
PCI Device Implementation for Front End Processing

Module in Ultrasound Scanning System

Athul Balan Edichery Alinkeezhil, Goutham Pocklassery, Harikrishna Menon, Athul Asokan Thulasi, Tom Charly Kattakayam

athulbalanea@gmail.com, gouthamravindran@gmail.com, beinghari03@gmail.com, athulat.002@gmail.com,

tomcharlyk@gmail.com

Abstract—In this project we implement the PCI Device Interface

for integration into the Front End Processing Module in a typical

ultrasound scanning system. Our team focuses in implementing

data manager unit with PCI communication protocol. This will

be synthesized to fit into a Xilinx FPGA. It is supposed to be

supporter module for communication to control and regulate

data transfer over one or more units. This master/slave device

will be basically used for load sharing purposes when the CPU

need to communicate with memory, Ultra scanner frond end, and

other device in system architecture. The design and

implementation is restricted to RTL design of the PCI device in

Verilog HDL following the industry PCI Standard – Peripheral

Component Interface Bus Specification 2.1. The same is

synthesized using Xilinx FGPA.

IndexTerms—PCI, FPGA, Verilog HDL, Front End

I. INTRODUCTION

Today, India has a population of 1.2 billion and the

majority of them live in rural areas and about 60 per cent of

this rural population lives on less than Rs 35 a day and nearly

as many in cities live on Rs 66 a day. So the percentage of the

Indian population which can afford proper healthcare is

relatively small. Moreover, rural areas have very few hospitals

and doctors as compared to cities. Situations might get serious

in case of emergencies especially during pregnancy period.

They might have to travel long distances in order to get

treatment as well as the check-ups which may not be easy for

pregnant women. In this project we implement the PCI Device

Interface for integration into the Front End Processing Module

in a typical ultrasound scanning system. Through this project

we have learnt the industry PCI Standard – Peripheral

Component Interface Bus Specification 2.1

II. MOTIVATION

The majority of the population in the developing and

underdeveloped nations lives in rural areas with limited access

to proper health care resources. There is a wide gap between

the number of people who have access to modern health care

facilities and those who do not. One of the reasons is the high

cost of the medical technology used to diagnose and cure.

Pregnant women are a very care needing group of people.

They need more medical attention than normal person to

ensure proper growth of the baby. Majority of health

infrastructure, medical power and other health resources are

mainly located in urban areas. Most of the pregnant women in

the rural areas seldom visit hospitals and might not receive

any kind of medical attention. Unsafe and unhygienic birth

practices, unclean water, poor nutrition and unsanitary

environments in rural areas are a major risk to the health of

pregnant women. This is reflected in the poor health condition

of children as well as in the case of increasing infant mortality

rate. With proper medical care given to the pregnant women

many problems like birth defects, multiple pregnancies,

baby’s position in the womb, tumors of pregnancy,

miscarriage etc. can be identified and taken care at early stage.

III. RELATED WORKS

Ultrasonography is widely used medical technique for

visualizing internal body structures. Ultrasound images

(sonograms) are made by sending a pulse of ultrasound into

tissue using an ultrasound transducer (probe) with no break in

the skin. A number of such devices has been developed using

FPGA in recent years. In one such work this is done

incorporating a high speed imaging board with analog front-

end electronics and digital back-end unit, a high speed

mechanical sector probe and a high frequency bipolar pulse

generator. It also has a FPGA based programmable and

imaging board utilizing 64-bit PCI bus for high-speed data

transfer and real-time imaging [1]. In our design, we are trying

to bring together front end processor, ultrasound imaging

sensor, sensing modules to measure heart rate and oxygen

content, electrocardiogram and BP. We implemented a 32-bit

PCI Device in FPGA for managing data transfer between

slave devices, memory and the CPU.

There are designs that has connection between PCI

interface and FPGA using PLX interface chip PCI9054 [2].

But in our design instead of using the standardized PCI chip

we design a PCI device in HDL and use FPGA to support

communication with processor and other hardware devices.

Realizing PCI device in FPGA makes it programmable, real-

time and high resolution compactable which will enhance

communication between ultrasound frond ends. The

reconfigurable PCI interfaces like hardware and firmware

design of the FILAR PCI interface card are examples for such

works which is largely implemented in FPGA. The card

features four 2 Gbit/s serial optical S-LINK channels and a 64-

bit/66 MHz PCI interface [3].

IV. SYSTEM ARCHITECTURE

The generic system architecture of the PCI Device for Front

End Processing Module in Ultrasound Scanning System is

illustrated in the Figure 1. In this system is shown, a

microprocessor, memory and there slave devices. The three

http://en.wikipedia.org/wiki/Ultrasound_transducer

slave devices may be peripherals like ultra sound front end,

sensing modules to measure heart rate and oxygen content,

electrocardiogram and BP. In this project, we implemented a

PCI Device in FPGA which will be used to manage data

communications between slave devices, memory and the

CPU. The device is designed with functions to support PCI

protocol - Peripheral Component Interface Bus Specification

2.1. to communicate with other peripherals in the architecture

and as a memory interface unit to handle data exchange with

memory unit. The memory interface unit with address

generator helps to read/write data into the memory from the

IO ports (slave devices) without taking much clock cycles for

the CPU to process the transaction. The CPU has to generate

only the start address of the read or write cycles. Upon

request from the slave devices which runs on a PCI peripheral

bus, the PCI device will initiate a bus cycle to access memory.

This will tremendously improves the speed of the system by

reducing number of clock cycles required for the transaction

as compared to less efficient methods like programmed IO

transfers. In programmed IO transfers PCI device generates an

interrupt to inform the CPU that it needs data transferred. The

device interrupts service routine (ISR) causes the CPU to read

from the PCI device into one of its own registers. The ISR

then tells the CPU to write from its register to memory. The

ISR then tells the CPU to write from its register to memory.

Device 1

Device 2

Device 3

P
C

I
B

u
s

PCI Device

L
o

c
a

l
B

u
s

Microprocessor

Memory

Fig. 1. System architecture diagram.

V. FPGA DEVICE ARCHITECTURE

In this project we have implemented a PCI device, a

transmit FIFO, receive FIFO, and memory interface in FPGA.

The PCI device has four sub-units PCI master controller, PCI

read controller, PCI write controller and PCI error handling

module. The FPGA device is designed with a memory

interface module since PCI architecture has no central DMA

controller. It also has two FIFOs for temporally holding the

data during memory read and write operations. The FPGA

device architecture is shown in the figure 2.

Memory InterfacePCI Read

Controller

PCI Master

Controller

PCI Write

Controller

PCI Device

PCI Error

Handling

RX

FIFO

FPGA Design Architecture

TX

FIFO

Fig. 2. FPGA device architecture.

A. Data Flow of the Designed System

The FPGA device access data from the memory starting

from the address driven into the drive as input. The device has

a memory interface to keep track of the address while

performing read and write operation. The address generator in

memory interface increments the address in each clock as long

as a read or write operation is requested. The data to be written

into the memory is first stored into the transmit FIFO and then

upon establishing ownership over data bus to the memory it is

read from the FIFO and written in the memory. Similarly the

receive FIFO stores the data from the memory and then

transfers to peripherals when they are ready for reception.

VI. IMPLEMENTATION

The register transfer level (RTL) design of the system is

done using Verilog hardware description langague (HDL).

ModelSim EDA tool is used for simulation of the RTL. Using

Xilinx ISE, the RTL design is synthesized into an equivalent

hardware file which can be programmed into a FPGA.

A. Block Diagram

1) PCI Device:

PCI Device

W
R

_
E

N

R
D

_
E

N

R
X

T
R

D
Y

C
L

K

D
E

V
S

E
L

DATA_IN

TX_COUNT

RX_COUNT

R
S

T

T
X

ADDRESS

IRDY

FRAME

AD BUS

Fig. 3. PCI device module diagram.

TABLE I. PIN DESCRIPTION OF PCI DEVICE

Signal Name I/O Description
CLK Input System Clock

RST Input System Reset

DATA_IN Input Data line to write into the transmit FIFO

from CPU and other devices

TX_COUNT Input Number of memory write transaction to be
done

RX_COUNT Input Number of memory read transaction to be

done

ADDRESS Input Start address for burst read/write
transaction

WR_EN Input Write enable in Receive FIFO buffer

RD_EN Input Read enable in transmit FIFO buffer

TX Input Memory write transaction enable

RX Input Memory read transaction enable

DEVSEL# Input PCI device select signal. Asserted by the

targets of the PCI transaction to claim the

transaction.

TRDY# Input PCI target ready signal

FRAME# Output PCI frame signal. Used by PCI initiator

for signaling beginning and end of PCI

transaction

IRDY# Output PCI initiator ready

2) Transmit/Receive FIFO:

TX/RX FIFO

CLK

WR_EN

RST

RD_EN

DATA_IN

FULL

EMPTY

DATA_OUT

Fig. 4. Module diagram of FIFO

TABLE II. PIN DESCRIPTION OF FIFO

Signal Name I/O Description

CLK Input System Clock

RST Input System Reset

WR_EN Input Write enable for FIFP

RD_EN Input Read enable for FIFO

DATA_IN Input Input data for FIFO

FULL Output Signal to indicate FIFO full status

EMPTY Output Signal to indicate FIFO empty Status

DATA_OUT OUTPUT Output data bus for FIFO

B. RTL Behavioral Description

We have implemented a PCI Device with PCI protocol

with burst read and write transfers, that too without any wait

states. The read/write transaction is designed as per the PCI

protocol. The memory read transaction starts by de-asserting

the FRAME and IRDY, driving address onto AD bus and

command 0110 onto C/BE bus. The target latch and decode

address along with de-asserting DEVSEL. Then, there would

be a turn-around cycle, to stop driving the AD bus from the

design following which the targets starts driving data into AD

bus. The memory write transaction starts by asserting the

Frame#, driving address onto AD bus and command 0111

onto C/BE bus. The ‘Byte enable’ change along with each

data phase as that in read transaction. The target latch and

decode address along with asserting DEVSEL#. Then, the

target starts driving data into AD bus, since turn around cycle

is not requires in write truncation. The absence of turn-around

cycle in write transaction is because both address and data is

drive from same PCI bus agent. This cycle is required to

avoid a collision of data when changing the ownership of the

AD bus. A state machine to illustrate the read/write

transaction is show in figure 5.

STATE 0

STATE 1

STATE 2 STATE 6

STATE 3 STATE 5

STATE 4

RESET

Fig. 5. State machine

There are seven states in the state machine and a reset state

for the PCI device Verilog implementation. In the reset state,

signals like FRAME and IRDY are asserted and state is

changed to state 0. In state 0, the state machine checks

whether a read or write transaction is requested. If there is

request for read/write transaction, the FRAME bit is de-

asserted. The state is change to state 1 for write request and

state 3 for read request. Along with the request for a

read/write transaction the target will also provide the start

address and number of location in the memory need to be

read/written as input to the PCI device. Thus these inputs are

stored to local register in state 0. In state 0, C/BE bus is driven

with a command ‘0110’ for read request, whereas, C/BE is

driven with command ‘0111’ to write into the memory.

In state 1, PCI device will write data into the memory, if

TRDY and DEVSEL is de-asserted, and will remain in the

same state until completing number of transactions requested.

When the requested transactions are completed, the state is

changed to state 2 along with asserting FRAME bit. This state

also checks for underrun error in the PCI device. Underrun

error bit is asserted in state, when the transmit FIFO buffer is

empty or the request number of read transaction is more than

the data stored in transmit FIFO buffer. Along with underrun

error bit FRAME and IRDY are asserted to stop transaction. In

state 2, IRDY signal is asserted and state is change to state 0, if

TRDY and DEVSEL are asserted.

State 3 is a turn-around state. This state is utilized to turn-

around the ownership of the AD bus from initiator to the

target to read the memory. In state 4, byte enable is driven and

data is read through the AD bus, if TRDY and DEVSEL are

de-asserted, and will remain in the same state until number of

requested transactions completed. When the requested

transactions are completed, the state is changed to state 5

along with asserting FRAME bit. Receive FIFO buffer is

monitor for overrun error, in this state. If the front end

processor fails read the data quickly enough and the receive

FIFO buffer becomes full, an Overrun Error will occur, and

read data will be lost. And in case of overrun error, the state is

changed to state 0. In state 5, IRDY is asserted and state is

changed to state 6, when TRDY and DEVSEL is asserted.

State 6 is a idle state but it moves the state machine back to

state 0.

Apart from this state machine, the design has two FIFOs-

transmit FIFO and receive FIFO. The transmit FIFO

temporarily stores the data from CPU and devices which is to

be written into the memory through PCI device. And when

there is request to write more data than transmit FIFO holds,

the FIFO becomes empty and under-run error occurs. The

receive FIFO temporarily holds the data read from the memory

to CPU or other device through PCI device. Overrun error is

associated with this FIFO. The depth of both FIFOs is defined

as eight locations of byte wide.

VII. VERIFICATION

The register transfer level (RTL) design is simulated and

tested to meet the design specification in ModelSim EDA tool.

The PCI device, design under test is simulated, to tested

read/write cycles, under-run error flag and overrun error flag.

The test bench architecture-with its interacting signals between

the test bench and design under test is shown in the figure 6

below.

For testing memory write through PCI device, initially data

was loaded into transmit FIFO by asserting signal ‘WR_EN’

which is internally wired to write enable in the transmit FIFO.

The transmit FIFO generates address and stores these data

coming through input data line until ‘full’ bit of the transmit

FIFO is asserted. The PCI device determines whether is the

request is for a memory write/read by sampling the TX and RX

input. When the TX bit is triggered from the test bench the PCI

device starts a memory write cycle by asserting the read enable

bit of the transmit FIFO. Along with the TX bit the test bench

also stimulate a start ‘ADDRESS’. Then, starting from the

second clock after triggering TX signal, the transmit FIFO will

drive data which is to be written into the memory through AD

bus. The test waveform is shown in the figure 7.

PCI DEVICE (DESIGN

UNDER TEST)

S
T

IM
U

L
U

S

MONITOR

RD_EN

WR_EN

TX

RX

CLK

TEST BENCH

F
R

A
M

E

IR
D

Y

C
/B

E

[3
:0

]

RST

DATA_IN[31:0]

TX_COUNT [2:0]

RX_COUNT [2:0]

ADDRESS [31:0]

TRDY

DEVSEL

A
D

B
U

S

[3
1

:0
]

Fig. 6. Test bench architecture

Fig. 7. Waveform for the test case: Memory Write

Fig. 8. Waveform for the test case: Memory Read

When the RX bit is triggered from the test bench the PCI

device starts a memory read cycle by asserting the write

enable bit of the receive FIFO. Along with the TX bit the test

bench also stimulate a start ‘ADDRESS’. Then, starting from

the second clock after triggering RX signal, the transmit FIFO

start drive data which is read from the memory through AD

bus. The receive FIFO generates address internally and stores

these data coming through input data line until ‘full’ bit of the

transmit FIFO is asserted. When the receive FIFO is full,

overrun error will occur. The test waveform is shown in the

figure 8.

VIII. SYNTHESIS REPORT

The design has been successfully synthesized in FPGA

SPARTAN-3A XC3S700A (FGG484)-4.

A. Device utilization summary

Selected Device: 3s700anfgg484-4

Number of Slices: 107 out of 5888 1%

Number of Slice Flip Flops: 64 out of 11776 0%

Number of 4 input LUTs: 208 out of 11776 1%

Number used as logic: 144

Number used as RAMs: 64

Number of IOs: 116

Number of bonded IOBs: 115 out of 372 30%

IOB Flip Flops: 32

Number of GCLKs: 1 out of 24 4%

B. Timing Summary:

Minimum period: 5.926ns (Maximum Frequency:

168.758MHz).

Minimum input arrival time before clock: 5.970ns.

Maximum output required time after clock: 7.516ns.

Maximum combinational path delay: No path found

IX. CONCLUSION

In this project work we have built a FPGA based PCI

Interface for integration into the Front End Processing Module

in a typical ultrasound scanning system.The design,

implementation and verification of the PCI device in donein

Verilog HDL following the industry PCI Standard. The same

is synthesized using Xilinx FGPA. This project gave us a very

good opportunity to learn the industry PCI Standard –

Peripheral Component Interface Bus Specification 2.1.

ACKNOWLEDGMENT

We are really grateful to our guide Prof. Rajesh Kannan

Megalingam without whose support we would have never

done this project. We are also thankful to Humanitarian

Technology Labs of Electronics and Communication

department of Amrita School of Engineering, Amrita Vishwa

Vidyapeetham Univeristy, Amritapuri campus, Kollam, India

for providing us all the necessary lab facilities and support

towards the successful completion of the project. We also

thank the IEEE Standard Education Committee for funding

this project.

REFERENCES

[1] Weibao Qiu, Yanyan Yu, Lei Sun, " A Programmable, Cost-Effective,

Real-Time High Frequency Ultrasound Imaging Board Based on High-

Speed FPGA, 2010 IEEE Ultrasonics Symposium (IUS), ISBN: 978-

1-4577-0382-9

[2] Wang Liu, Yunfeng Liu, Liyan Qiao, "Development of Dual-

channel High-speed Data Acquisition Card Based on PCI Bus", ISBN:
978-1-4673-5683-1

[3] Wieslaw Iwanski, Stefan Haas, and Markus Joos, " A PCI Interface
With Four 2-Gbit/s Serial Optical Links, IEEE TRANSACTIONS ON

NUCLEAR SCIENCE, VOL. 52, NO. 6, DECEMBER 2005

[4] PCI Local Bus Specification, Revision 2.2, 1998

[5] PCI System Architecture, Fourth Edition, MindShare Inc., Tom

Shanley and Dan Anderson

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5875051

