F : REM - LIsr*6, CAPACITOR. INFINITE Q, NAME
7,R,O,R SOURCE: REM - LIST MUST END WITH SOURCE RESISTOR

References

Aaron, M. R. (1956). The use of least squares in system design. IEEE Trans. Circuits S}'Sl.,
December, pp. 224-231.

Abadie, 1. (1970). lltteger and Nonlinear Programming. Amsterdam: North Holland.

Abramowitz., M., and 1. A. Stegun (1972). Handbook of Mathematical FU/lctiQ/1S with Formulas,
Graphs, and Mathematical Tables. Washington, D.C.: U.S. Government Printing, Office.

Acton, F. S. (1970). Numerical Methods That Work. New York: Harper & Row.

Adby, P. R. (1980). Applied Circuif Theory: Matrix and Computer Methods. New York: Wiley.

Adey. R. A. (1983). Software for Engineering Problems. London: Gulf Publishing Co.

Agnew, D. G. (1978). Efficient usc of the Hessian matrix for circuit optimization. IEEE Trans.
Circuits Syst., August, pp. 600-60&.

___ (1979). Minimax optimization techniques for electronic circuits. lEE International Conf.
Computer Aided Des. Manuf., 'pp. 12-14.

Aleksandrov, A. D., A. N. Kolmogorov, and M. A. Lavrent'ev (1956). Mathematics, Vol. l.
Cambridge, MA: M.I.T Press.

Antreich, K. T., and S. A. Huss (1984). An interactive technique for the nominal design of
integrated circuits. IEEE Circuits Syst., February, pp. 203-212.

Aoki, M. (1971). Introduction to Optimization Techniques. New York: Macmillan.

AvrieI. M. (1976). Nonlinear Programming Analysis and Methods. Englewood Cliffs, NJ: Prentice
Hall.

Ayers, F. (1962). Theory and Problems oj Matrices. New York: Schaum.

Bandler, 1. W. (1970a). Conditions for a minimax optimum. Proc. 1970 Allerton Conf. IEEE
Circuits Syst., October, pp. 23-30.

___ and R. E. Seviora (1970b). Current trends in network optimization. IEEE Trans.
Microwave Theory Tech., Defember, pp. 1159-1170.

___ and C. Charalambous (1971a). Practical least P th approximation with extremely large
values of P. Proc. /971 Asilomar Conf. IEEE Circuits Syst., November, pp. 66-70.

___ N. D. Markettos, and N. K. Sinha (l971b). Optimum approximation of high-order
systems by low·order models using recent gradient methods. Pmc. 1971 Allerton COllf. IEEE
Circuits Syst., October, pp. 170-179.

___ (1973a). Computer·aided circuit optimization. Modern Filter Theory and Design (G. C.
Ternes and S. J. Mitra, cds.). New York: Wiley, pp. 211-271.

___ N. D. Markettos, and T. V. Srinivasan (1973b). Gradient minimax techniques for system
modelling. fnt. J. Syst. Sci., pp. 317-331.

452

References 453

___ and C. Charalambous (1974a). Nonlinear programming using minimax techniques. J. Opt.
Theory AppJ., 13 (6), pp. 607-619.

___ and W. Y. Chu (l974b). Computational merits of extrapolation in least pTH approxima
tion and nonlinear programming. Proc. 12th Allerton ConI IEEE Circuits 5yst., October, pp.
912-92l.

___ and W. Y Chu (1975). Nonlinear Programming Using Leost Pth Optimization with
Extrapolation. Hamilton, Ontario, Canada: McMaster University, Report. No. SOC-78.

___ and M. R. M. Ri1.k (1979). Optimization of electrical circuits. Math. Programming, pp.
1-64.

___ S. H Chen, and S. Daijavad (1984). Proof and extension of general sensitivily formulas
for lossless two-ports. Elec. Lett., 20 (11), pp. 481-482.

___ S. H. Chen, and S. Daijavad (1985). Simple derivation of a general sensiilvity formula for
lossless two-ports. Proc. IEEE, 73 (1), January, pp. 165-166.

Bard, Y. (1968). On a numerical instability of Davidon-like methods. Math. CompUl., pp.
665-666.

Bauer, F. L. (1963). Optimally scaled matrices. Numerische Mothemotik, pp. 73-87.

Beckman, F. S. (1960). The solution of linear equations by the conjugate gmdiem method.
Mathematical Methods for Digital Computers (A Ralston and H. S. Wilf, eds.). New York:
Wiley.

Bellman, R. (1960). lntrodudion to Matrix Analysis. New York: McGraw-Hill.

Best, M. 1. (1975). A method to accelerate the rate of convergence of a class of optimization
algorithms. Math. Programming, pp. 139-160.

Beveridge, G. 5., and R S. Schecter (1970). Optimization: Theory and Practice. New York:
McGraw-Hill.

Bowdler, H 1., R. S. Martin, G. Peters, and 1. H. Wilkinson (1966). Solution of real and complex
systems of linear equations. Numerische Mathematik, pp_ 217-234.

Box, M. 1. (1965). A new method of constrained optimization and a comparison with other
methods. Comput. J., pp. 42-52.

___ D. Davies, and W. H. Swann (1969). Nonlinear Optimization Techniques. Edinburgh:
Oliver and Boyd.

Bracken, J., and G. P. McCormick (1968). Selected Applications of Nonlinear Programming. New
York: Wiley.

Branin, F. H. (l972). Widely convergent method for finding multiple solutions of simultaneous
nonlinear equations. IBM J. Res, Develop., pp. 504-522-

___ (l973). Network sensitivity and noise analysis simplified. IEEE Trans. Circuit Theory,
May, pp. 285-288.

Brayton, R. K, and 1. Cullum (1977). An algorithm for minimizing a differentiable function
subject to box constraints and errors. IBM Res. Report RC6429, Yorktown Heights, NY:
IBM Thomas J. Watson Research Center.

___ and R. Spence (19&0). Sensitivity and Optimization. Amsterdam: Elsevier.

Breen, R. H., and G. C Ternes (1973). Applications of Golub's algorithm in circuit optimization
and analysis. IEEE Trans. Circuit Theory, November, pp. 687-690.

Broyden, G. C. (1965). A class of methods for solving nonlinear simultaneous equuilons. Math.
Comput.• October, pp. 577-593.

___ (1973). Quasi-Newton or modification methods. Numerical Solution of Systems of Nonlin
ear Equations (G. D. Byrne and C. A. Hall, eds.). New York: Academic; pp. 241-280.

Buckley, A. (1973). An Alternate Implementation of Goldfarb's Minimization Algorithm. Harwell,
Berkshire, England: Atomic Energy Research Establishment, Report T.PA4.

Caceci, M. S., and W. P. Cacheris (1984). Fitting curves to data. Byte, May, pp. 340-362.

.._-------------------~- - - - -------

454 References

Calahan, D. A. (1968). Modern Network SYlllhesis. New York: Hayden.

___ (1912). Computer-Aided Netv.:ork Design (rev. ed.). New York: McGraw-Hill.

Carroll, C. W. (1961). The created response surface technique for optimizing nonlinear restrained
systems. Opns. Res., 9 (2), pp. 169-1&4.

Celis, M. R., J. E. Dennis, and R. A. Tapia (1985). A trust region strategy for nonlinearly
constrained optimization. N umetical Optimization 1984 (P. T. Boggs, R. H. Byrd, and R. B.
Schnabel, eds.). Philadelphia, PA: SIAM, pp. 11-82.

Charalambous, c., and A. R. Conn (197&). An efficient method -to solve the minimax problem'
directly. SlAM J. Num. Annl., 15, pp. 27&-290.

Cline, A. K., C. B. Moler, G, W. Stewart, and J. H. Wilkinson (1979). An estimate for the
condition number of a matrix, SlAM J, Numer. Anal., April, pp. 368-375,

Colville, A. R. (1968). A comparative study on nonlinear programming codes, IBM New York Sci.
Center, Tech. Report 320-2949, June.

Conn, A. R. (1985). Nonlinear programming, exact penalty functions, and projection techniques
for non,smooth functions. Numerical Optimization 1984 (P. T. Boggs, R. H. Byrd, and R. B.
Schnabel, eds.). Philadelphia, PA: SIAM, pp. 3-25.

Courant, R. (1936), Differential and Integral Calculus. New York: Wiley, p. 91.

___ (1943). Variational methods for the solution of problems of equilibrium and vibration.
Bull. Amer, Math. Soc., 49, pp. 1-23.

Crowder, n, and P. Wolfe (1972). Linear convergence of the conjugate gradient method. !BM J.
Res. Develop., July, pp. 431-433.

Cullum, J. (1972). An algorithm for minimizing a differentiable function that uses only function
values. Techniques o/Optimization (A V. Balakrishnan, ed.). New York: Academic.

Cuthbert, T. R. (1967). Optimization-making the best of it by computer redesign. Richardson,
TX: Collins Radio Company Report WP-5713.

___ (1983). Circuit Design Using Personal Computers. New York: Wiley.

Cutteridge, O. P. D. (1974). Powerful 2-part program for solution of nonlinear simultaneous
equations. Electron. Lett., 10 (10), pp. 182-184.

Davidon, W. C. (1959). Variable metric method for mi~mization. Argonne, IL.: Argonne
National Laboratory, ANL-5900 Revised.

___ (1969). Variance algorithm for minimization. Comput. J., February, pp. 406-410.

___ (1975). Optimally condi.tioned optimization algorithms without line searches. Math.
Programming, pp. 1-9,

___ (1976). New least-square algorithm. J. Optimiz. TheQry Appl., 18 (2), pp. 187-197.

__ and L Nazareth (1977a). OCOPTR-A derivative free FORTRAN implementation of
Davidon's optimally conditioned method. Argonne, IL: Argonne NatiQnal Laboratory,
ANL-AMD-TM-303.

___ and L. Nazareth (1971b). DRVOCR-A FORTRAN i.mplementation Qf Davidon's
optimally conditioned method. Argonne, It: Argonne National Laboratory, ANL-AMD-
TM-306. .

Davies, D, (1968). The use of Davidon's method in non-linear programming. Imperial Chemical
Industries, Ltd., August.

Dejka, W, J., and D. C. McCall (1978). Mathematical programming. San Diego, CA: USNELC,
Tech. Note TN-1487.

Dembo, R. S., S. C. Eisenstat, and T. Steinhaug (1982). Inexact Newton methods. SlAM J. Num,
Anal., 19 (2), pp. 400-408.

Dennis, J. E., and H. H. W. Mei (1979a). Two new unconstrained optimization algorithms which
use functi.on and gradient values. 1. Opt, Theory Appl., 28 (4), pp. 453-482.

...---------- - -- _. - -----------

References 455

D. M. Gay, and R. E. Welsch (1979b). An adaptive nonlinear least-squares algorithm.
Madison. WI: University Wisconsin Mathematics Research Center, Report. No. 2010,
ASTIA AD A079 716.

___ and R. B. Schnabel (1983). Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. Englewood Cliffs, NJ: Prentice·Hall.

___ (1984). A user's guide to nonlinear optimization algorithms. Proc. lEEK, December, pp.
1765-1776.

DiMambro, P. H. (1983). Calculating transfer function and its first- and second-order sensitivities
using onc network analysis. Electron Lett., May 26, pp. 421-423.

Director, S. W. (1971). LU factoriz.ation in network sensitivity calculations. IEEE Trans. Circuit
Theory, January, pp. 184-185.

Dixon, L. C. W. (1972a). Quasi-Newton algorithms generate identical points. Math. Prog., pp.
383-387.

___ (1972b). Nonlinear Optimisation. New York: Crane, Russak.

___ (1977). Optimization in Action. London: Academic.

Dongarra, J. J., C. B. Moler, J. R. Bunch, and G. W. Stewart (1979). LINPACK User's Guide.
Philadelphia: SIAM.

Emery, F. E., and M. O'Hagan (1966). Optimal design of matching networks for microwave
transistor amplifiers. TEEE Trans. Microwave Theory Tech., December, pp. 696-698.

Faddeev, D. K., and V. N. Faddeeva (1963). Computational Methods of Linear Algebra. San
Francisco: Freeman.

Ferrero di Roccaferrera, G. M. (1964). Operations Research Models for Business and Tndustry.
Cincinnati: South·Western.

Fiacco, A. V. and G. P. McCormick (l963). Programming under nonlinear constraints by
unconstrained minimization: A primal~ual method. McLean, VA: Research Analysls Corp.,
Tech. Paper RAC-TP-96, ASTIA AD 423 903.

___ and G. P. McComrick (1%4a). Computational algorithm for the sequential unconstrained
minimization technique {or nonlinear programming. Management Sci., July, pp. 601-617.

___ and G. P. McCormick (1964b). The sequential unconstrained minimization technique for
nonlinear programming, Algorithm II, Optimum gradients by Fibonacci search. McLean,
VA: Research Analysis Corp., Tech. Paper RAe-TP·123, ASTrA AD 450 546L. Also in
Management Sci., January, pp. 360-366.

___ and G. P. McCormick (1965). The sequential unconstrained minimization technique for
convex programming with equality constraints. McLean, VA: Research Analysis Corp., Tech
Paper RAC-TP-155, ASTIA AD 623 093.

___ and G. P. McCormick (1966a). Extensions of SUMT for nonlinear programming: Equality
constraint and extrapolation. Management Sci., July, pp. 816-828.

___ and G. P. McCormick (1966b). The slacked unconstrained minimization technique for
convex programming. McLean, VA: Research Analysis Corp., Tech. Paper RAC-TP-227,
ASTIA AD 643 817. Also, SIAM J. Applied Math., May, 1967. pp. 505-515.

___ and G. P. McCormick (1966c). The sequential unconstrained minimization technique
without parameters. McLean, VA: Research Analysis Corp., Tech. Paper RAe·TP-228,
AsTIA AD 643 818. Also, Opns. Res., 1967, pp. 820-827.

___ and G. P. McCormick (1966d). Extensions of SUMT for nonlinear programming: equality
constraints and extrapolation. Management Sci., July, pp. 816~828.

___ (1967a). Second order sufficient conditions for weak and strict constrained minima.
Evanston, IL: Northwestern University Systems Research, Memo No. 175, April.

___ (1967b). Mathematical programming by generalized sequential unconstrained methods.
Evanston, IL: Northwestern University Systems Research, Memo No. 178, ASTIA AD 656
904.

456 References

___ and G. P. McCormick (1968). Nonlinear Programming: Sequential Unconstrained Minimi
zation Techniques. New York: Wiley.

___ and A. P. Jones (1969). Generalized penalty methods in topological spaces. SIAM J.
Appl. Math., September, pp. 996-1000.

Fidler, 1. K. (1983). Comment-Calculating transfer function and its first· and second-order
sensitivities using one network analysis. Electron, Lett., October 27, pp. 914-916.

___ and C. Nightingale (1978). Computer-Aided Circuit Design. New York: Wiley.

Finkbeiner, D. T. (1966). Introduction to Matrices and Linear Transformations. San Francisco:
Freeman.

Fletcher, R., and M. 1. D. Powell (1963). A rapidly convergent descent method for minimization.
Comput. J., pp. 163-168.

___ and C. M. Reeves (1964). Function minimization by conjugate gradients. CompU/. J., pp.
149-154.

___ (1965). Function minimization without evaluating derivatives-a review. Comput. J" 8,
pp. 33-44.

___ (1968a). Programming under linear equality and inequality constraints. Imperial Chemical
Industries, Ltd., January.

___ (1968b), Generalized inverse methods for the best least squares solution of systems of
non-linear equations. Comput. J., pp. 392-399.

___ (1969). Optimization. London: Academic.

___ (1970a), Generalized inverses for nonlinear equations and optimization. Numerical
Methods for Non~linear Algebraic Equations (P, Rabinowi.tz, ed.). London: Gordon and
Breach.

___ (197Gb). A new approach to variable metric algorithms. Comput. J., August, pp. 317-322.

_.__ (1971a). A modified Marquardt subroutine for non-linear least squares. Harwell, Berkshire,
England: Atomic Energy Research Establishment, Report No. AERE-R.6799.

___ J. A. Grant, and M. D. Hebden (1971b). The calculation of linear best Lp approxima
tions. Comput. J., August, pp. 276-279.

___ (1972). FORTRAN subroutines for minimization by quasi-Newton methods. Harwell,
Berkshire, England: Atomic Energy Research Establishment, Report No. AERE·R712S.

. (1973). An exact penalty function for nonlinear programming with inequalities. Math.
Programming, pp. 129-150.

___ J. A. Grant, and M. D. Hebden (1974a). Linear minimax approximation as the limit of
best Lp-approximation. SIAM J. Numer. Anal., March, pp. 123-136.

___ and M. P. Jackson (1974b). Minimization of a quadratic function of many variables
subject only to lower and upper bounds. J. Inst. Maths. Appl., pp. 159-174.

___ and M. J. D. Powell (1974c). On the modification of LDLT factorizations. Math. Comput.,
October, pp. 1067-1087.

___ (1975). An ideal penalty function for constrained optimization. J. Inst. Math. Appl., pp.
319-342.

___ and T. L Freeman (1977). A modified method for minimization. J. Opt. Theory Appl.,
November, pp. 357-372.

___ (1980). Practical Methods of Optimization: Volume I, Unconstrained Optimization. Chiches
ter, England: Wiley.

___ (1981a). Practical Methods of Optimization: Volume 2, Constrained Optimization.. Chiches
ter, England: Wiley.

___ and 1. W. Sinclair (1981b). Degenerate values for Broyden methods. J. Opt. Theory Appl.,
March. pp. 331-324.

•

~---~--~~-----------------~

References 457

Forsythe, G. E. (1970). Pitfalls in computation, or why a math book isn't enough. Amer. Math.
Month~v, November, pp. 931-956.

___ M. A. Malcolm. and C. B. Moler (1977). Computer Me/hods for Mathemotical Computa
tion. Englewood Cliffs, NJ: Prentice-Hall.

Fox, R. L., and E. L. Stanton (1968). Developments in structural analysis by direct energy
minimization. A1AA J., June, pp. 1036-1042.

Francis, J. G. F. (1961, 1962). The QR transformation, I & II. Computer. J., 4, pp. 265-271,
332-345.

Fried, S. S. (1984). Evaluating 8087 performance on the IBM Pc. Byte Guide (0 the IBM pc, Fall,
pp. 197-208.

Garbow, B. S., 1. M. Boyle, 1. J. Dongarra, and C. B. Moler (1977). Matrix Eigensystem Routines,
New York: Springer.verlag.

Gentleman. W. M. (l973). Least squares computations by Givens transformations without square
roots. J. hlst. Math. Appl., pp. 329-336.

Gill, P. E., and W. Murray (1972). Quasi~Newton methods for unconstrained optimization. J.
lnst. Math. Appl., pp. 91-108.

___ G. H. Golub, W. Murray, and M. A Saunders (1974a). Methods for modifying matrix
factorizations. Math. Comput., April, pp. 505-535.

___ and W. Murray (1914b). Numerical Methods for Constrained Optimization. London:
Academic.

___ and W. Murray (1974c). Newton-type methods for unconstrained and linearly-constrained
optimiz.ation. Math. Programming, pp. 311-350.

__ W. Murray, and M. A. Saunders (1974d). Methods for computing and modifying the LDV
factors of a matrix. Teddington, Middlesex, England: National Physical Laboratory, Report.
No. NAC56.

___ and W. Murray (1918). Algorithms for the solution of the nonlinear least-squares problem.
SIAM J. Numer. Anal., October, pp. 977-992.

__ W. Murray, S. M. Pickle, and M. H. Wright (1979a). The design and structure of a
Fortran program library for optimization. ACM TraItS. Math. Software, 5 (3), pp. 259-283.

___ and W. Murray (1919b). Conjugate-gradient methods for large-scale nonlinear optimiza
tion. Systems Opt. Lab, Dept. Opt. Res., Tech. Report SOL 79~15. Stanford, CA: Stanford
U., October.

___ W, Murray, and M. H. Wright (1981). Practical Optimization. London; Academic.

Goddard. P. J., and R. Spence (1969). Efficient method for the calculation of first- and
second-order network sensitivities. Electron. Lett.• August, pp. 351-352.

___ P. A. Villalaz.. and R. Spence (1911). Method for the efficient computation of the
large-change sensitivity of linear nonreciprocal networks. Electron. Lett., February 25, pp.
1l2-ln

Golden. R. M. (1973). Digital filters, in Modern Filter Theory and Design (0. C. Ternes and S. K.
Mitra, eds.). New York: Wiley, pp. 505-557.

Goldfarb, D., and L. Lapidus (1968). Conjugate gradient method for nonlinear programming
problems with linear constraints. 1& EC Fundamentals, February, pp. 142-151.

___ (1980). Curvilinear path steplength algorithms for minimization which use directions of
negative curvature. Math. Programming, pp. 31-40.

Goldstein, A. A., and 1. F. Price (1961). An effective algorithm (or minimization. Numerische
Mathematik, pp. 184-189.

Golub, G. H., and M. A Saunders (1970). Linear least squares and quadratic programming.
Integer and Nonlinear Programming (1. A. Abadie, ed.). Amsterdam: North HoUand, pp.
229-256.

458 References

and ~. F. Van Loan (1980). An analysis of the total least squares problem. SlAM J.
Numer. Anal., 17 (6), pp. 883-893.

___ and C. F. Van Loan (1983). Matrix Computations. Baltimore: Johns Hopkins University
Press.

Grcville. T. N. E, (1959). The pseudoinverse of a rectang.ular or singular matrix and its
applications to the solution of systems of linear equations. SIAM Rev., January, pp. 38-43.

___ (1960). Some applications of the pseudoinverse of a matrix. SIAM Rev., January, pp.
15-22.

___ (1966). Note on the generalized inverse of a matrix product. SIAM Rev., October, pp.
518-521.

Gyurcsik, R. S., K. Mayanum, T. Yee, F. Ma, and D. O. Pedersen (1984). Language comparison
for circuit simulation on desktop computers. Digest 19M IEEE [SeAS, pp. 527-529.

Haarhotr, P. c., and 1. D. Buys (1970). A new method for the optimization of a nonlinear function
subject to nonlinear constraints. Comput. J., May, pp. 178-184.

Hachtel, G. D., T. R. Scott, and R. P. Zug (1980). An interactive linear programming approach to
model parameter fitting. and worst case circuit analysis. IEEE Trans. Circuits Syst., October,
pp. 871-881. .

Hadley, G. (1963), Linear Programming. Reading, MA: Addison-Wesley,

___ (1964). Nonlinear and Dynamic Programmillg. Reading, MA: Addison-Wesley.

Hald, 1., and K. Madsen (1981). Combined LP and quasi-Newton methods for minimax
optimization. Math. Programming, pp. 49-62.

Han, S. P. (1976). Superlinearly convergent variable metric algorithms for general nonlinear
programming problems. Math. Programming, pp. 263-28~.

Hebden, M. D. (1973). An algorithm for minimization using exact second derivatives. Atomic
Energy Research Establishment, Report TP515. HarweU, England.

Helton, J, W. (1981). Broadbanding: gain equaliz.ation directly from data. IEEE Trans. Circuits
Sysc., December, pp. 1125-H37.

Herskowitz, G. J., and M. Sankaran (1969). Application of NASAP to the design of communica
tion circuits and extension of NASAP routines to large scale circuits. Hoboken, NJ: Stevens
lnst. Tech., Report. NASA N69-31005;

Hestenes, M. R (1969). Multiplier and gradient methods. J. Opt. Theory Appl., 4, pp. 3030-3320.

Hewlett-Packard Co. (1982). HP-15C Advanced Functions Handbook. Part No. ooo15-9001l.

Himme1blau, D. M. (1972). Applied Nonlinear Programming. New York: McGraw-Hill

Holmes, R., and T. A. Jeeves (1981). Practical aspects of nonlinear programming. MIT Industrial
Liaison Program, Report 10-36-81.

Hopper, M. J. (1981). Harwell Subroutine Library. United Kio.gdom Atomic Energy Authority,
Oxfordshire, England.

Hooke. R., and T. A Jeeves (1961). "Direct search" solution of numerical and statistical
problems. J. ACM, April, pp. 212-221.

Huang, H. Y. (1970). Unified approach to quadratically convergent algorithms for function
minimization. J. Opt. Theory App/., 5, pp. 405-423.

iBM (1968). $vstem 360 Scientific Subroutine Package (360A~CM·03X), Version Ill: Programmer's
Mamwl. White Plains, NY, Part No. H20-020S-3.

Jacobs, D. (1977). The State of the Art in Numerical AlIa~rsis. London: Academic.

Jacobson, D. H. and W. Oksman (1970). An algorithm that minimizes homogeneous functions of
N variables in N + 2 iterations and rapidly minimizes general functions..Cambridge, MA:
Harvard Univ. Div. Eng. Appl. Physics, Tech. Report. No. 618 (Revised),

Iennings. A. (1977). Matrix Computationjor Engineers and Scientists. Chichester, England: Wiley.

I

I

I

I

L~~_

I

------------_.- -----------------r----
References 459

Johnson, R. A. (1973). Mechanical bandpass filters, in Modern Filter Theory and Design (G. C.
Ternes and S, K. Mitra, cds.). New York: Wiley, pp. 157-210.

___ (1983), Mechanical Filters in' Electronics. New York: Wiley.

Jones. A. (1970). SPlRAL-A new algorithm for non~linear parameter estimation using least
squares. Comput. J., August, pp. 301-308.

Kamiel, M. S., and A. Dax (1979). A modified Newton's method (or unconstrained minimization.
SIAM J. Numer. Anal., 16 (2), pp. 324-331.

___ (1984). Computing the singular value decomposition in image processing. Proc. 1984
Conf. Info. Systems and Sciences. Princeton University. pp. 91-93.

Kaplan, W. (1959). AdlJanced Calculus. Reading, MA: Addison-Wesley.

Klema, V. c.. and A. J. Laub (1980). The singular value decomposition: its computation and some
applications. IEEE Trans. Auto. Control, AC~25, N.2, April, pp. 164-176.

Knuth, D. E. (1968). The Art of Computer Programming. Reading, MA: Addison~WesJey.

Krebs, M. G. (1973), The design of a least-pth electric circuit optimization program. Los Angeles,
CA: University of California.

Kuester, 1. L., and 1. H. Mize (1973). Optimization Techniques with Fortran. New York:
McGraw~HiI1.

Kuhn, H. W., and A. W. Tucker (1951). Nonlinear programming, in Proc. Second Berkeley Symp.
on Math. Stat. Probability (1. Neyman, ed.). Berkeley, CA: University of California Press, pp.
481-492.

Lasdan, L. S., and A. D. Waren (1966). Optimal design of filters with bounded, lossy elements.
IEEE Trans. Circuit Theory, June, pp. 175-187.

___ and A. D. Waren (1967). Mathematical programming for optimal design. Eleclro--Technol~

ogy, November, pp. 55-70.

Lawson, C. L, and R. 1. Hanson (1974). SolVing Least Squares Problems. Englewood Cliffs, NJ:
Prentice-Hall.

Lee, H. B., P. Carvey, R. Grabowski, and D. Evans (1970). Program refines circuit from rough
design data. Electronics, November 23, pp. 58-65.

Lenard, M. L (1978). Accelerated conjugate direction methods for unconstrained optimization. J.
Opt. Theory Appl., May, pp. 11-31.

Levenberg, K. (1944). A method for the solution of certain nonlinear problems in least squares.
Quart. Appl. Math., 2, pp. 164-168.

Levy, A. V., and S. Gomez (1984). The tunneling method applied to global optimization.
Numerical OplimizaliQ1t 1984 (p, T. Boggs, R. H. Byrd, and R. B. Schnabel, cds.). Phila
delphia, PA: SIAM, pp. 213-244.

Ley, B. J. (1970). Computer Aided Ana~vsis and Design for Electrical Engineers. New York: Holt,
Rinehart and Winston.

Li, S. T., J. W. Rockway, J. C Logan, and D. W. S. Tan (1983). Microcomputer Tools for
Communications Engineering. Dedham, MA: Artech,

Lootsma. F. A. (1972). Numerical Methods for Nonlinear Optimization. London: Academic.

Luns, R., and T. H. 1. Jaakola (1973). Optimization by direct search and systematic reduction of
the size of the search region. ArenE J., 19 (4), pp. 760-766.

Lyness, 1. N. (1976). An interface problem in numerical software. Proc. 6th Manitoba Conf. Num.
Math., pp. 251-263.

MaffioIi, F. (1970). Constrained variable metric optimization of layered electromagnetic absorbers.
Alta Frequenza, February, pp. 154-164.

Marjkowski, G. (1984). A Comprehensive Guide 10 the IBM Personal Computer. Englewood Cliffs,
NJ: Prentice-HalJ. .

Maron, M. J. (1982). Numerical Analysis: A Practical Approach. New York: Macmillan.

460 References

Marquart, D. W. (1963). An algorithm for·1east-squares estimation of nonlinear parameters. J.
, SIAM, June, pp, 431-441.

Martin, R. S., G. Peters, and J. H. Wilkinson (1965). Symmetric decomposition of a positive
definite matrix. Numerische Mathematik, pp. 362-383.

Massara, R. E., and J. K. Fidler (1975). Efficient damping method for least-squares algorithms.
Electron. Lett., January 23, pp. 33-34.

McCalla, T. R. (l967). Introduction to Numerical Methods and FORTRAN Programming. New
York: Wiley.

McCormick, G. P., W. C. Mylander, and A. V. Fiacco (1965), Computer program implementing
the sequential unconstrained minimization technique for nonlinear programming. MqLean,
VA: Research Analysis Corp., Tech. Paper RAC·TP.151.

___ (1967). Minimizing structured unconstrained functions. McLean, VA: Research Analysis
Corp., Tech Paper RAC-TP-277.

___ (1969). Antizigzagging by bending. Management Sci" 15, pp. 315-320.

Miner, A. R. (1981). BASIC Programs for Scientists and Engineers. Berkeley, CA: Sybex.

Moore, P. G., and S. D. Hodges (1970). Programming for Optimal Decisions. Middlesex, England:
Penguin.

More, J. J., and D. C. Sorensen (1984). Newton's method. Studies in Numerical Analysis, Vol. 24
(G. H. Golub, ed.). Washington, DC; Mathematical Association of America.

Morris, J. (1983). Computational Methods in Elementary Numerical A,za(vsis. New York; Wiley.

Mosteller, H. W. (197&). Heuristi~ direct·search minimization. IEEE Trans. Auto. Control. June,
'pp, 493-494,

Murray, W. (1972). Numerical Methods for Unconstrained Optimization. Londo~; Academic.

Murtaugh, B. A., and R. W. H. Sargent (L970). Computational experience with quadratically
convergent minimisation methods. C{)mput. J., pp. 1&5-194.

Musson, J. T. B., B. Nicholson, and M. Sadler (1970). The application of optimisation to the
design of LCR networks and microwave components. Marconi Rev., pp. 202-224.

MyIander, W. c., R. L. Hodges, and G. P. McCo(mick (1971). A guide to SUMT- Version 4.
McLean, VA: Research Analysis Corp., Tech. Paper RAC-P~63.

Na1>h, J. C. (1979). Compact Numerical Methods for Computers: Linear Algebra and Function
Minimisation. New York: Wiley.

Nazareth, L. (1973). Unified approach to unconstrained minimization (I). Generation of conjugate
directions for unconstrained minimization without derivatives (Il). Berkeley, CA: Univ.
California, Tech. Report ASTrA AD-770 616.

___ . (1976). A hybrid least squares method. Argonne, It; Argonne National Laboratory,
Report ANL-AMD-TM-254 (Revised),

___ (1977). A relationship between the BFGS and conjugate gradient algorithms. Argonne, It:
Argonne National Laboratory, Report ANL-AMD-TM-2&2 (Revised).

___ (1978a). Software for Optimization. Menlo Park, CA: Stanford Systems Optimization
Laboratory, Tech, Report SOL 78-32, ASTIA AD-AD66 343,

___ and 1. Nocedal (1978b). A study of conjugate gradient methods. Menlo Park, CA:
Stanford Systems Optimization Laboratory, Tech. Report SOL·78-29. ASTIA AD-A066 391.

___ and J. Nocedal (1978c). Properties of conjugate gradient methods with inexact line
searches. Menlo Park, CA: Stanford Systems Optimization Laboratory, Tech. Report SOL
78-1.

Noble, B. (1969). Applied LinearAlgehra. Englewood Cliffs, NJ: Prentice~Hal1.

Norton, P. (1984). MS~DOS alld PC-DOS User's Guide. Bowie, MO: Robert 1. Brady Co.

Ogata, K. (1967). State Space Analysis of Control Systems. Englewood Cliffs, NJ: Prentice-Hall.

-----~----

•

.-----------_. - - _. ---------_._-

References 461

O'Leary, D. P. (1982). A discrete Newton algorithm for minimizing.a function of many variables.
Math. Programming, 23, pp. 20-33.

Orchard, H. 1., G. C. Ternes, and T. Cataltepe (1985). Sensitivity formulas for terminated JossJess
two-ports. IEEE Trans. Circuits Systs., CA5-32, N5, May, pp. 459-466.

Oren. S. S. (1973). Self·scaling variable metric algorithms without line search for unconstrained
minimization. 1973 Joint Auto. Controls Conf., June.

Osborne, M. R., and G. A Watson (1969). An algorithm for minimax approximation in the
nonlinear case. Comput. J., pp. 63~68.

Penfield, P., R. Spence, and S. Duinker (1970). Tellegen's Theorem and Electrical Networks.
Cambridge, MA: M.LT. Press.

Penrose, R. (1955). A generalized inverse for matrices. Proc. Cambridge Phi/os, Soc., pp. 406-413.

Peters, G., and J. H. Wilkinson (1970). The least squares problem and pseudo-inverses. Comput.
,1., pp. 309-316.

Popovic, J. R., J. W. Bandler, and C. Chanllambous (1974). General programs for least pth and
near minimax approximation. Int. J, Systems Sci., pp. 907-932.

Powell, M. J. D. (1964). An efficient way for finding the minimum of a function of several
variables without calculating derivatives. Comput. J., pp. 155-162.

___ (1965). A method for minimiz.ing a sum of squares of non-linear functions without
calculating derivatives. Comput. J., pp. 303-307.

___ (1967). Minimization of functions of several variable's. Numerical Analysis (J. Walsh, ed.).
Washington, DC: Thompson Book Co., pp. 143-157.

___ (1969). A method for nonlinear constraints in optimiz.ation problems. Optimization (R.
Fletcher, ed.). London: Academic, pp. 283-297.

___ (1970). A hybrid method for nonlinear equations. Numerical Methods for Nonlinear
Algebraic Equations (P. Rabinowitz, ed.). London: Gordon and Breach.

___ (1977). Quadratic termination properties of Davidon's new variable metric algorithm.
Math. Programming, pp, 141-147.

___ (1978). A fast algorithm for nonlinearly constrained optimiz.ation calculations. Numerical
Analysis, Dundee 1977 (G. A. Watson, ed.). Berlin: Springer-Verlag, pp. 144-157.

Ralston, A. (1965). A First Course in Numerical Analysis. New York: McGraw-Hill.

Rheinboldt, W. C. (1974). Methods for solving systems of nonlinear equations. Philadelphia, PA:
Society for Industrial and Applied Mathematics.

Rosen, J. B. (1960). The gradient projection method for nonlinear programming, Part I. Linear
constraints. J. SIAM., March, pp. 181-217.

Rosenbrock, H. H. (1960). An automatic method for finding the greatest or least value of a
function. Comput. J., pp. 175-184.

Rust, B. (1966). A simple algorithm for computing the generalized inverse of a matrix. Comm.
ACM, May, pp. 381-385.

Schrack, G., and N. Borowski (1912). An experimental comparison of three random searches.
Numerical Methods for Nonlinear Optimization (F. A. Lootsma, ed.). New York: Academic,
pp. 137-147.

Shanno. D. F. (1970). An accelerated gradient projection method for linearly constrained
nonlinear estimation. SIAM J. Appl. Math., March, pp. 322-334.

SibuJ, L. H., and A. L. Fogdsanger (1984). Application of coordinate rotation algorithm to
singular value decomposition. Digest ISCAS '84, pp. 821-824.

Smith, B. T, J. M. Boyle,1. 1. Dongarra, B. S. Garoow, Y. Ikebe, V. C. Klema, and C. B. Moler
(1976). Matrix Eigensystem Routines. New York: Springer-Verlag.

Smith, R. C. (l971). Considerations in automated design using topological alterations. Southern
Methodist University, University Microfilm No. AAD72-00662.

462 References

Spence, R. (1970). Linear Active Networks. London: Wiley.

Staudhammer, 1. (1975). Circuit Analysis by Digiral Computer. Englewood Cliffs, NJ: Prcntice·Ha11.

Steihaug, T. (1983). The conjugate gradient method and trust regions in large scale optimization.
SIAM J. Name'. Anal., 26 (3), pp. 626-637.

Stewart, G. W. (1%7). A modification of Davidan's minimization method to accept difference
approximations or derivatives. J. ACM, January. pp. 72~83.

Strang, G. (1980). Linear Algebra and Its Applications, 2nd Ed. New York: Academic.

Talisa, S. H. (1985). Application of Davidenko's method to the solution of dispersion relations in
lossy waveguide systems. IEEE Trans. Microwave Theory Tech., MTr-33, No. 10, October,
pp.967-971.

Ternes, G. c., and D. A. Calahan (1%7). Computer-aided network optimization, the state-of-the
art. Proc. IEEE, November, pp. 1832-1&63.

___ and D. Y. F. Zai (1969). Least pth approximation. IEEE Trans. Circuit Theory, May, pp.
Z35-Z37.

___ and S. K. Mitra (1973). Modern Filter Design. New York: Wiley.

Tesler, L G. (1984). Prog~amming languages, Sci. Amer., September, pp. 70-78.

Traub, J. F. (1964). Iterative Methods for the Solution of EquatioTlS. New York: Chelsea.

Tufts, D. W., and R. Kumarsan (1982). Singular value decomposition and improved frequency
estimation using linear prediction. IEEE Trans. Acoustics, Speech, Sig. Proc" ASSP-30, No.
4, August, pp. 671-675.

Uhlir, A. (1982). Rectangular-to-polar conversion in BASIC. Microwave Jour., March, p. 18.

Van HutfeI, S., J. Vanderwalle, and 1. Starr (1983). The total linear least squares problem:
formulation, algorithm, and applications. International Circuits Systs. Conj. 1984, pp.
328-331.

Vlach, J., and K. Singhal (1983). Computer Methods for Circuit Analysis and Design. New York:
Van Nostrand Reinhold.

Voith, R. P., W. G. Vogt, and M. H. Mickle (1969). A direct computational procedure for the
generalized inverse. Conference Record, 12th Annual Midwest Symp. on Circuit Theory, April,
pp. VI.7.1-VI.7.8.

Walsh, G. R. (1975). Methods of Optimization. Chichester, England: Wiley.

Walster, G. W., E. R. Hansen, and S. Sengupta (1984). Test results for a global optimization
algorithm. Numerical Optimization 1984 (P. T. Boggs, R. H. Byrd, and R. B. Schnabel, cds.).
Philadelphia: SIAM, pp. 272-Z87.

Waren, A. D., and L. S. Lasdon (1979). The status of nonlinear programming software. Operations
Res. May~June, pp. 431-456.

Wilde, D. J., and C. S. Beightler (1967). Foundations of Optimization. Englewood Cliffs, NJ:
Prentice-Hal1.

Wilf, H. S. (1962). Mathematics for the PhysicuJ Sciences. New York: Wiley.

Wilkinson, J. H. (1963). Rounding Errors in Algebraic Processes. Englewood Cliffs, NJ: Prentice
Hall.

___ (1965). The Algebraic Eigenvalue Problem. London: Oxford University Press.

Willoughby, J. K., and B. L. Pierson (1973). The projection operator applied to gradient methods
for solving optimal conuol problems with terminal state constraints. 1m. J. Systems Sci., pp.
45-57.

Wisner, D. A. and R. Chaltergy (1978). IntroducJion to Nonlinear Optimization: A Problem Solving
Approach. New York.: North-Holland.

Wolf, C. (1985). Serious FORTRAN. PC Magazine, December 24, pp. 161-171.

References 463

Wolfe, P. (1961). A duality theorem for non-linear programming. Quart. Appl. Math., pp.

239-244.
Wright, D. J., and O. P. D. Cutteridge (1976). Applied optimization and circuit design. ComputeT

Aided Design. April, pp. 70-76.
Wylie, C. R. (1951). Advanced Engineering Mathematics. New York: McGraw-Hill.

Zirilli, F. (1982). The solution of nonlinear systems of equations by second order systems of o.d.e.
and linearly implicit A-stable techniques. SIAM J. Numer. Anal., 19 (4), pp. 800-814.

Index

Absolute error, 28
Accumulation point, 256
Active inequality constraints. 146, 285
Active set method for linear inequality

constraints, 284, 285
Adjoint network, 366, 367, 370
Adrrtittance, 320, 335,342
Algorithm:

reliable, 29
robust, 29

Analytic continuation, 319
Angle between vectors, 58,114,173
Annihilation:

matrix element, 81-85
matrix rank, 56

Applications, fields, 13
Approximation, 5,6, 112, 143
Argand diagram, 72
ASCII,44
AssociatiVity. 49, 50
Augmented Lagrangian function, 297

Barrier penalty function, 293, 312
BASIC:

compiled, 30, 305
no complex va~iable type, 343, 359
double precision functions, 33, 219
interpreted, 30. 305
limitations compared to FORTRAN, 358
merging subprograms, 32
precision, 20, 36, 39
TRACE command. 31
variable names, 31, 358

Basis, 62, 86, 277
Basis function, 111, 114, 192, 193
BFGS formula, 239, 241, 249

- - - - -------

Bidiagonalization, Householder, 116
Bilinear:

fonn, vectors, 108
functions, complex, 373, 385
property of linear networks, 376

Binding constraints, 146, 155, 188.273,288,
310

Bode sensitivity function, 381
Bounds on variables, 187,285.332
Box constraints, 284, 287
Broyden family of update formulas, 240

Cancellation, 21
Canonical form of quadratic form, 124, 243
Capacitance, 316, 321
Cauchy point, 131, 171
Cauchy-Riemann condition, 325, 342, 365,

383
CDFP update fonnula, see Update formulas
Chaio rule, 132, 151,244,343
Characteristic:

equation, 70, 74
value, 69, 317

Chebyshev function:
first kind, 200, 220, 229
shifted of the first kind. 229

Coefficients, weighting, 197
Column space, 62, 73,111. 112
Commutivity, 49, 50, 51
Comparison of optimization performance.

185,187,188,267,359
Complement, orthogonal, 89
Completing the squares, 125
Complex:

cartesian form, 324
equations, 325,385,386

465

466 Index

Complex (Continued)
linear update, 323, 330
rectangular-ta-polar conversion, 384
variable identities, 325

Compound functions, differentiation of. 151
Computer-aided redesign, 219
Concave functions, 140
Condition number, 59, 60, 9B, 119,207
Condueumce, 321,386
Cone, convex polyhedral, 88, 154
Conformability, matrix, 50
Conic forms, 125
ConjugaCY, 135.241
Conjugate:

gradient method, 137, 160, 233
search directions, 135

Co~ugation, 325,362
Constitutive laws for network branches, 322,

363
Constrained network optimization, 326
Constraints:

binding inequality, 146, 155,273
box, 284, 287
concept, 4
equality, 150
equivalent to minimax, 226
feasible, 312
linear, 92. 272
scaling, 305

Contours, 3, 24, 171, 209
Convergence, rate of:

linear, 19, 134,299
Newton search, 145
QR decomposition. 76
quadratic, 19
repeated substitution, 20
steepest descent, 134
superlinear, 19

Convex functions, 140, 141,254,310
Coprocessor, numeric, 32, 336, 356
Cosines, law of, 58
Cross terms in quadratic form, 124
Curvature:

definition, 133
negative, 168, 227

Curve fitting, 10, J II, 194, 210, 224

Damping factor, 235
Data entry:

DATA statements and ASCI] files, 45
targ~,220,221,326, 328,348

Davidenko's method, 236
Decomposition, see Factorization
Decrement quality factOI', 321

Defmite nodal matrix, 324-326, 371
Degrees of freedom, 275
Del operator, lOB, 158, 195,244,281
Del-squared operator, 195,281
Derivative:

approximation, see Differences, finite
directional, 132
of complex function, 383
of composite functions, 151
ex.act, network response, 361-373
of explicit functions, 5
of inner product, 158
ofstep length with respect to LM parameter,

231
of zero-valued quantities, 365, 385

Determinant:
characteristic equation, 70
definition, 52, 55
geometric interpretl:\tion, 63

DF~ update formula, 240, 311
Di.agonal, principal, 42
Diagonalization, matrix. 73
Differences:

finite, 37, 164, 166, 228, 231, 269, 341,
385

projected into subspace, 282-284
Differential:

fonnula, 148
operator, 361, 365
voltage and current, 363, 367

Differential equation:
equivalent to optimiz.ation, 236
general solution, 318
homogeneous, 317
RLC network, 316

Dimension of subspace, 62
Directional derivative, 132, 155
Direct-search algorithm:

pattern, 269
Powell's, 269
random, 2'70
simplex, 269

Dissipati.on, see Power, dissipated
Distributivity, 50, 51
Divided-differences. 236
Dixon's theorem, 241
Domain, 73, 220
Dot product, see Inner product

Eccentricity, 24
Eigenproblem:

definition, 69
generalized, 80
properties, 70

Eigenvalue:
in canonical fonn, 124
complex, 76
computation, 71
definition, 69
and ellipsoids, 125
inverse power method for smallest, 79
power method for largest, 71
related to singular values, 122, 158
shifted inverse power method, 79
of similar matrices, 74

Eigenvector:
definition, 69
dominant, 78
and eUiposoids, 125
left, 71

Elimination:
direct, 273, 278, 308
Gaussian, 98
generalized constraints, 276, 306
nonlinear, 306

Ellipses, 124
Ellipsoid, 134, 167
Error:

absolute, 28
backward analysis, 26
cancellation, 165
forward analysis, 26
function, integral, 199
relative, 28
rounmng,20,21,68,259
truncation, 22, 165

Euclidean space, 41
Excitation patterns for Tel1egen's derivatives,

367
Extrapolation:

at least-plh results. 223
in line search, 253, 257
Richardson, 225

Factorization:
Cholesky, 102, 157
Gram-Schmidt, 64-69, 74, 109
LDLT, 101-104
LU,98-101
for overdetermined equations, 109
singular value, 115-122

Farka's lemma, 154, 155,.272
Feasible region, 231
Flag variahle in BASIC, 188, 215, 231, 301
Fletcher's quadratic ratio, 172, 206
Floating-point numbers, 20
Flow chart:

C4-I, NEWTON, 180-181

l'--- _

Index 467

C4-5, LEASTP, 212-213
C5-I, QNEWT, 263
C5-2, UNQUAD, 255
C5-3, LINCUBIC, 258
C5-8, MULTPEN, 302
C6-I, TWEAKNET, 331
cutback line search, 250
iterative process, 15
ladder analysis, 333

Frequency:
complex, 319
real, 319, 321
scan in TWEAKNET, 336, 340, 350,

351
Frobenius nonn, 59
Function:

barrier penalty, 293
basis, 111, 114, 193
complex, identities, 325
concave, 141
continuous, 10, 140
convex, 140, 141,254,310
implicit, 4. See also Implicit function

theorem
Lagrangian, see Lagrangian function
line, 49, 130
network:

robust response, 372
transfer, 341

nonlinear, 140
properties, 140
quadratic, 128
scalar of vector, 1
smooth, 10, 140
transducer, see Transducer function
transfer, see Network, transfer function
unimodal, 140, 141, 248
vector of vector, 146. 194

Gaussian elimination, 98
Gaussian integration, 201, 218
Gauss-Jordan elimination, 25, 53-55, 98
Gauss-Newton:

Hessian matrix, 195
Jacobian matrix, 195,340
search method. 191, 227
step, 175, 197, 198,205,207,208,227

Generalized reduced gradient method, 307
Geometric:

center, 374, 377
neighborhood, 377
progression, 174, 177

Gerschgorin's theorem, 71,177
GOTO 999 recovery technique, 46, 182

468 Index

Gradient:
concept, 4
least-squares objective function, 193
projected, 133
projection method, 191,282
quadratic function, 129

Gram-Schmidt orthogonalization procedure,
64-69, 74, 109

Graph, network, 322, 360
ORO. see Generalized reduced gradient

method
Growing network elements, 366, 385

Hadamard's inequality, 63
Half-space, 88, 92,154,272
Hereditary property, 241
Hermitian matrix, 41
Hessian, quadratic function, 129
Hessian matrix, see Matrix, Hessian
Hilbert matrix, 200
Homogeneous solution, 317
Hooke-Jeeves pattern direct-search

algorithm, 269
Huang family of update formulas, 241
Hyperplane, 86, 87, 155, 272
Hypersphere, 58

IUconditioned matrix, 59, 200, 207
IIlconditioning:

corijugate gradient method, 138
linear equations, 23, 25

Immittance, 316
Impedance:

applications, 320, 328, 335
branch, 342
definition, 318
mapping, 376
matrix, 325, 366

Implicit function theorem, 146, 148,306
Inconsistent equations, 107, 110
Inductance, 316, 321
Inner product, 51, 95,108
Integration:

adaptive, 204
Gaussian, 201, 218
numerical, 199-204

Interpolation:
without derivatives, 249
linear, 140
repeated linear, 225
between steepest~descent and Newton

directions, 175
Intersection of half-spaces, I S4
Invariance: .

elliptic norm, 311

property of Newton methods, 242, 24S
scale in Newton searches, 244
subspace, 69

Inverse, generalized:
fu1l rank, 91
identities, 121
orthogonal decomposition, 109
SVD,120
see also Matrix, inverse

Inverse barrier penalty function, 312
Iteration, 134
Iterative process:

comparison, 27
definition, 14
flow chart, 1S
multi-point, 10
one point, 10
reliability, 29
robust, 29
termination, 27

Jacobian, see Matrix, Jacobian

Kirchoff operator, 361
Kirchoff's laws, 322, 325
Kuhn-Tuckerconstraint conditions, 155, 157,

190, 272, 284

Ladder network:
analysis, 330
definition, 322

Lagrange multiplier, see Multipliers, Lagrange
Lagrange-Newton method for nonlinear

constraints, 308
Lagrange's reduction, 125
Lagrangian function, 151, 153, 271, 297, 307
Languages, programming, 30
LC network branch, 334, 344
Least-pth:

first partial derivatives, 198
Hessian matrix, 198
objective functions, 12, 198,225,327

Least-squares:
first partial derivatives, 39, 193
linear, 97,110,118,158
nonlinear, 11. 191, 197
weighted, 112, 120, 197,225

Legendre polynomials, 20 I
Level curves, see Contours
Levenberg-Marquardt method, 173, 196,

204,211
parameter adjustment, 174-178, 204-207,

211,214
Linear:

complex equations, 385

dependence, 61
equations, relationship to optimization, 8
fractional transformation, 373
independence. 61.135

of conjugate vectors, 135
interpolation, 140
model, Ill, 112, 158, 166, 167
operators, 95
regression, 110
system, 317
transfonnations, complex, 373

of variables, see Transformation, of
variables

Linearized constraints, 310
Line search:

concept, 49,130,131,249
cubic interpolation, 256-259
cutback strategy, 248-250
quadratic function, 131,245
quadratic interpolation, 2S 1-256
in SQP method, 309

LLS, see Least-squares, linear
LM, see Levenberg-Marquardt method
Logarithmic transformation of variable space,

381

Machine preCision, 39, 165
Macro commands, 349
Manifold, linear, 88
Mapping:

complex planes, 374-376
impedance, 376
between position and gradient, 237

Matrix:
annihilation, element, 81
bidiagonal, 8]
column vectors in, 43, 62,] 65
companion, 94
definition, 42
deflation, 76
design, 112
determinant, 52, 55, 63
diagnoal, 42, 43
equality, 48
Hessian,S, 129, 144, 164, 198
Hilbert, 200, 387, 388
Householder, 81, 93
idempotent, 90
impedence, 325, 368, 371
inverse:

generalized, 9],]09, 120
by partitioning, 55, 93
square, 51, 53-55

Iacobian, 145, 147, 195,207,208,215,
283, 340

Index 469

Lagrangian, 312
lower triangular, 43
multiplication, 48-50
nodal admittance, 324-326, 368, 370
nonsingular, 52, 62
norms, 58
notation for computation, 35
orthogonal, 63, 93
partitioned, 43, 93, 273, 277,307
permutation, 53
positive definite, J02, 135,167,289
power, raised to, 95
product, transposed, 50,115,123
projection, 89,90,95,282
proper, 80
proportional, 51
rank,62
rotation, plane, 80
similar, 95
singular, 62, 115, 176,207
skew, 93
superdiagonal, 116
symmetric, 43, 50, 72, 102, 122, 123
test, 387
trace, 42
triangular, 43, 94
tridiagonal, 81
unit, 43
upper Hessenberg, 43, 77, 81
Vandermonde, 114,224
weighting, 114, 120, 198
zero,42

Maxima and minima:
concept,S, 10
constrained, 4, 150, 155, 156
cubic line function, 259
global, 141, 184
in Lagrange method,]52,271,298
local, J4]
necessary and sufficient conditions, 274
of quadratic line function, 252

Mechanical analogies of electrical quantities,
319

Menu, command:
C2-1, MATRlX, 44
C4-1, NEWTON, 182
CS-l, QNEWT, 261
C6-1, TWEAKNET, 337
concept, 44

Metric. 161, 380
Minimax:

constrained, 150, 155, 162
definition.]2, 222
equivalent fonnulations, 12,225,226
location of quadratic function,] 29

470 Index

Model:
linear mathematical. 111, 112,158
linear Taylor series, 166, 167
nonlinear mathematical, 192, 230
quadratic, 173, 243, 280

Monotone weighting functions, 379
Multiplier penalty function, 291. 293
Multiplier penalty method. 300, 329
Multipliers, Lagrange, 151, 152,156,271,

274,279,299
sensitivity interpretation, 153,272,314

Neighbo,hood:
arithmetic and geometric. 377
concept, 7
ellipsoidal, 167
hypersphere, 166
trust, 170, 173

NeIder and Mead simplex direct~search

algorithm, 269
Network:

adjoint, 366, 367, 370
analysis, general, 359
bandpass elliptic, 352, 383
branch voltages and currents, 324, 337
element units, 344
ladde" 322
lowpass emptic, 334
optimization conditioning, 344
ports, 323,362,367
reciprocal. 367, 368
topology, 323,337,346
transfer function, 341

Newton point, 144, 171
Newton-Raphson search method, 144, 227,

234,295
Newton step, 144, 188, 196,244,249,281,

309
Nodal matrix method ofnetwork analysis, 324
Nonlinear:

constraint survey, 306
equations, solution of, 146, 194,218,227
programming problem, 270
scaling, 247, 381

Norm:
elliptic, 167,246
Frobenius, 59,98
induced,59
infinity, 57, 223
integral, p-norm, 199
matrix, compatible, 58
matrix two-norm, 115
spectral, 59, ll5
vector p-norms~ 57,222

Normal equations, 110, 197-199,207
Normal modes, 69
Normal vector, 86, 272
Nun column space, 62, 277, 278, 282

Objective function:
Bandler's least-pth, 225
concept, I
isometric surface, 2
least-pth, 12,198,327
least-squares, II
level curves, 3
minimax, J2, 222
surfaces, 2

Offset vector in multiplier penalty function,
294,298,299

Ohm's law, 320, 325
Open circuit, 329
Optimization:

concept, I, 4
definition, 9, 270
without derivatives, 231, 268-270, 341
geometrical representation, 2
history, 9
precautions, computational, 36
problem definition, 9
static, 4
test problems, see Test problems for

optimization
Optimum, constrained, 271
Outer product, 51, lOS, 158,238
Overdetermined system of equations, 97, 107,

109, llO
Overilow, 20, 336, 355

Parallelogram relation, 95
Parallel tangency property of quadratic

functions, 270
Parasitic power loss, 320, 321
Particular solution, 317
Penalty function:

barrier, 293
equality constraints by Courant, 291
exact, 308
exterior, 292
interior, 293. 312
multiplier, 293

Personal computers:
accuracy, 20, 165
speed, 33, 34, 220

Phase angle, 318
Phasor, 318
Poincare metric, 380
Polyhedron, 88

- - - -~-~-------

Index 471

Polynomial interpolation, 224
Polynomials:

Chebyshev, 200, 220, 229
extrapolation, 224
Legendre,201
Rational network. 382

Ports, network, 323, 362, 367
Positive definite matrix, see also Matrix,

positive definite
forced, 167,228
Hessian for Gauss-Newton. 195.205
Hessian in unconstrained subspace, 289
sufficient condition. 135

Power:
dissipated, 318, 321, 365
to load, 336
maximum available from source, 328
method for eigenvalues, 77
parasitic, 320, 365
reactive, 321
series. 21,112,219 '
stored, 321

Precision, 20. 165
Product, matrix-vector, 62
Program:

C2-I, MATRIX, 44
C2-2, GSDECOMP, 66
C2-3, SYMBNDS, 72
C2-4, QRITER, 75
C2-5, SHINVP, 78
C2-6, VECTOCOL, 79
C2-7, HOUSE, 85
C2-8, GENINVP, 91
C3-I, LUFAC, 100
C3-2, LDLTFAC, 104
C3-3, SVD, 116
C3-4, LAGRANGE, 152
C4-I, NEWTON, 179
C4-2, ROSEN, 184
C4-3, WOODS, 187
C4-4, NBOUNDS, 188
C4-5, LEASTP, 209
C4-6, ROSENPTH, 215
C4-7, GAUSS, 218
C4-8, SARGESON, 219
C4-9, CHEBY, 220
C5-1, QNEWT, 259
C5-1, UNQUAD, 254, 268
C5-3, UNCUBIC, 259, 268
C5-4, QNEWTGRD, 268
C5-5, CAMEL, 286
C5-6, BOXMIN, 290
C5-7, PAVI7, 290
C5-8, MULTPEN, 300

C5-9, HIM360, 303
C5-IO, L00T356, 305
C6-1, TWEAKNET, 327
C6-2, LPTRAPl, 330
listings, 393

Projected:
differences, 282
gradient method, 191
gradient vector, 281, 306
Hessian, 281, 284. 306
linear constraints, 272-283
vector, 42, 82, 90

Projection. 68, 82. 111
Projection matrix. 89. 95, 282
Pseudoinverse, see Inverse, generalized

Q. see Quality factor
QR decomposition. 74-15
Quadratic:

apP~xUnation, 5, 6, 143
factor by Fletcher, 172, 206
function, 128, 136, 251
model, 173,280
programming. 273. 309
slack variabJe, 161, 283
tennination, 135. 234

Quadratic fonn:
computation of. 168
cross tenns, 124
definition. 82, 109. 124
gradient of, 109

Quadrature, Chebyshev equal weights, 229.
See also Integration

Quality factor, 321, 335, 365
Quasi-Newton:

algorithm, 236
condition, 237, 240
in SQP method, 310
updaw~ 238

Radius, trust, 170
Ramp, piecewise-linear, 112
Range. see Column space
Rank:

annihilation method, 56
column. full, 107
deficiency, 114, 119
definition. 62

Rational polynomial of network function. 382
Rayleigh quotient. 122. 159
Reactance, 321
Reactive power. 321
Reduced gradient. see Projected. gradient

method; Projected. gradient vector

472 Index

Reduced Hessian, see Projected, Hessian
Reflection coefficient:

definition, 342
generalized, 378
slope, 379, 380

Regression, linear, 110
Relative en-or, 28
Repeated substitution, 16-18,39
Replacement operation in programming, 14
Residual:

constrained network optimization, 328
definition, II, 111
saving during computation, 219
vector, 108. 193

Resistance, 319
Reversal rule:

inverse products,S2
transposed products, 50

RLC network, 316, 356
Robust response functions, 372
Root-mean-square value, 209, 211, 318
Rosenbrock test function, 184, J88, 194, 196,

214, 216, 267, 268
Rounding errors, 20, 21, 68, 259

Saddle point, 3'7,)26
Sampled network response, 329
Sample points, unevenly spaced, 20 I
Sample space, 10, Ill, 192
Sampling strategy. 199
Scalar product, see Inner product
Scaling;

constraint functions, 305
convergence effects, 28
frequency, network, 338
functionaleffecu,38,382
impedance, network, 339
implicit in LM method, 207
matrix, 119, 120
units, network elements, 36, 344
variabres,9,242,241

Scaling network:
elements, 242
frequency, 338
impedance, 339
voltages and currents, 323

Schwarz inequality, 57
Secant;

condition, 160
methods, 234
search, 236

Sensitivity:
Bode function, 381
coefficients for constraints, 153,272,314

- - - - ~------

network branch elements, 369
network response functions, 378, 380

Sequential quadratic programming method,
309

Sequential unconstrained minimization
technique, 291

Shadow costs, 153
Sherman-Morrison-Woodbury formula, 56,

94, 299
Shifting matrix eigenvalues, 76
Short circuit, 329
Similarity, see Transformation, similarity
Simpson's rule, 201
Singular value decomposition:

definition, 115
Gauss-Newton step. 207
for generalized inverse, 120
geometric properti.es, 121
for linear least squares, 118
outer product, 158

Singular values, 115, 118, 122, 158
Singular vectors, 115
Slack variable, quadratic, 161,283
Slope, see Directional derivative
Software:

cross reference, 31
editors, 45, 349
linear algebra, 388
macro commands, 349
matrix subroutines, 35
for plotting on printers, 32
utility programs, 32
versions used. 32, 305

Source:
maximum power available, 328
resistance, 332
as variable, 345, 348

Space:
column, 62
sample, 10, Ill, 192
vector, 93

Span, 62, 110
Spectral decomposition, 70, 95, 134, 176
Spectral nonn, 59,75, 115
SQP method, see Sequential quadratic

programmmg method
Square system of linear equations, 97
SRI fonnula, see Update formulas, symmetric

rank 1 formula
Stability of algorithm, 23
Standing-wave ratio function, 380, 384
Stationary point, 37, 161, 162
Steepest descent, 134, 170, 188, 243, 245
Stored energy, see Reactive power

Submatrix, principal, 76
Subroutines, major in:

C2-1, MATRIX, 48
C4-1, NEWTON, 179
C4-5, LEASTP, 210
C5-1, QNEWT, 261
C5-6, BOXMIN, 290
C5-8, MULTPEN, 301
C6-1, TWEAKNET, 330

Subspace:
affine, 88
column, 111
definition, 61, 68, 82, 110
dimension of, 62
using elimination, 280
invariant, 69
linear, 88, 276
unconstrajned, 190

Substitution:
back, 99, 170
forward, 99, 170

SUMT, see Sequential unconstrained
minimization technique

Superdiagonal, 116
Superposition, 317
Superscript notation, 43
Susceptance, 321
SVD, see Singular value decomposition
Swiss alps effect, 366
SWR, see Standing-wave ratio function

Target data, see Data entry, target
Taylor series:

multivariable, 143. 166, 173,206
single variable, 19, 38, 141

TeJlegen's theorem:
difference form, 362, 366
general, 361
simple, 360
sum form, 362

Termination:
criterion used, 28, 305
during extrapolation, 225
in multiplier penalty method, 305
philosophy, 27
quadratic, 135, 234

Test problems for optimization, 183,229,
286,389

Thevenin source, 323
Time delay, group, 385
Timing data, 33, 34, 220, 232, 305, 359
Topology, network. 323, 337, 346
Trace, 42
Trajectories, search, 184

Index 473

Transducer function:
complex, 364
definition. 328, 379
optimized, 352, 355
partial derivatives, 371
peaks, 329

Transfonn, z., 320
TransfOt1tlation:

diagonalizing, 73, 136
domain, 73
elementary, 52, 53
Hessenberg form, 82
Householder, 76, 81, 116
linear, 63, 242, 246
range, 73
similarity, 73, 95,123,243
similarity using SVD, 123
tridiagonal fonn, 82
of variables, 203, 208, 209,246,247,277,

381
Transposition, 41
Trapezoidal rule, 200
Truncation error, 22
Trust radius, 170, 185, 187,310
Turning point, 206, 249
TWEAKNET:

bounds, lower and upper variabJe, 332
data entry, 332, 334, 335
first partial derivatives, 340, 359
flow chart, 331
ladder network analysis, 330, 333, 337
ladder network element menu, 334
logarithmic frequency samples, 340, 356
memory storage requirements, 345
objective function, 327, 328
sampled response function, 329
source resistance, 332, 345, 348
target data, 328, 348
transducer response function, 328, 346

Underflow, 21
Undetermined linear systems, 114
Unimodal functions, 141,219,248
Unitary matrix, 41
Update formuJas:

complex linear, 323, 330
direct, 239
dual, 240
families of quasi-Newton, 238-241
inverse, 177, 240
maUix,56,94,105,238-242
rank 1, 94,105
Tank 2,239
symmetric rank 1 formula, 238

474 Ind,,,

Variable metric search methods, 161,
246

Variables:
added for minimax, 226
dependent, 147, 275
scaling,207,246,247
slack, 161,283
source resistance, 345, 348

Vector:
collinear, 61
column, 10, 41
conjugate, 135
data, 112
del operator, 108
gradient, 108
linearly independent, 61
linear transformation, 203, 208, 209, 246,

247
normal. 86, 272

nonns,57
offset, penalty, 294
orthogonal, 64
orthonormal,64
projection, 68, 82, 111
residual, 108, 118, 193
row, 41
singular, left and right, 115
unit-direction, 41
zero,41

Vertex, 88

Weighting:
function, 378, 379
matrix, 114, 120, 198

Weights, 112, 197,200,225
Wood's test function, 185, 188,267

Zigzagging, 134, 171, 284, 285

(continued from front flap)

This book provides the programs
and theory for these methods and
introduces new ways to select and
emphasize design objectives, espe
cially for electrical networks and their
analogues.

About the author
Thomas R. Cuthbert, Jr. is Direc
tor of Signal Processing for Rockwell
International in Richardson, Texas,
and a registered Professional Engi
neer. A member of the Institute of
Bectrical and Electronics Engineers
and Tau Beta Pi, Dr. Cuthbert re
ceived his PhD in Electrical Engi
neering from Southern Methodist
University in 1980 and previously
studied at Georgia Tech and M.IT. He
is also the author of Circuit Design
Using Personal Computers, which
was published by John Wiley & Sons
in 1983.

Of related interest •••

CIRCUIT DESIGNlllJISING iP'EIRlSONAIl. COMPUTERS
Thomas R. Cuthbert, JJr.
This practical guide to designing electronic circuits using small90mputers
and programmable calculators makes it easy to implement both classical and
direct-coupled filter and impedance-matching networks. It uses the interac
tion between circuit designer and computer to clarify numerical methods,
design techniques, and fundamental concepts. It also shows how to produce

• useful answers quickly, while developing a feel for the procedure and obtain
ing insight into fundamental processes-such as the way filters can be made
to absorb rather than reflect unwanted energy. The network and amplifier
design methods presented in the book are supported by 17 programs in
reverse Polish notation (RPN) for Hewlett-Packard HP-67, -97, and -41C hand
held, programmable calculators and 28 programs in Microsoft® BASIC lan
guage for PET, IBM-PC\" and similar desktop computers.
494 pp. (1-87700-X) 1983

MLEY-DIIl'lJ'ERSCIEIiIICE
a division of JOHN WILEY & SONS, Inc.
605 Third Avenue, New York, NY. 10158-0012
New York· Chichester· Brisbane· Toronto· Singapore

ISBN 0 471 81863-1

	Preface
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Matrix Algebra and Algorithms
	Chapter 3: Functions of Many Variables
	Chapter 4: Newton Methods
	Chapter 5: Quasi-Newton Methods and Constraints
	Chapter 6: Network Optimization
	Appendix A: Test Matrices
	Appendix B: Test Problems
	Appendix C: Program Listings
	References
	Index

