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Memristor-The Missing Circuit Element 
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Abstract-A new two-terminal circuit element-called the memrirtor- 

characterized by a relationship between the charge q(t) s St% i(7J d7 
and the flux-linkage (p(t) = J-‘-m vfrj d T is introduced os the fourth boric 

circuit element. An electromagnetic field interpretation of this relationship 

in terms of a quasi-static expansion of Maxwell’s equations is presented. 

Many circuit~theoretic properties of memdstorr are derived. It is shown 

that this element exhibiis some peculiar behavior different from that 

exhibited by resistors, inductors, or capacitors. These properties lead to a 

number of unique applications which cannot be realized with RLC net- 

works alone. 
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Although a physical memristor device without internal power supply 

has not yet been discovered, operational laboratory models have been 

built with the help of active circuits. Experimental results ore presented to 

demonstrate the properties and potential applications of memristors. 
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HIS PAPER presents the logical and scientific basis 
for the existence of a new two-terminal circuit element 
called the memristor (a contraction for memory 

(b) 

resistor) which has every right to be as basic as the three 
classical circuit elements already in existence, namely, the 
resistor, inductor, and capacitor. Although the existence 
of a memristor in the form of a physical device without 
internal power supply has not yet been discovered, its 
laboratory realization in the form of active circuits will be 
presented in Section II.’ Many interesting circuit-theoretic 
properties possessed by the memristor, the most important 
of which is perhaps the passivity property which provides 
the circuit-theoretic basis for its physical realizability, will 
be derived in Section III. An electromagnetic field in- 
terpretation of the memristor characterization will be pre- 
sented in Section IV with the help of a quasi-static expansion 
of Maxwell’s equations. Finally, some novel applications 
of memristors will be presented in Section V. 
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II. MEMRISTOR-THE FOURTH BASIC 
CIRCUIT ELEMENT 

From the circuit-theoretic point of view, the three basic 
two-terminal circuit elements are defined in terms of a 
relationship between two of the four fundamental circuit 
variables, namely;the current i, the voltage v, the charge q, 

Fig. 1. Proposed symbol for memristor and its three basic realizations. 
(a) Memristor and its q-q curve. (b) Memristor basic realization 1: 
M-R mutator terminated by nonlinear resistor &t. (c) Memristor 
basic realization 2: M-L mutator terminated by nonlinear inductor 
C. (d) Memristor basic realization 3: M-C mutator terminated by 
nonlinear capacitor e. 
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r In a private communication shortly before this paper went into 
press, the author learned from Professor P. Penfield, Jr., that he and 
his colleagues at M.I.T. have also been using the memristor for model- 
ing certain characteristics of the varactor diode and the partial super- 
conductor. However, a physical device which corresponds exactly to a 
memristor has yet to be discovered. 

and theflux-linkage cp. Out of the six possible combinations 
of these four variables, five have led to well-known rela- 
tionships [l]. Two of these relationships are already given 
by q(t)=JL w i(T) d 7 and cp(t)=sf. m D(T) d7. Three other rela- 
tionships are given, respectively,. by the axiomatic definition 
of the three classical circuit elements, namely, the resistor 
(defined by a relationship between v and i), the inductor 
(defined by a relationship between cp and i), and the capacitor 
(defined by a relationship between q and v). Only one rela- 
tionship remains undefined, the relationship between 9 
and q. From the logical as well as axiomatic points of view, 
it is necessary for the sake of completeness to postulate the 
existence of a fourth basic two-terminal circuit element which 
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Fig. 1. Proposed symbol for memristor and its three basic realizations.
(a) Memristor and its qrq curve. (b) Memristor basic realization I:
M-R mutator terminated by nonlinear resistor CR. (c) Memristor
basic realization 2: M-L mutator terminated by nonlinear inductor
.c. (d) Memristor basic realization 3: M-C mutator terminated by
nonlinear capacitor e.

and the flux-linkage 'P. Out of the six possible combinations
of these four variables, five have led to well-known rela­
tionships [I]. Two of these relationships are already given
by q(t)=J~ .. i(T) dT and «J(t)=J~ .. v(T) dT. Three other rela­
tionships are given, respectively,. by the axiomatic definition
of the three classical circuit elements, namely, the resistor
(defined by a relationship between v and i), the inductor
(defined by a relationship between 'P and i), and the capacitor
(defined by a relationship between q and v). Only one rela­
tionship remains undefined, the relationship between 'P

and q. From the logical as well as axiomatic points of view,
it is necessary for the sake of completeness to postulate the
existence of a fourth basic two-terminal circuit element which

II. MEMRISTOR-THE FOURTH BASIC

CIRCUIT ELEMENT

From the circuit-theoretic point of view, the three basic
two-terminal circuit elements are defined in terms of a
relationship between two of the four fundamental circuit
variables, namely,.the current i, the voltage v, the charge q,
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1 In a private communication shortly before this paper went into
press, the author learned from Professor P. Penfield, Jr., that he and
his colleagues at M.I.T. have also been using the memristor for model­
ing certain characteristics of the varactor diode and the partial super­
conductor. However, a physical device which corresp0nds exactly to a
memristor has yet to be discovered.

I. INTRODUCTION

T HIS PAPER presents the logical and scientific basis
for the existence of a new two-terminal circuit element

. called the memristor (a contraction for memory
resistor) which has every right to be as basic as the three
classical circuit elements already in existence, namely, the
resistor, inductor, and capacitor. Although the existence
of a memristor in the form of a physical device without
internal power supply has not yet been discovered, its
laboratory realization in the form of active circuits will be
presented in Section 11.1 Many interesting circuit-theoretic
properties possessed by the memristor, the most important
of which is perhaps the passivity property which provides
the circuit-theoretic basis for its physical realizability, will
be derived in Section III. An electromagnetic field in­
terpretation of the memristor characterization will be pre­
sented in Section IV with the help of a quasi-static expansion
of Maxwell's equations. Finally, some novel applications
of memristors will be presented in Section V.

Abstract-A new two-terminal circuit element-called the memrislor­
characterized by a relationship between the charge q(I} == f' -'" i(r} dr
and the flux-linkage <p(I} == f'-", vir} dr is introduced as the fourth basic
circuit element. An electromagnetic field interpr'!tation of this relationship
in terms of a quasi-static expansion of Maxwell's equations is presented.
Many circuit· theoretic properties of memristors are derived. It is shown
that this element exhibiis some peculiar behavior different from that
exhibited by resistors, inductors, or capacitors. These properties lead to a
number of unique applications which cannot be realized with RLC net­
works alone.

Although a physical memristor device without internal power supply
has not yet been discovered, operational laboratory models have been
built with the help of active circuits. Experimental results are presented to
demonstrate the properties and potential applications of memristors.
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CHARACTERIZATION AND REALIZATION OF M-R, M-L, AND M-C MUTATORS 
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Fig. 2. Practical active circuit realization of type-l M-R mutator based on realization 1 of Table I. 

is characterized by a cp-q curve.2 This element will hence- 
forth be called the memristor because, as will be shown later, 
it behaves somewhat like a nonlinear resistor with memory. 

The proposed symbol of a memristor and a hypothetical 
cp-q curve are shown in Fig. l(a). Using a ,mutator [3], a 
memristor with any prescribed p-q curve can be realized 
by connecting an appropriate nonlinear resistor, inductor, or 
capacitor across port 2 of an M-R mutator, an M-L 
mutator, and an M-C mutator, as shown in Fig. l(b), (c), 
and (d), respectively. These mutators, of which there are 
two types of each, are defined and characterized in Table I.3 
Hence, a type-l M-R mutator would transform the uR-if< 
curve of the nonlinear resistor f(u,+ iR)=O into the corre- 
sponding p-q curvef(cp, q)=O of a memristor. In contrast 
to this, a type-2 M-R mutator would transform the iR-vR 
curve of the nonlinear resistor f(iR, uR)=O into the corre- 
sponding p-q curvef(9, q) = 0 of a memristor. An analogous 
transformation is realized with an M-L mutator (M-C 
mutator) with respect to the ((PL, iL) or (iL, cp~) [(UC, qc) or 
(qc, UC)] curve of a nonlinear inductor (capacitor). 

Each of the mutators shown in Table I can be realized 
by a two-port active network containing either one or two 
controlled sources, as shown by the various realizations in 
Table 1. Since it is easier to synthesize a nonlinear resistor 
with a prescribed u-i curve [l], only operational models of 
k-R mutators have been built. A typical active circuit 
realizatian based on realization 1 (Table I) of a type-l 
M-R mutator is given in Fig. 2. In order to verify that a 
memristor is indeed realized across port 1 of an M-R muta- 
tor when a nonlinear resistor is connected across port 2, it 

2 The postulation of new elements for the purpose of completeness 
of a physical system is not without scientific precedent. Indeed, the 
celebrated discovery of the periodic table for chemical elements by 
Mendeleeff in 1869 is a case in point [2]. 

3 Observe that a type-l (type-2)‘M-L mutator is identical to a type-l 
(type-2) C-R mutator (L- R’mutator). Similarly, a type-l (type-2) M-C 
mutaror is identical to a type-l (type-2) L-R mutator (C-R mutator). 

would be necessary to design a p-q curL;e tracer. The com- 
plete schematic diagram of a practical p-q curve tracer is 
shown in Fig. 3.4 Using this tracer, the p-q curves of three 
memristors realized by the type-l M-R mutator circuit of 
Fig. 2 are shown in Fig. 4(b), (d), and (f) corresponding to 
the nonlinear resistor V-Z curve shown in Fig. 4(c), (e), and 
(g), respectively. To demonstrate the rather “peculiar” 
voltage and current waveforms generated by the simple 
memristor circuit shown in Fig. 5(a), three representative 
memristors were synthesized with q--q curves as shown in Fig. 
5(b), (d), and (f), respectively. The oscilloscope tracings of 
the voltage u(t) and current i(t) of each memristor are shown 
in Fig. 5(c), (e), and (g), respectively. The waveforms in 
Fig. 5(c) and (e) are measured with a 63-Hz sinusoidal input 
signal, while the waveforms shown in Fig. 5(g) are measured 
with a 63-Hz triangular input signal. It is interesting to ob- 
serve that these waveforms are rather peculiar in spite of the 
fact that the cp-q curve of the three memristors are relatively 
smooth. It should not be surprising, therefore, for us to 
find that the memristor possesses certain unique signal- 
processing properties not shared by any of the three existing 
classical elements. In fact, it is precisely these properties that 
have led us to believe that memristors will play an important 
role in circuit theory, especially in the area of device model- 
ing and unconventional signal-processing applications. Some 
of these applications will be presented in Section V. 

III. CIRCUIT-THEORETIC PROPERTIES OF MEMRISTORS 

By definition a memristor is characterized by a relufiorz 
of the type g(;p, q)=O. It is said to be charge-controlled 
(flux-controlled) if this relation can be expressed as a single- 
valued function of the charge rZ (flux-linkage a). The voltage 

4 For additional details concerning the design and operational char- 
acteristics of the circuits shown in Figs. 2 and 3, as well as that for a 
type-2 M-R mutator, see [4]. 
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Fig. 2. Practical active circuit realization of type-! M-R mutator based on realization! of Table I.

is characterized by a <P-q curve.2 This element will hence­
forth be called the mernristor because, as will be shown later,
it behaves somewhat like a nonlinear resistor with memory.

The proposed symbol of a memristor and a hypothetical
<P-q curve are shown in Fig. lea). Using a mutator [3], a
memristor with any prescribed <P-q curve can be realized
by connecting an appropriate nonlinear resistor, inductor, or
capacitor across port 2 of an M-R mutator, anM-L
mutator, and an M-C mutator, as shown in Fig. l(b), (c),
and (d), respectively. These mutators, of which there are
two types of each, are defined and characterized in Table J.3
Hence, a type-l M-R mutator would transform the vR-ili
curve of the nonlinear resistor f( vIi, iii) = 0 into the corre­
sponding <p-q curvef(<p, q)=O of a memristor. In contrast
to this, a type-2 M-R mutator would transform the ili-VR

curve of the nonlinear resistor fUIi, VIi)=O into the corre­
sponding <P-q curvef(<p, q) = 0 of a memristor. An analogous
transformation is realized with an M-L mutator (M-C
mutator) with respect to the (<PL' iL) or (iL, <pd [(vc, qc) or
(qc, vc)] curve of a nonlinear inductor (capacitor).

Each of the mutators shown in Table I can be realized
by a two-port qctive network containing either one or two
controlled sour~es, as shown by the various realizations in
Table I. Since it is easier to synthesize a nonlinear resistor
with a prescribed v-i curve [I], only op~rational models of
M-R mutators have been built. A typical active circuit
realization based on realization I (Table I) of a type-l
M-R mutator is given in Fig. 2. In order to verify that a
memristor is indeed realized across port I of an M-R muta­
tor when q nonline'ar resistor is connected across port 2, it

2 The postulation of new elements for the purpose of completeness
of a physical system is not without scientific precedent. Indeed, the
celebrated discovery of the periodic table for chemical elements by
Mendeleeff in 1869 is a ca'se. in point [2].

S Observe that a type-I (type-2) M-L mutator is identical to a type-!
(type-2) C-R mutator (L-Rmutator). Similarly, a type-! (type-2) M-C
mutator is identical to a type-! (type-2) L-R mutator (C-R mutator).

would be necessary to design a <P-q curve tracer. The com­
plete schematic diagram of a practical <p-q curve tracer is
shown in Fig. 3. 4 Using this tracer, the <p-q curves of three
memristors realized by the type-l M-R mutator circuit of
Fig. 2 are shown in Fig. 4(b), (d), and (f) corresponding to
the nonlinear resistor V-I curve shown in Fig. 4(c), (e), and
(g), respectively. To demonstrate the rather "peculiar"
voltage and current waveforms generated by the simple
memristor circuit shown in Fig. 5(a), three representative
memristors were synthesized with <p'-q curves as shown in Fig.
S(b), (d), and (0, respectively. The oscilloscope tracings of
the voltage v(t) and current i(t) of each memristor are shown
in Fig. S(c), (e), and (g), respectively. The waveforms in
Fig. S(c) and (e) are measured with a 63-Hz sinusoidal input
signal, while the waveforms shown in Fig. S(g) are measured
with a 63-Hz triangular input signal. It is interesting to ob­
serve that these waveforms are rather peculiar in spite of the
fact that the <P-q curve of the three memristors are relatively
smooth. It should not be surprising, therefore, for us to
find that the memristor possesses certain unique signal­
processing properties not shared by any of the three existing
classical elements. In fact, it is precisely these properties that
have led us to believe that memristors will play an important
role in circuit theory, especially in the area of device model­
ing and unconventional signal-processing applications. Some
of these applications will be presented in Section V.

Ql. CIRCUIT-THEORETIC PROPERTIES OF MEMRISTORS

By definition a memristor is characterized by a relation
of the type g(<p, q)=O. It is said to be charge-controlled
(flux-controlled) if this relation can be expressed as a single­
valued function of the charge q (flux-linkage <p). The voltage

4 For additional details concerning the design and operational char­
acteristics of the circuits shown in Figs. 2 and 3, as well as that for a
type-2 M-R mutator, see [41.
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Fig. 3. Complete schematic diagram of memristor tracer for tracing the pq curve of a memristor. 
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Fig. 3. Complete schematic diagram of memristor tracer for tracing the CP-q curve of a memristor.
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across a charge-controlled memristor is given by 

I I 

where 

Similarly, the current of a flux-controlled memristor is 
given by 

where 

(4) 

Since M(q) has the unit of resistance, it will henceforth be 
called the incremental memristance. In contrast to this, the 
function W(q) will henceforth be called the incremental 
menductance because it has the unit of a conductance. 

Observe that the, value of the incremental memristance 
(memductance) at any time to depends upon the time 
integral of the memristor current (voltage) from t = - co 
to t= to. Hence, while the memristor behaves like an ordi- 
nary resistor at a given instant of time to, its resistance 
(conductance) depends on the complete past history of the 
memristor current (voltage). This observation justifies our 
choice of the name memory resistor, or memristor. It is 
interesting to observe that once the memristor voltage u(t) 
or current i(t) is specified, the memristor behaves like a 
linear time-varying re@stor. Tn the very special case where the 
memristor vq curve is a straight line, we obtain M(q) = R, 
or W(p)= G, and the memristor reduces to a linear time- 
invariant resistor. Hence, there is no point introducing a 
linear memristor in linear network theory.5 

We have already shown that memristors with almost any 
cp-q curve can be synthesized in practice by active networks. 
The following passivity criterion shows what class of mem- 
ristors might be discovered in a pure “device form” without 
internal power supplies. 

Theorem I: Passivity Criterion 

A memristor characterized by a differentiable charge- 
controlled p-q curve is passive if, and only if, its incremental 
memristance M(q) is nonnegative; i.e., M(q)>O. 

Proof: The instantaneous power dissipated by a memristor 
is given by 

PO) = W(Q = fifMO)b(O12. (5) 

Hence, if the incremental memristance M(q)>O, then 
p(t)>0 and the memristor is obviously passive. To prove the 
converse, suppose that there exists a point q. such that 
M(qo)<O. Then the differentiability of the p-q curve implies 
that there exists an e> 0 such that M(qo+ Aq)<O, 1Aq ( <e. 
Now let us drive the memristor with a current i(t) which 
is zero for t<f and such that q(t)=qO+Aq(t) for t>_ to>? 
where 1 Aq( t) I< e ; then J! (o P(T) & < 0 for sufficiently large 
t, and hence the memristor is active. Q.E.D. 

We remark that the above criterion remains valid if the 
“differentiability” condition is replaced by a “continuity” 
condition, provided that the left- and right-hand derivative 
at each point on the cp-q curve exists. This criterion shows 
that only memristors characterized by a monotonically in- 
creasing p-q curve can exist in a device form without in- 
ternal power supplies. We also remark that except possibly 
for some pathological p-q curves,6 a passive memristor does 
not seem to violate any known physical laws. 

5 Since research in circuit theory in the past has been dominated by 
linear networks, it is not surprising that the concept of a memristor 
never arose there. Neither is it surprising that this element is not even 
yet discovered in a device form because it is somewhat Yunnatural” to 
associate charge with flux-linkage. Moreover, the necessity to design 
a qq curve tracer all but eliminates the slim possibility of an accidental 
discovery. 

6 It is possible for a passive circuit element to violate the second law 
of thermodynamics. For a thought-provoking exposition on this topic, 
see [5]. 
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Observe that the, value of the incremental memristance
(memductance) at any. time to depends upon the time
integral of the memristor current (voltage) from t= - 00

to t= to. Hence, while the memristor behaves like an ordi­
nary resistor at a given instant of time to, its resistance
(conductance) depends on the complete past history of the
memristor current (voltage). This observation justifies our
choice of the name memory resistor, or memristor. It is
interesting to observe that once the memristor voltage vet)
or current i(t) is specified, the memristor behaves like a
linear time-varying resistor. In the very special case where the
memristor cp-q curve is a straight line, we obtain M(q)=R,
or W(ip) = G, and the memristor reduces to a linear time­
invariant resistor. Hence, there is no point introducing a
linear memristor in linear network theory.'

We have already shown that memristors with almost any
ip-q curve can be synthesized in practice by active networks.
The following passivity criterion shows what class of mem­
ristors might be discovered in a pure "device form" without
internal power supplies.
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(5)pet) = v(t)i(t) = M(q(t)) ri(t) ]2.

Hence, if the incremental memristance M(q),?:O, then
p(t)?:.O and the memristor is obviously passive. To prove the
converse, suppose that there exists a point qo such that
M(qo)<O. Then the differentiability of the ip-q curve implies
that there exists an f>O such that M(qo+.6.q)<O, l.6.q I<f.
Now let us drive the memristor with a current i(t) which
is zero for t~l and such that q(t)=qo+.6.q(t) for t?:.to?:.t
where !.6.q(t) I<f; then J~ '" per) dr<O for sufficiently large
t, and hence the memristor is active. Q.E.D.

A memristor characterized by a differentiable charge­
controlled ip-q curve is passive if, and only if, its incremental
memristance M(q) is nonnegative; i.e., M(q)?:.O.

Proof: The instantaneous power dissipated by a memristor
9',milli- v, .is given by

weber voils

Fig. 4. <P-q curves of three typical memristors.
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where

across a charge-controlled memristor is given by

Similarly, the current of a flux-controlled memristor is
given by

I M(q) == dip(q)/dq I·

I i(t) = W(ip(t))v(t) I

(2)

(3)

We remark that the above criterion remains valid if the
"differentiability" condition is replaced by a "continuity"
condition, provided that the left- and right-hand derivative
at each point on the ip-q curve exists. This criterion shows
that only memristors characterized by a monotonically in­
creasing ip-q curve can exist in a device form without in­
ternal power supplies. We also remark that except possibly
for some pathological ip-q curves,6 a passive memristor does
not seem to violate any known physical laws.

where

Since M(q) has the unit of resistance, it will henceforth be
called the incremental memristance. In contrast to this, the
function W(ip) will henceforth be called the incremental
menductance because it has the unit of a conductance.

I W(ip) == dq(ip)/dip \. (4)

6 Since research in circuit theory in the past has been dominated by
linear networks, it is not surprising that the concept of a memristor
never arose there. Neither is it surprising that this element is not even
yet discovered in a device form because it is somewhat '~unnatural" to
associate charge with flux-linkage. Moreover, the necessity to design
a qrq curve tracer an but eliminates the slim possibility of an accidental
discovery.

6 It is possible for a passive circuit element to violate the second law
of thermodynamics. For a thought-provoking exposition on this topic,
see [51.
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Fig. 5. Voltage and current waveforms associated with simple memristor circuit corresponding to a sinusoidal input 
signal [(c) and (e)] and a triangular input signal r(g)], respectively. 

Theorem 2: Closure Theorem 

A one-port containing only memristors is equivalent to a 
memristor. 

Proof: If we let ii, vj, qj, and vj denote the current, voltage, 
charge, and flux-linkage of the jth memristor, where j= 1, 
2;.., b, and if we let i and v denote the port current and 
port voltage of the one-port, then we can write (n- 1) inde- 
pendent KCL (Kirchhoff current law) equations (assuming 
the network is connected); namely, 

CvjOi + 2 ajkik = 0, j=l,2,.*.,n-1 (6) 
k=l 

where ajk is either 1, - 1, or 0, b is the total number of 
memristors, and n is the total number of nodes. Similarly, 
we can write a system of (b-n+2) independent KVL 

(Kirchhoff voltage law) equations: 

@j&J + 5 PjkVk = 0, j=l,2,..., b - n + 2 (7) 
k=l 

where @jk is either 1, - 1, or 0. If we integrate each equation 
in (6) and (7) with respect to time and then substitute 
‘pk = (pk(qk) for pk in the resulting expressions,7 we obtain 

& ffjk@ = Qj - ffjoPt j=l,2,***,n-1 (8) 

PjOCp + f: pjk(pk(qk) = *j, j = 1, 27 ’ ’ . , b - n + 2 (9) 
kzl 

7 We have assumed for simplicity that the mernristors are charge- 
controlled. The proof can be easily modified to allow memristors char- 
acterized by arbitrary e curves. 
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Fig. 5. Voltage and current waveforms associated with simple memristor circuit corresponding to a sinusoidal input
signal [(c) and (e)] and a triangular input signal [(g)], respectively.

Theorem 2: Closure Theorem (Kirchhoff voltage law) equations:

where (3jk is either I, -I, or 0. If we integrate each equation
in (6) and (7) with respect to time and then substitute
'Pk = 'Pk(qk) for 'Pk in the resulting expressions,? we obtain

j = 1, 2, ... , b - n + 2 (7)A one-port containing only memristors is equivalent to a
memristor.

Proof: If we let ij, Vj, qj, and 'Pj denote the current, voltage,
charge, and flux-linkage of the jth memristor, where j= I,
2, ... , b, and if we let i and v denote the port current and
port voltage of the one-port, then we can write (n-I) inde­
pendent KCL (Kirchhoff current law) equations (assuming
the network is connected); namely,

b

{3jOV + L {3jkVk = 0,
k~l

b

L CXjkqk = Qj - CXjoq,
k=l

j = 1, 2, ... , n - 1 (8)

b

cxjoi + L cxjkik = 0,
k~l

j = 1, 2, ... , n - 1
b

(6) {3jO'P + L (3jk'Pk(qk) = <l>j, j = 1,2, ... , b - n + 2 (9)
k=l

where CXjk is either I, -I, or 0, b is the total number of
memristors, and n is the total number of nodes. Similarly,
we can write a system of (b-n+2) independent KVL

7 We have assumed for simplicity that the mernristors are charge­
controlled. The proof can be easily modified to allow mernristors char­
acterized by arbitrary qr-q curves.
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where Qj and @j are arbitrary constants of integration. Equa- 
tions (8) and (9) together constitute a system of (b+ 1) inde- 
pendent nonlinear functional equations in (b+ 1) unknowns. 
Hence, solving for cp, we obtain a relation f(q, cp) = 0. 

Q.E.D. 

Theorem 3: Existence and Uniqueness Theorems 

Any network containing only memristors with positive 
incremental memristances has one, and only one, solution. 

Proof: Since the governing equations of a network contain- 
ing only memristors are identical in form to the governing 
equations of a network containing only nonlinear resistors, 
the proof follows mututis mutandis the well-known proof 
given in [6], [7]. Q.E.D. 

It is sometimes easier and more instructive to analyze a 
single-element-type nonlinear network by finding the @a- 
tionary points of an associated scalar poteiltial function [8], 
[9]. We will now present an analogous development of this 
concept for a pure memristor network.9 

Dejnition 1 

We define the action (coaction) associated with a charge- 
controlled (flux-controlled) memristor to be the integral 

Consider now a pure memristor network N containing n 
nodes and b branches. Let 3 be a tree of N and d: its associ- 
ated cotree. Let us label the branches consecutively starting 
with the tree elements and define v=(cpl, cpZ, . . . ¶+a¶ )” 
4 =(ql, q2, . . . , q#, qa=(‘pl, CPZ, + a, . ,, ‘P~-#, and g, = (qn, 
qn+1, . . . , q#. It is well known that either ea or qe coristi- 
tutes a complete set of variables in the sense that (e=O& 
and q = Btq,, where D and B are the fundamental cut-set 
matrix and the fundamental loop matrix, respectively [IO]. 

Dejnition 2 

We define the ,total actitin a(qJ [total coaction &(&I 
associated with a network N containing charge-controlled 
(flux-controlled) memristors to be the scalar function 

/a(s,)= /I (10) 

where 

A = A(q) = 5 Aj(qj> = f: J ” pj(qj) &j 
j=l j=l 0 

j=l j=lJ 0 

and where o denotes the “composition” operation. 

*To simplify the hypothesis, we assume that all memristors are 
characterized by differentiable onto functiotls. 

9 Several useful potential functions have been defined for the three 
classical circuit elements. They are the content and cocontent of a re- 
sistor [8], the magnetic energy and magnetic coenergy of an inductor 
[9], and the electric energy and electric coenergy of a capacitor 191. 

Theorem 4: Principle bf Stationary Action (Coaction) 

A vector qJ: = Qd: (ea =$) is a solution of a network N 
containing only charge-controlled (flux-controlled) mem- 
ristors if, and only if, it is a stationary point of the total 
action a(qJ [total coaction a(&] associated with N; i.e., 
the gradient of a(qa) (&(I&) evaluated at Q6: (@J is zero: 

a@(d/aq, (Q=Q~ = 0 ab?pee, lo,=*, = 0. (12) 

Proof: It suffices to prove the charge-controlled case since 
the flux-controlled case will then follow by duality. Taking 
the gradient of a(qe) afid applying the chain rule for dif- 
ferentiating composite functions, we obtain 
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= BaA(q)/dq IGB’s, = By? o (BW. (13) 

But the expression BP o (Btq,)=O since this is simply the 
set of KVL equations written in terms of C. Consequently, 
any vector 9, is a solution of N if, arid only if, it is a sta- 
tionary point of Ct(qJ. Q.E.D. 

Since the action and coaction of a memristor is a: poten- 
tial function, they can be used to derive frequency power 
formulas for memristors operating. ris frequency converters. 
We assume the memristor is operating in the steady state so 
that we can write the following variables in multiply-periodic 
Fourier series: 

v(t) = Re c [V&at] i(t) = Re c [I,eQal] 

v(t) = Re 5 [&ej@] q(t) = Re 5 [Qaej@] 
LI -2 

and 

A(t)=Rez [A,ehJ] 
OL 

where V,>_jw,@, and ‘lol>_joUQo. Following identical pro- 
cedure and notation as given in [ll, ch. 31, we let wa denote 
the set of independent frequencies and make a small change 
in 6~$,=Li(~,t). This perturbation induces a change in the 
action A(t) : 

(14) 

But sintie A(q) = J&(q) dq, we have 

6A = ((p)(Sq) = 
[ 

Re F TY @at 
WC2 1 

.[Re c 5 (ao,/aw,)ej~‘hM, 1 1 (15) ’ 
LI al 

Equating (14) and (15) and taking their time averages, we 
obtain the following Manley-Rowe-like formula relating the 
reactive powers P,=+ Im (V,Z,*): 

~[ac&/awa] [P&a = 0 . (16) 
P 

Authorized licensed use limited to: IEEE Publications Staff. Downloaded on December 4, 2008 at 14:12 from IEEE Xplore.  Restrictions apply.

CHUA: MEMRISTOR-MISSING CIRCUIT ELEMENT 513

Definition 1

We define the action (coaction) associated with a charge­
controlled (flux-controlled) memristor to be the integral

where Qi and <Ili are arbitrary constants of integration, Equa­
tions (8) and (9) together constitute a system of (b+ 1) inde­
pendent nonlinear functional equations in (b+ 1) unknowns.
Hence, solving for cp, we obtain a relationf(q, cp)=O.

Q.E.D.

a

a

A(t)=l{eL: [Aae iwat ]
a

a

a

and

aa(q.c)/aq.c = aA 0 (Btq.c)jaq.c

= BaA(q)/aq !q=Btq.c = B'G' 0 (Btq.c). (13)

But the expression B'G' 0 (Btq.c) = 0 since this is simply the
set of KVL equations written in terms of £. Consequently,
any vector Q.c is a solution of N if, arid only if, it is a sta­
tionary point of a(q.c)' Q.E.D.

Since the action and coaction of a memristor is a poten­
tial function, they can be used to derive frequency power
formulas for memristors operating as frequency converters.
We assume the memristor is operating in the steady state so
that we can write the following variables in multiply-periodic
Fourier series:

where Va~jwaif>a and la~jwaQa' Following identical pro­
cedure and notation as given in [11, ch. 3], we let W a denote
the set of independent frequencies and make a small change
in ocf>a=o(wat). This perturbation induces a change in the
action A(t):

Theorem 4: Principle of Stationary Action (Coaction)

A vector q.c = Q.c ('G':J = «I»:J) is a solution of a network N
containing only charge-controlled (flux-controlled) mem­
ristors if, and only if, it is a stationary point of the total
action a(q.c) [total coaction a('G':J)] associated with N; i.e.,
the gradient of a(q.c)(G,('G':J» evaluated at Q.c (<<I»:J) is zero:

aa(q.c)/aq.c Iq.c~Q.c = 0 afl,('G':J)/a'G':J 1<g:J~"':J = O. (12)

Proof: It suffices to prove the charge-controlled case since
the flux-controlled case will then follow by duality. Taking
the gradient of a(q.c) and applying the chain rule for dif­
ferentiating composite functions, we obtain

(A(cp)=f'Cq(cp) dcp).A(q)= fgcp(q) dq

It is sometimes easier and more instructive to analyze a
single-element-type nonlinear network by finding the ~ta­

tionary points of an associated scalar potential function [8],
[9]. We will now present an analogous development of this
concept for a pure memristor network. 9

Consider now a pure memristor network N containing n
nodes and b branches. Let ::I be a tree of Nand £ its associ­
ated cotree. Let us label the branches consecutively starting
with the tree elements and define 'G' = (cph CP2, ... , 'Pb)t,
q=(ql, q2, ... , qb)t, 'G':J=(CP1, CP2, . ',.'.' CPn_l)t, and q.c= (qn,
qn+l, ... , qb)t. It is well known that either 'G':J or q.c consti­
tutes a complete set of variables in the sense that 'G' = Dt'G':J

and q =Btq.c' where D and B are the fundamental cut-set
matrix and the fundamental loop matrix, respectively [10].

Definition 2

We define the 'total action a(q.c) [total coaction d('G':J)]
associated with a network N containing charge-controlled
(flux-controlled) memristors to be the scalar function

Theorem 3: Existence and Uniqueness Theorem 8

Any network containing only memristors with positive
incremental memristances has one, and only one, solution.

Proof: Since the governing equations of a network contain­
ing only memristors are identical in form to the governing
equations of a network containing only nonlinear resistors,
the proof follows mutatis mutandis the well-known proof
given in [6], [7]. Q.E.D.

where

and where 0 denotes the "composition" operation.

(16)

(15)

(14)

But since A(q) = fgcp(q) dq, we have

oA = (cp)(oq) = [Re L: ~~ ciwat ]
a JWa

.[Re L: I a (awajawa)Ciwatocf>a].
a Wa

Equating (14) and (15) and taking their time averages, we
obtain the following Manley-Rowe-like formula relating the

. ~ _1 I (V 1*)'reactwe powers Pa=2" m a a .

(11)

8 To simplify the hypothesis, we assume that all memristors are
characterized by differentiable onto functions.

9 Several useful potential functions have been defined for the three
classical circuit elements. They are the content and cocontent of a re­
sistor [81, the magnetic energy and magnetic coenergy of an inductor
[91, and the electric energy and electric coenergy of a capacitor [9].
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It is possible to derive a Page-Pantell-like inequality re- 
lating the realpowers of a passive memristor by making use 
of the passivity criterion (&)(64)>0 (Theorem 1); namely, 

L I 

where Pa=3 Re ( VaZz) is the real power at frequency w,. 
Since the procedure for deriving (17) follows again mutatis 
mutandis that given by Penfield [ 111, it will not be given here 
to conserve space. An examination of (17) shows that gain 
proportional to the frequency squared is likely in a mem- 
ristor upconverter, but that severe loss is to be expected in 
a memristor mixer. It is also easy to show that converting 
efficiencies approaching 100 percent may be possible in a 
memristor harmonic generator. 

So far we have considered only pure memristor networks. 
Let us now consider the general case of a network containing 
resistors, inductors, capacitors, and memristors. The equa- 
tions of motion for this class of networks now take the form 
of a system of m first-order nonlinear differential equations 
in the normal form $=f(x, t) [l], where x is an mX 1 vector 
whose components are the state variables. The number m is 
called the “order of complexity” of the network and is equal 
to the maximum number of independent initial conditions 
that can be arbitrarily specified [I]. The following theorem 
shows how the order of complexity can be determined by 
inspection. 

Theorem 5: Order of Complexity 

Let N be a network containing resistors, inductors, capaci- 
tors, memristors, independent voltage sources, and inde- 
pendent current sources. Then the order of complexity m of 
N is given by 

-1 
(18) 

where br. is the total number of inductors; bc is the total 
number of capacitors; b,ll is the total number of memristors; 
nnl is the number of independent loops containing only 
memristors; /?CE is the number of independent loops con- 
taining only capacitors and voltage sources; nL.ll is the 
number of independent loops containing only inductors 
and memristors; h,,r is the number of independent cut sets 
containing only memristors; fiLJ is the number of inde- 
pendent cut sets containing only inductors and current 
sources; ric.nr is the number of independent cut sets con- 
taining only capacitors and memristors. 

ProCf: It is well known that the order of complexity of an 
RLC network is given by m=(bL+bc)-IzCE-YiLJ [l]. It 
follows, therefore, from (l)-(4) that for an RLC-memristor 
network with n, = nLlll = i?,,, = i2c.1, =O, each niemristor 
introduces a new state variable and we have m=(b,,+bc 

state variables occurs whenever an independent loop con- 
sisting of elements corresponding to those specified in the 
definition of IZ.&~ and nLw is present in the network. [We as- 
sume the algebraic sum of charges around any loop (flux- 
linkages in any cut set) is zero.] Similarly, a constraint 
among the state variables occms whenever an independent 
cut set consisting of elements corresponding to those speci- 
fied in the definition of fiM and &CM is present in the network. 
Since each constraint removes one degree of freedom each 
time this situation occurs, the maximum order of complexity 
(bL+bc+bM) must be reduced by one. Q.E.D. 

IV. AN ELECTROMAGNETIC INTERPRETATION 
OF MEMRISTOR CHARACTERIZATION 

It is well known that circuit theory is a limiting special 
casg of electromagnetic field theory. In particular, the char- 
acterization of the three classical circuit elements can be 
given an elegant electromagnetic interpretation in terms of 
the quasi-static expansion of Maxwell’s equations [12]. Our 
objective in this section is to give an analogous interpreta- 
tion for the characterization of memristors. While this 
interpretation does not prove the physical realizability of a 
“memristor device” without internal power supply, it does 
suggest the strong plausiblity that such a device might some- 
day be discovqred. Let us begin by writing down Maxwell’s 
equations in differential form: 

09) 

curl H = J + f8f 

where E and H are the electric and magnetic field intensity, 
D and B are the electric and magnetic flux density, and J 
is the current density. We will follow the approach presented 
in [ 121 by defining a “family time” r=at, where a is called 
the “time-rate parameter.” In terms of the new variable T, 
Maxwell’s equations become 

dB 
curl E = - Ly -- 

a7 

curl H = J + a! $ 

(21) 

(?a 

where E, H, D, B, and J are functions of not only the posi- 
tion (x, y, z), but also of (Y and 7. If we were to expand these 
vector quantities as a formal power series in cy and substitute 
them into (21) and (22), we would obtain upon equating the 
coeficients of CP, the nth-order Maxwell’s equaiions, where 
n=O, 1, 2, ’ . . . 

Many electromagnetic phenomena and systems can be 
satisfactorily analyzed by using only the zero-order and first- 
order Maxwell’s equations; the corresponding solutions are 
called quasi-staticfields. It has been shown that circuit theory 
belongs to the realm of quasi-static fields and can be studied 
with the help of the following Maxwell’s equations in quasi- r . 

+b,+i)--ncg-CiLJ. Observe next that a constraint among the static form 1121. 
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It is possible to derive a Page-Pantell-like inequality re­
lating the real powers of a passive memristor by making use
of the passivity criterion (ocp)(oq)'?°(Theorem 1); namely,

Theorem 5: Order of Complexity

Let N be a network containing resistors, inductors, capaci­
tors, memristors, independent voltage sources, and inde­
pendent current sources. Then the order of complexity m of
N is given by

where bL is the total number of inductors; bc is the total
number of capacitors; bM is the total number of memristors;
nM is the number of independent loops containing only
memristors; liCE is the number of independent loops con­
taining only capacitors and voltage sources; 11 LM is the
number of independent loops containing only inductors
and memristors ;nM is the number of independent cut sets
containing only memristors;nLJ is the number of inde­
pendent cut sets containing only inductors and current
sources; flCM is the number of independent cut sets con­
taining only capacitors arid memristors. .

Proof: It is well known that the order of complexity of an
RLC network is given by m~(bL+bc)-l1cE-fzLJ [IJ. It
follows, therefore, from (1)-(4) that for an RLC-memristor
network with I1 m =nLM=ii,l/=fi cJ1 =0, each nlemristor
introduces a new state variable and we have m=(bl.+bc
+bM)-ncE-nLJ. Observe next that a constraint among the

(22)

(19)

(21)

(20)

curl E =
aB
at

aD
curl H = J +-­

at

aB
curl E = - a-­

aT
aD

curl H = J + a -­aT

where E, H, D, B, and J are functions of not only the posi­
tion (x, y, z), but also of a and T. If we were to expand these
vector quantities as aformal power series in a and substitute
them into (21) and (22), we would obtain upon equating the
coefficients of an, the nth-order Maxwell's equatiol1s, where
n=O, 1,2, ....

Many electromagnetic phenomena and systems can be
satisfactorily analyzed by using only the zero-order and first­
order Maxwell's equations; the corresponding solutions are
called quasi-static fields. It has been shown that circuit theory
belongs to the realm of quasi-static fields and can be studied
with the help of the following Maxwell's equations in quasi­
static form [12].

where E and H are the electric and magnetic field intensity,
D and B are the electric and magnetic flux density, and J
is the current density. We will follow the approach presented
in [12] by defining a "family time" T=cd, where a is called
the "time-rate parameter." In terms of the new variable T,

Maxwell's equations become

IV. AN ELECTROMAGNETIC INTERPRETATION

OF MEMRISTOR CHARACTERIZATION

It is well known that circuit theory is ;llimiting special
cas~ of electromagnetic field theory. In particular, the char­
acterization of the three classical circuit elements can be
given an elegant ekctromagnetic interpretation in terms of
the quasi-static expansion of Maxwell's equations [12]. Our
objective in this section is to give an analogous interpreta­
tion for the characterization of memristors. While this
interpretation does not prove the physical realizability of a
"memristor device" without internal power supply, it does
suggest the strong plausiblity that such a device might some­
day be discovered. Let us begin by writing down Maxwell's
equations in differential form:

state variables occurs whenever an independent loop con­
sisting of elements corresponding to those specified in the
definition of nM and nLM is present in the network. [We as­
sume the algebraic sum of charges around any loop (flux­
linkages in any cut set) is zero.] Similarly, a constraint
among the state variables occ\:lrs whenever an independent
cut set consisting of elements corresponding to those speci­
fied in the definition of nM and nCM is present in the network.
Since each constraint removes one degree of freedom each
time this situation occurs, the maximum order of complexity
(bL+bc+bM) must be reduced by one. Q.E.D.

(17)

where Pa== t Re (Val:) is the real power at frequency wa.
Since the procedure for deriving (17) follows again mutatis
mutandis that given by Penfield [11], it will not be given here
to conserve space. An examination of (17) shows that gain
proportional to the frequency squared is likely in a mem­
ristor upconverter, but that severe loss is to be expected in
a memristor mixer. It is also easy to show that converting
efficiencies approaching 100 percent may be possible in a
memristor harmonic generator.

So far we have considered only pure memristor networks.
Let us now consider the general case of a network containing
resistors, inductors, capacitors, and memristors. The equa­
tions of motion for this class of networks now take the form
of a system of m first-order nonlinear differential equations
in the normal form x=f(x, t) [I], where x is an mX 1 vector
whose components are the state variables. The number m is
called the "order of complexity" of the network and is equal
to the maximum number of independent initial conditions
that can be arbitrarily specified [1]. The following theorem
shows how the order of complexity can be determined by
inspection.
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Zero-Order Maxwell’s Equations 

curl EIJ = 0 

curl Ho = Jo. 

First-Order Maxwell’s Equations 

where 3( .), (R( .), and a)( .) are one-to-one continuous func- 
tions from R3 onto R3. Under these assumptions, (26) and 

(23) (27) can be combined to give 
(24) 

curl HI = d(E1). (30) 

aBo 
cur1 E1 = - a, 

Observe that (30) does not contain any time derivative. 
(25) hence, under any specified boundary con,dition appropriate 

for the device, the first-order electric field E1 is related to 

aoo 
curl HI = J1 -I- -. 

a7 

the first-order magnetic field HI dy a functional relation ; 
cw namely 

The total quasi-static vector quantities are obtained by keep- 
ing oniy the first two terms of the formal pdwer series atid by 
setting CY= 1; namely, E-Eo+E1, H=H”+Hl, D=&+D1, 
B= Bo+ B1, J-Jo+ JI. The three classical circuit elements 
have been identified as electromagnetic systems whose solu- 
tions correspond to certain combinations of the zero-order 
and first-order solutions of (23)<26). For example, a re- 
sistor has been identified to be an electromagnetic system 
whose first-order fields are negligible compared to its zero- 
order fields, so that its characterization can be interpreted 
as an instantaneous (memoryless) relationship between the 
two zero-order fields Eo and HO. In contrast to this, an in- 
ductor has been identified to be an electromagnetic system 
where only the first-order magnetii: field is nedigible. In 
this case, the electromagnetic system can be interpreted as 
an inductor in series with a resistor. Similarly, a capacitor 
has been identified to be an electromagnetic system where 
only the first-order electric field is negligible. In this case, 
the electromagnetic system can be interpreted as a capacitor 
in parallel with a resistor. The remaining case where both 
first-order fields are not negligible has been dismissed as 
having no c&responding situation in circuit theory [ 121. We 
will now offer the suggestion that this missing combination 
is precisely that which gives rise to the characterization of a 
memristor. 

In order to add more weight to the above interpretation, 
we will now show that under appropriate conditions the 
instantaneous value of the first-order electric flux density D1 
[whose surface integral is proportional to the charge q(t)] 
is related to the instantaneous value of the first-order mag- 
netic flux density B1 [whose surface integral is proportional 
to the flux-linkage p(t)]. This would be the case if we postu- 
late the existence of a two-terminal device with the following 
two properties. 1) Both zero-order fields are negligible com- 
pared to the first-order fields; namely, E= E1, H=H1, 
D-D], B= BI, and J- JI. 2) The material from which the 
device is made is nonlinear. To be completely general, we 
will denote the nonlinear relationships bylo 

JI = dE1) (27) 

Bl = 63(Hd (28) 

Dl = LD(&) (29) 

EI = f(H,). (31) 

If we substitute (31) for E1 in (29) and then substitute the in- 
verse function of CR( .) from (28) into the resulting expres- 
sion, we obtain 

D1 = a, o f o [W(B1)] = g(B1). (32) 

Equation (32) specified the instantaneous (memoryless) 
relationship between DI and BI; it can be interpreted as the 
quasi-static representation of the electromagnetic field quan- 
tities of the memristor. 

To summarize, we offer the interpretation that the physi- 
cal mechanism characterizing a memristor device must come 
from the instantineous (memoryless) interaction between 
the first-order electric field and the first-order magnetic field 
of some appropriately fabricated device so that it possesses 
the two properties prescribed above. This interpretation 
implies that a physical memristor device is essentially an ac 
device, for otherwise, its associated dc electromagnetic fields 
will give rise to nonnegligible zero-order fields. This require- 
ment is consistent with the circuit-theoretic properties of the 
memristor, for a dc current source would give rise to an in- 
finite charge [q(t) --+oo as t+w ] and a dc voltage source 
would give rise to an infinite flux-linkage [cp(t)+w as t-w ]. 
This requirement is, of course, intuitively reasonable. After 
all, we do not connect a dc voltage source across an inductor. 
Nor do we connect a dc current source across a capacitor! 

V. SOME NOVEL APPLICATIONS OF MEMRISTORS 

The voltage and current waveforms of the simple mem- 
ristor circuit shown in Fig. 5 are rather peculiar and are 
certainly not typical of those normally observed in RLC 
circuits. This observation suggests that memristors might 
give rise to some novel applications outside those for RLC 
circuits. Our objective in this section is to present a number 
of interesting examples which might indicate the potential 
usefulness of memristors. 

A. Applications of Memristors to Device Modeling” 

Although many unconventional devices have been in- 
vented in the last few years, the physical operating principles 
of most of these devices have not yet been fully understood. 
In order to analyze circuits containing these devices, a 

lo In the case of isotropic material. (27)-(29) reduce to J, = u(&)&, 
B1=~(NI)HI, and DI=@~)E,, where the coefficients u(.), p(.), and *I The author is grateful to one of the reviewers who pointed out 
4’ ) are the nonlinear conductivity, nonlinear magnetic permeability, and that a charge-controlled memristor has been used in the modeling of 
nor&new dielectric permittioity of the material. varactar diodes [13], [14]. 
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Zero-Order Maxwell's Equations

curl Eo = 0

curl H o = Jo.

First-Order Maxwell's Equations

aBo

aT
aDo

curl HI = II + --.aT

(23)

(24)

(25)

(26)

where .§J('), (B( .), and D(-) are one-to-one continuous func­
tions from R3 onto R3. Under these assumptions, (26) and
(27) can be combined to give

(30)

Observe that (30) does not contain any time derivative.
Hence, under any specified boundary condition appropriate
for the device, the first-order electric field E 1 is related to
the first-order magnetic field HI by a functional relation;
namely

The total quasi-static vector quantities are obtained by keep­
ing only the first two terms of the formal power series and Oy
setting a= I; namely, E~Eo+EI, H~Ho+HI, D~bo+DI'
B~Bo+BI, J~Jo+lI. The three classical circuit elements
have been identified as electromagnetic systems whose solu­
tions correspond to certain combinations of the zero-order
and first-order solutions of (23)--(26). For example, a re­
sistor has been identified to be an electromagnetic system
whose first-order fields are negligible compared to its zero­
order fields, so that its characterization can be interpreted
as an instantaneous (memoryless) relationship between the
two zero-order fields Eo and Ho. In contrast to this, an in­
ductor has been identified to be an electromagnetic system
where only the first-order magnetic field is negligible. In
this case, the electromagnetic system can be interpreted as
an inductor in series with a resistor. Similarly, a capacitor
has been identified to be an electromagnetic system where
only the first-order electric field is negligible. In this case,
the electromagnetic system can be interpreted as a capacitor
in parallel with a resistor. The remaining case where both
first-order fields are not negligible has been dismissed as
having no corresponding situation in circuit theory [12]. We
will now offer the suggestion that this missing combination
is precisely that which gives rise to the characterization of a
memristor.

In order to add more weight to the above interpretation,
we will now show that under appropriate conditions the
instantaneous value of the first-order electric flux density D 1

[whose surface integral is proportional to the charge q(t)]
is related to the instantaneous value of the first-order mag­
netic flux density B I [whose surface integral is proportional
to the flux-linkage «J(t)]. This would be the case if we postu­
late the existence of a two-terminal device with the following
two properties. 1) Both zero-order fields are negligible com­
pared to the first-order fields; namely, E~ E1, H ~HI,
D~DI, B~BI, and J~JI. 2) The material from which the
device is made is nonlinear. To be completely general, we
will denote the nonlinear relationships bylo

If we substitute (31) for E 1 in (29) and then substitute the in­
verse function of (B( .) from (28) into the resulting expres­
sion, we obtain

A. Applications of Memristors to Device Modeling ll

Although many unconventional devices have been in­
vented in the last few years, the physical operating principles
of most of these devices have not yet been fully understood.
In order to analyze circuits containing these devices, a

(31)

V. SOME NOVEL ApPLICATIONS OF MEMRISTORS

The voltage and current waveforms of the simple mem­
ristor circuit shown in Fig. 5 are rather peculiar and are
certainly not typical of those normally observed in RLC
circuits. This observation suggests that memristors might
give rise to some novel applications outside those for RLC
circuits. Our objective in this section is to present a number
of interesting examples which might indicate the potential
usefulness of memristors.

Equation (32) specified the instantaneous (memoryless)
relationship between D 1 and B I; it can be interpreted as the
quasi-static representation of the electromagnetic field quan­
tities of the memristor.

To surnmarize, we offer the interpretation that the physi­
cal mechanism characterizing a memristor device must come
from the instantaneous. (memoryless) interaction between
the first-order electric field and the first-order magnetic field
of some appropriately fabricated device so that it possesses
the two properties prescribed above. This interpretation
implies that a physical memristor device is essentially an ac
device, for otherwise, its associated dc electromagnetic fields
will give rise to nonnegligible zero-order fields. This require­
ment is consistent with the circuit-theoretic properties of the
memristor, for a dc current source would give rise to an in­
finite charge [q(t)-too as t-too] and a dc voltage source
would give rise to an infinite flux-lInkage [<p(t)-too as t-too ].
This requirement is, of course, intuitively reasonable. After
all, we do not connect a dc voltage source across an inductor.
Nor do we connect a dc current source across a capacitor!

(27)

(28)

(29)

II = .§J(EI)

B 1 = (B(H1)

D 1 = D(E1)

10 In the case of isotropic material, (27)-(29) reduce to Jr = a{Er)Eh

B 1 = Jl-(Hr)Hh and Dr = «Er)Eh where the coefficients u('), 1'('), and
«. )are the nonlinear conductivity, nonlinear magnetic permeability, and
nonlinear dielectric permittivity of the material.

11 The author is grateful to one of the reviewers who pointed out
that a charge-controlled memristor has been used in the modeling of
varactar diodes [13], [14].
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Fig. 6. Output voltage waveform I;, of simple memristor circuit 
shown in (a) corresponding to a stepwise input voltage u,(t) of 
different amplitudes bears a striking resemblance to corresponding 
waveforms of the same circuit but with the memristor replaced by 
typical amorphous ovonic threshold switch. 

realistic “circuit model” must first be fpund. We will now 
show that the memristor can be used to yodel the properties 
of two recently discovered, but unrelated, devices. 

Example 1: Modeling an Amorphous “Ovonic” Threshold 
Switch 

An amorphous “ovonic” threshold switch is a two-ter- 
minal device which uses’an amdrphous glass rather than the 
more common crystalline semiconductqr material used in 
most solid-state devices [ 15]-[17]. This device lias already 
attracted much international attention because of its poten- 
tial usefulness [18], [19]. To show that the memristor pro- 
vides a reasonable model for at least one type of the amor- 
phous devices, let us consider the memrjstor circuit shown in 
Fig. 6(a), where the 9-q curve of the memristor is shown in 
Fig. 6(b).12 From Theorem 5 we know the order of complex- 
ity of this circuit is equal to one. The state equation is given 

12 This circuit is identical to the switching circuit described in [15], 
[16], but with an ovonic threshold device connected in place of the 
memristor. As explained in [HI, [16], this circliit operates like a switch 
in the sense that prior to the applicatidn of a square-wave pulse, thk 
ovonic switch behaves like a high resistance and is said to be operating 
in the OFF state. After the pulse is applied, the ovonic switch remains in 
its OFF state until after some rime delay Td; thereupon it switches to a 
low resistance state. Since the circuit is essentially a voltage divider, the 
output voltage u,(f) will be high when the ovonic switch is operating in 
its OFF state, and will be low when it is operating in its ON state. 

by 
dq/dt = u&V[RI + Rz + M(q)]. 

Since the variables are separable, the solution is readily found 
to be 

where 

I h(q) = 6% + R& + u?(q) I 
and cp = cp(q) represents the cp-q curve of the memristor shown 
in Fig. 6(b). Observe that h(q) is a strictly monotonically in- 
creasing function of q; hence, its inverse h-‘( .) always exists. 
The output voltage uo(t) is readily found to be given by 

v,(t) = v,(t) - R,[dq(t)/dt]. (36) 

If we let us(t) be a square-wave pulse, as shown in Fig. 6(c), 
and let q(Q=O, where lo is the initial time, then the output 
waveforms uo(t) and i(t), corresponding to the memristor 
Fq curve shown in Fig. 6(b), can be derived from (34)-(36); 
they are shown in Fig. 6(d) and (e). These output waveforms 
are completely characterized’by the following parameters: 

El = [(Kz + &)/CM, + RI + Rd]E (37) 

Ez = [(MS + Rz)/(M, + RI + Rd]E (3% 

II = E/(Mz + RI + Rd (39) 

Iz = E/CM, + RI + Rz) (40) 

Td = [$ + (RI + RNo]/E (41) 

where MZ and M, represent the memristance corresponding 
to segments 2 bnd 3 of the memristor cp-q curve and where 
(R,, QO) is the coordinate of the breakpoint between these 
two segments. An examination of (4 1) shows that for a given 
p-q curve, the time delay Td decreases as the amplitude E pf 
the square-wave pulse in Fig. 6(c) increases. Hence, corre- 
sponding to the three square-wave pulses with amplitude E, 
E’, and E’! (E’<E<E”) shown in ‘Fig. 6(c) and (f), we 
obtain the waveforms for the output voltage uo(t) as shown 
in Fig. 6(d), (g), and (h), respectively. A comparison be- 
tween these waveforms with the corresponding published 
waveforms for the ovonic threshold switch reveals a striking 
resemblince [15], [16]. The memristor with the (p-9 curve 
shown in Fig. 6(b) seems to simulate not only the exact 
shape of the stepwise waveforms, but also the attendant de- 
crease of the time delay with increasing values of E.13 

I3 Since the author has been unable to obtain a sample of an ovonic 
threshold switch, the comparisons were made only with published 
waveforms. It is not clear how well our present memristor model will 
simulate the rate of decrease of the time delay with increasing values 
of E. In any event, the qualitative agreement with published waveforms 
is quite remarkable. 
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(36)

(35)

If we let v8(t) be a square-wave pulse, as shown in Fig. 6(c),
and let q(to)=O, where to is the initial time, then the output
waveforms vo(t) and i(t), corresponding to the memristor
qr-q curve shown in Fig. 6(b), can be derived from (34)---(36);
they are shown in Fig. 6(d) and (e). These output waveforms
are completely characterized"by the following parameters:

E 1 = [(M z + R z)/(M2 + R I + R 2)]E (37)

E 2 = [(M 3 + R 2)/(M3 + RI +R 2)JE (38)

II = E/(Mz + R I + R 2) (39)

1 2 = E/(M3 + R I + R 2) (40)

T d = [cI>0 + (R I + Rz)QoJ!E (41)

and <(' = ip(q) represents the cp-q curve of the memristor shown
in Fig. 6(b). Observe that h(q) is a strictly monotonically in­
creasing function ofq; hence, its inverse h-1(.) always exists.
The output volt~ge vo(t) is readily found to be given by

where

q(t) = h- l
0 (Jot v.(r) dr + «'(q(to») (34)

dq/dt = v.(t)/[RI + R 2 + M(q)]. (33)

by

Since the variables are separable, the solution is readily found
to be

E ---..,..-------:

Fig. 6. Output voltage waveform v.(t) of simple memristor circuit
shown in (a) corresponding to a stepwise input voltage v,(t) of
different amplitudes bears a striking resemblanc\l to corresponding
waveforms of the same circuit but with the memristor n;placed by
typical amorphous ovonic threshold switch. . . .

realistic "circuit model" must first be fpu!1d. We will now
show that the memristor C~lO be used to plodel the properties

of two recently discovered, but unrelated, devices.

Example 1: Modeling an Amorphous "Ovonic" Threshold
Switch

An amorphous "ovonic" threshold switch is a two-ter­
minal device which uses·an amorphous glass rather than the
more common crystalline semiconductqr material used in
most solid-state'devices [15J-[17]. This device has already
attracted much international attention because of its poten­
tial usefulness [18], [19]. To show that the memristor pro­
vides a reasonable model for at least one type of the amor­
phous devices, let us consider the memristor circuit shown in
Fig. 6(a), where the <('-q curve of the memristor is shown in
Fig. 6(b).12 From Theorem 5 we know the order of complex­
ity of this circuit is equal to one. The state equation is given

12 This circuit is iden~ical to the ~witching circuit described in [15],
[16], but with an ovonic threshold device connected in place of the
memristor. As explained in [15], [16], this circuit operates like a switch
in the sense that prior to the application of a square-wave pulse, the
ovonic switch behaves like a high resistance and is said to be operating
in the OFF state. After the pulse is applied, the ovonic switch remains in
its OFF state until after some. time delay Td ; thereupon it switches to a
low resistance state. Since the circuit is essentially a voltage divider, the
output voltage vo(t) will be high when the ovonic switch is operating in
its OFF state, and will be low when it is operating in its ON state.

where M 2 and M a represent the memristance corresponding
to segments 2 and 3 of the memristor cp-q curve and where
(cI>o, Qo) is the coordinate of the breakpoint between these
two segments. An examination of (4 I) shows that for a given
CP-q curve, the time delay Td decreases as the amplitude E 91
the square-wave pulse in Fig. 6(c) increases. Hence, corre­
sponding to the three square-wave pulses with amplitude E,
E', and E" (E' <E<E") shown in 'Fig. 6(c) and (f), we
obtain the waveforms for the output voltage vo(t) as shown
in Fig. 6(d), (g), and (h), respectively. A comparison be­
tween these waveforms with the corresponding published
waveforms fqr the ovonic threshold switch reveals a striking
resemblance [15], [16J. The memristor with the qr-q curve
shown in Fig. 6(b) seems to simulate not only the exact
shape of the stepwise waveforms, but also the attendant de­
crease of the time delay with increasing values of E.13

13 Since the author has been unable to obtain a sample of an ovonic
threshold switch, the comparisons were made only with published
waveforms. It is not clear how well our present memristor model will
simulate the rate of decrease of the time delay with increasing values
of E. In any event, the qualitative agreement with published waveforms
is quite remarkable.
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Fig. 7. Output waveform u,(f) for basic timing circuit in (a) demon- 
strates that the memristor with (0-4 curve shown in (b) provides an 
excellent circuit model for an E-Cell. 

Example 2: Modeling an Electrolytic E-Cell 

An E-Cell (also known as a Coul Cell) is an electrochem- 
ical two-terminal device [20] capable of producing time 
delays ranging from seconds to months. An E-Cell can be 
considered as a subminiature electrolytic plating tank con- 
sisting of three basic components, namely, an anode, a 
cathode, and an electrolyte. The anode, usually made of 
gold, is immersed in the electrolyte solution which in turn 
is housed within a silver can that also serves as the cathode. 
The time delay is controlled by the initial quantity of silver 
that has been previously plated from the cathode onto the 
anode and the operating current. During the specified timing 
interval silver ions will be transferred from the anode to the 
cathode, and the E-Cell behaves like a linear resistor with a 
low resistance. The end of the timing interval corresponds 
to the time in which all of the silver has been plated off the 
anode; thereupon the E-Cell behaves like a linear resistor 
with a high resistance. Hence, any reasonable model of an 
E-Cell must behave like a time-varying linear resistor which 
changes from a low resistance to a high resistance after a dc 
current is passed through it for a specified period of time 
equal to the timing interval. We will now show that this be- 
havior can be precisely modeled by a memristor with the 
cp-q curve shown in Fig. 7(b). To demonstrate the validity 
of this model, let us analyze the simplest E-Cell timing cir- 
cuit, shown in Fig. 7(a), but with the E-Cell replaced by a 
memristor. In practice, the exact amount of silver to be 

R,‘IK i 
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Vertical Scale: IO volts per division (both tmces). 

(0). 

Fig. 8. Practical memristor circuit for 
generating staircase waveforms. 

plated is specified by the manufacturer and from this in- 
formation the circuit is designed so that the correct amount 
of current will pass through the E-Cell, thereby providing 
the desired timing interval. The effect of closing the switch 
S in Fig. 7(a) at t= to is equivalent to applying a step input 
voltage of E volts at to, as shown in Fig. 7(c). 

Since the circuit in Fig. 7(a) can be obtained from the 
circuit in Fig. 6(a) upon setting Rz to zero, we immediately 
obtain the output voltage vO(t), as shown in Fig. 7(d). This 
output voltage waveform is almost identical to the cor- 
responding waveform’measured from an E-Cell timing cir- 
cuit. The timing interval in this model is equal to the time 
delay Td. The only discrepancy between this waveform and 
that actually measured with an E-Cell timing circuit is that, 
in practice, the rise time is not zero. It always takes a finite 
but small time interval for an E-Cell to switch completely 
from a low to a high resistance. The abrupt jump in Fig. 
7(d) is, of course, due to the piecewise-linear nature of the 
assumed cp--q curve. Hence, even the finite switching time 
can be accurately modeled by replacing the cp-q curve with 
a curve having a continuous derivative that essentially ap- 
proximates the piecewise-linear curve. 

B. Application of Memristors to Signal Processing 

The preceding examples demonstrated that certain types 
of memristors can be used for switching as well as for delay- 
ing signals. Memristors can also be used to process many 
types of signals and generate various waveforms of practical 
interest. Due to limitation of space, we will present only one 
typical application that uses a memristor to generate a 
staircase waveform [21]. This type of waveform has been 
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generating staircase waveforms.

Fig. 7. Output waveform v.(l) for basic timing circuit in (a) demon­
strates that the memristor with <P-q curve shown in (b) provides an
excellent circuit model for an E-Cell.

Example 2: Modeling an Electrolytic E-Cell

An E-Cell (also known as a Coul Cell) is an electrochem­
ical two-terminal device [20] capable of producing time
delays ranging from seconds to months. An E-Cell can be
considered as a subminiature electrolytic plating tank con­
sisting of three basic components, namely, an anode, a
cathode, and an electrolyte. The anode, usually made of
gold, is immersed in the electrolyte solution which in turn
is housed within a silver can that also serves as the cathode.
The time delay is controlled by the initial quantity of silver
that has been previously plated from the cathode onto the
anode and the operating current. During the specified timing
interval silver ions will be transferred from the anode to the
cathode, and the E-Cell behaves like a linear resistor with a
low resistance. The end of the timing interval corresponds
to the time in which all of the silver has been plated off the
anode; thereupon the E-Cell behaves like a linear resistor
with a high resistance. Hence, any reasonable model of an
E-Cell must behave like a time-varying linear resistor which
changes from a low resistance to a high resistance after a dc
current is passed through it for a specified period of time
equal to the timing interval. We will now show that this be­
havior can be precisely modeled by a memristor with the
ip-q curve shown in Fig. 7(b). To demonstrate the validity
of this model, let us analyze the simplest E-Cell timing cir­
cuit, shown in Fig. 7(a), but with the E-Cell replaced by a
memristor. In practice, the exact amount of silver to be

plated is specified by the manufacturer and from this in­
formation the circuit is designed so that the correct amount
of current will pass through the E-Cell, thereby providing
the desired timing interval. The effect of closing the switch
S in Fig. 7(a) at t= to is equivalent to applying a step input
voltage of E volts at to, as shown in Fig. 7(c).

Since the circuit in Fig. 7(a) can be obtained from the
circuit in Fig. 6(a) upon setting R 2 to zero, we immediately
obtain the output voltage vo(t), as shown in Fig. 7(d). This
output voltage waveform is almost identical to the cor­
responding waveform measured from an E-Cell timing cir­
cuit. The timing interval in this model is equal to the time
delay Ta. The only discrepancy between this waveform and
that actually measured with an E-Cell timing circuit is that,
in practice, the rise time is not zero. It always takes a finite
but small time interval for an E-Cell to switch completely
from a low to a high resistance. The abrupt jump in Fig.
7(d) is, of course, due to the piecewise-linear nature of the
assumed ip-q curve. Hence, even the finite switching time
can be accurately modeled by replacing the cp--q curve with
a curve having a continuous derivative that essentially ap­
proximates the piecewise-linear curve.

B. Application of Memristors to Signal Processing

The preceding examples demonstrated that certain types
of memristors can be used for switching as well as for delay­
ing signals. Memristors can also be used to process many
types of signals and generate various waveforms of practical
interest. Due to limitation of space, we will present only one
typical application that uses a memristor to generate a
staircase waveform [21]. This type of waveform has been
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Fig. 9. Nine-segment memristor can be used to generate ten-step staircase periodic waveform. 

used in many instruments such as the sampling oscilloscope 
and the transistor curve tracer. 

To simplify discussion, let us consider the design of a four- 
step staircase waveform generator. The output voltage wave- 
form shown in Fig. 7(d) suggests that a four-step staircase 
waveform can be generated by driving the circuit in Fig. 
7(a) with a symmetrical square wave, provided that a 
memristor with the cp-q curve shown in Fig. 7(b) is available. 
This memristor can be synthesized by the methods presented 
in Section II. In fact, a simple realization is shown in Fig. 
8(a) with a nonlinear resistor @ connected across port 2 of 
a type-2 M-.R mutator. This nonlinear resistor is, in turn, 
realized by two back-to-back series Zener diodes in parallel 
with a linear resistor and has a V-I curve as shown in Fig. 
8(b). To obtain the desired 9-q curve shown in Fig. 8(d), we 
connect CR across port 2 of the type-2 M--R mutator [4]. To 
verify our design, port 1 of the terminated M-R mutator is 

connected in series with a square-wave generator vs(t) and 
a 1-O resistor as shown in Fig. 8(c). The oscilloscope tracings 
of both the input signal us(t) and the output signal v,(t) are 
shown in Fig. 8(e). Notice that vo(t) is indeed a staircase 
waveform. The finite rise time in going from one step to 
another is due to the finite resistance of the Zener diode 
voltage-current characteristic. 

It is easy to generalize the above design for generating a 
staircase waveform with any number of steps. The nonlinear 
resistor required for generating a ten-step staircase waveform 
is shown in Fig. 9(a). This circuit consists of two Zener- 
diode ladder networks connected back to front in parallel 
[I]. The resulting V-I curve and the corresponding p-q 
curve are shown in Fig. 9(b) and (c), respectively. Corre- 
sponding to the square-wave input voltage us(t) shown in 
Fig. 9(d), we obtain the ten-step staircase waveform Do(t) as 
shown in Fig. 9(e). 
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Fig. 9. Nine-segment memristor can be used to generate ten-step staircase periodic waveform.

used in many instruments such as the sampling oscilloscope
and the transistor curve tracer.

To simplify discussion, let us consider the design of a four­
step staircase waveform generator. The output voltage wave­
form shown in Fig. 7(d) suggests that a four-step staircase
waveform can be generated by driving the circuit in Fig.
7(a) with a symmetrical square wave, provided that a
memristor with the 'f'-q curve shown in Fig. 7(b) is available.
This memristor can be synthesized by the methods presented
in Section U. In fact, a simple realization is shown in Fig.
8(a) with a nonlinear resistor (R connected across port 2 of
a type-2 M-R mutator. This nonlinear resistor is, in turn,
realized by two back-to-back series Zener diodes in parallel
with a linear resistor and has a V-I curve as shown in Fig.
8(b). To obtain the desired <P-q curve shown in Fig. 8(d), we
connect (R across port 2 of the type-2 M--R mutator [4]. To
verify our design, port 1 of the terminated M-R mutator is

connected in series with a square-wave generator v8(t) and
a I-Q resistor as shown in Fig. 8(c). The oscilloscope tracings
of both the input signal v.(t) and the output signal voCt) are
shown in Fig. 8(e). Notice that voCt) is indeed a staircase
waveform. The finite rise time in going from one step to
another is due to the finite resistance of the Zener diode
voltage-current characteristic.

It is easy to generalize the above design for generating a
staircase waveform with any number of steps. The nonlinear
resistor required for generating a ten-step staircase waveform
is shown in Fig. 9(a). This circuit consists of two Zener­
diode ladder networks connected back to front in parallel
[1]. The resulting V-I curve and the corresponding <p-q
curve are shown in Fig. 9(b) and (c), respectively. Corre­
sponding to the square-wave input voltage v.(t) shown in
Fig. 9(d), we obtain the ten-step staircase waveform voCt) as
shown in Fig. 9(e).
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VI. CONCLUDING REMARKS 

The memristor has been introduced as the fourth basic 
circuit element. Three new types of mutators have been intro- 
duced for realizing memristors in the form of active circuits. 
An appropriate cascade connection of these mutators and 
those already introduced in [3] can be used to realize higher 
order elements characterized by a relationship between @j(t) 
and i@)(t), where rW(t) (P(t)) denotes the mth (nth) time 
derivative of u(t) (i(t)) if m>O (n>(j), or the mth iterated 
time integral of u(t) (i(t)) if m < 0 (n <O). Several operational 
laboratory models of memristors have been built to demon- 
strate some of the peculiar signal-processing properties of 
memristors. The application of memristors in modeling 
unconventional devices shows that memristors are useful 
even if they are used as a conceptual tool of analysis. While 
only resistor-memristor circuits have been presented, it is 
not unreasonable to expect that the most interesting appli- 
cations will be found in circuits containing resistors, induc- 
tors, capacitors, and memristors. 

Although no physical rnemristor has yet been discovered 
in the form of a physical device without internal power 
supply, the circuit-theoretic and quasi-static electromag- 
netic analyses presented in Sections III and IV make plaus- 
ible the notion that a memristor device with a monoton- 
ically increasing cp-q curve could be invented, if not dis- 
covered accidentally. It is perhaps not unreasonable to sup- 
pose that such a device might already have been fabricated 
as a laboratory curiosity but was improperly identified! 
After all, a memristor with a’ simple p-q curve will give rise 
to a rather peculiar-if not complicated hysteretic-u-i 
curve when erroneously traced in the current-versus-voltage 
plane.14 Perhaps, our perennial habit of tracing the u-i curve 
of any new two-terminal device has already misled some of 
our device-oriented colleagues and prevented them from 
discovering the true essence of some new device, which could 
very well be the missing memristor. 
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VI. CONCLUDING REMARKS

The memristor has been introduced as the fourth basic.
circuit element. Three new types of mutators have been intro­
duced for realizing memristors in the form of active circuits.
An appropriate cascade connection of these mutators and
those already introduced in [3] can be used to realize higher
order elements characterized by a relationship between v(m)(t)
and i(n)(t), where v(m)(t) (i(n)(t» denotes the mth (nth) time
derivative of v(t) (i(t» if m>O (n>O), or the mth iterated
time integral of v(t) (i(t» if m<O (n<O). Several operational
laboratory models of memristors have been built to demon­
strate some of the peculiar signal-processing properties of
memristors. The application of memristors in modeling
unconventional devices shows that memristors are useful
even if they are used as a conceptual tool of analysis. While
only resistor-memristor circuits have been presented, it is
not unreasonable to expect that the most interesting appli­
cations will be found in circuits containing resistors, induc­
tors, capacitors, and memristors.

Although no physical memristor has yet been discovered
in the form of a physical device without internal power
supply, the circuit-theoretic and quasi-static electromag­
netic analyses presented in Sections III and IV make plaus­
ible the notion that a memristor device with a monoton­
ically increasing cp-q curve could be invented, if not dis­
covered accidentally. It is perhaps not tmreasonable to sup­
pose that such a device might already have been fabricated
as a laboratory curiosity but was improperly identified!
After all, a memristor with a simple cp-q curve will give rise
to a rather peculiar-if not complicated hysteretic-v-i
curve when erroneously traced in the current-versus-voltage
plane.14 Perhaps, our perennial habit of tracing the v-i curve
of any new two-terminal device has already misled some of
our device-oriented colleagues and prevented them from
discovering the true essence of some new device, which could
very well be the missing memristor.
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