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[57) ABSTRACT

A computer database contains visual and other informa-
tion of an object scene from which a television monitor
or film display is created by electronically sampling
points of the object scene information in the computer
memory. Undesirable effects of aliasing are significantly
reduced and substantially eliminated by pseudo-ran-
domly distributing, in a particular manner, the occur-
rence of the point samples in space and time. Realistic
depth of field is obtained in the images, corresponding
to what is observed through a camera lens, by altering
the sample point locations to simulate passing them
through an optical aperture in a pseudo-random distri-
bution thereacross. Further, effects of illumination,
shadows, object reflection and object refraction are
made more realistic by causing each sample point to
pseudo-randomly select one of a predetermined number
of possible ray directions.

54 Claims, 4 Drawing Sheets
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PSEUDO-RANDOM POINT SAMPLING
-- TECHNIQUES IN COMPUTER GRAPHICS

BACKGROUND OF THE INVENTION

This invention relates generally to the art of com-
puter graphics, and more specifically to the field of
point sampling of visual scene information for the pur-
pose of reconstructing an image of the visual scene.

One form of computer graphics that is becoming
widely practiced is to develop the sequence of video
image frames of a moving object scene from informa-
tion of the scene that has been stored in a computer
memory. The object scene database contains informa-
tion of the visual characteristics of the object scene,
such as color, as well as information of movement. The
creator of a sequence of video frames then uses a com-
puter to electronically assemble signals of each video
frame from the database in a manner that provides the

-views and movement of the object scene that is desired
by the operator to be displayed.

The electronic signal for each video frame is typically
developed by electronic sampling of the object scene
database. A separate set of digital signals is developed to
represent the color and/or intensity of each pixel of a
standard raster scanned video monitor, for each video
frame produced. Each pixel is thus the smallest resolu-
tion element of the video display. The color and/or
intensity of each pixel is determined by sampling the
database information to determine the characteristics of
the object scene at the location of a given pixel. Such
sampling is generally done by averaging the object
scene information over a certain portion of the area of
the pixel, or, more commonly, to sample the informa-
tion at one or more points within the pixel, usually in
some form of a periodically repeating pattern,

Recent developments in the field of computer graph-
ics have been directed to increasing the realism of the
resulting images. Progress has been made in more faith-
fully reproducing object textures, shadows, reflections
and transparencies, for example. Much effort has been
directed to the problem of aliasing, as well. Existing
sampling techniques tend to generate video image
frames having “alias” images; that is, images that appear
to be real but which are not specified in the computer
database. This is generally recognized as a characteris-
tic of images formed through variously used point sam-
pling techniques.

" Therefore, it is a general object of the present inven-
tion to provide computer graphics techniques that fur-
ther improve the realism of the resulting video image
frames and the totality of video productions generated
from computer database representations of an object
scene.

SUMMARY OF THE INVENTION

This and additional objects are accomplished by the
present invention wherein, briefly and generally, the
object scene information in the computer database is
sampled by points that are pseudo-randomly distributed
in one or several functions or dimensions. According to
one aspect of the invention, the point samples are pseu-
do-randomly distributed in a particular manner across
the video image plane being constructed. According to
another aspect, the pseudo-random distribution of point
samples is taken over the time that is occupied by the
video image frame being constructed. This substantially
reduces or eliminates the undesirable aliasing, both spa-
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tially and temporally. The distribution of samples over
time also increases the realism of the video frame by
adding the image blurring that would occur if the object
scene was being photographed according to usual tech-
niques.

According to another aspect of the present invention,
a video frame is constructed to have a depth of field by
sampling the data base as if the object scene represented
by it is being viewed through a lens of a limited aperture
that will view in focus only a limited depth of the object
scene. The point samples are pseudo-randomly directed
over a defined lens aperture when sampling the data-
base information.

According to another specific aspect of the present
invention, reflective and transparent characteristics of
an object are taken into account by recognizing the
degree of diffusion that occurs at each sample point. A
particular angle of reflection or refraction is pseudo-
randomly selected for each sample point from a range
of possible angles depending upon the object character-
istics. This adds realism to the resultant image by recog-
nizing the diffuse, blurry nature of reflections and trans-
lucency that is possessed by most real objects.

According to yet another aspect of the present inven-
tion, an intensity distribution is specified for a light
source that is illuminating the object scene. A single
light source ray is pseudo-randomly selected from the
specified light source distribution, for each sample
point. This technique has the advantage of eliminating
harsh shadows that result from existing techniques,
further adding to the improved realism of the images,
when a light source is only partially obscured.

Additional objects, advantages and features of the
various aspects of the present invention will become
apparent from the description of its preferred embodi-
ments, which description should be taken in conjunc-
tion with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates generally a computer system that is
suitable for carrying out the various aspects of the pres-
ent invention;

FIG. 2 illustrates one possible form of object scene
information that is stored in the computer memories of
FIG. 1; .

FIGS. 3 and 4 illustrate two existing point sampling
techniques; )

FIGS. 5, 6 and 7 show three specific embodiments of
the pseudo-random spatial techniques of the present
invention;

FIG. 8 illustrates spatial aliasing of the prior art tech-
niques of FIGS. 3 and 4;

FIG. 9 illustrates the improvement brought about by
the pseudo-random point sampling techniques of the
present invention;

FIG. 10 shows a Fourier transform of a periodically
sampled signal;

FIG. 11 shows a Fourier transform of a pseudo-ran-
domly sampled signal;

FIG. 12 illustrates generally the distribution of the
point samples over time;

FIGS. 13, 14, 15 and 16 illustrate several specific
embodiments of the pseudo-random time sampling as-
pect of the present invention;

FIG. 17 illustrates generally computer database sam-
pling by a given distribution of sample points on an

image plane;
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FIG. 18 shows a sampling technique that provides an
image with a depth of field;

FIG. 19 is a ray tracing example for a single sample
that includes the effects of reflection, refraction and
light source distribution;

FIGS. 20, 21 and 22 illustrate additional details of the
example shown in FIG. 19; and

FIG. 23 provides yet another application of the gen-
eral techniques of the present inventioh.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Referring initially to FIG. 1, a general computer
system as illustrated that is suitable for carrying out the
various aspects of the present invention to be described
in detail below. A common bus 11 is connected to a
central processing unit (CPU) 13 and main memory 15.
Also connected to the bus 11 is keyboard 17 and a large
amount of disk memory 19. Either a commercially
available VAX-11/780 or Cray large computer system
is satisfactory. A frame buffer 21 receives output infor-
mation from the bus 11 and applies it, through another
bus 23, to a standard color television monitor 25 or
another peripheral 27 that writes the resulting image
frames directly onto film, or both. Additionally, an
output device can simply be a videotape recorder of the
standard type.

FIG. 2 illustrates the organization of the information
of the object scene that is maintained in memory in the
computer system of FIG. 1. There are many ways to
store such information, one being selected for illustra-
tion in connection with the present invention. This
technique involves breaking down the object scene into
components, these elements being referred to herein as
geometric primitives. One such geometric primitive is a
polygon 31, for example, illustrated in FIG. 2 within an
overlay 33 that shows in dotted outline a few adjacent
pixels of the resulting display. The resulting display, of
course, shows the color and intensity of the object scene
within each pixel to be uniform, the size of the pixel
being the resolution element size of display. The poly-
gon represents portions of the object scene to be repre-
sented in a video frame.

The information stored in the computer memory for
each object polygon is as extensive as necessary for
producing a particular quality video image frame. Its
position certainly must be a piece of that information,
conveniently specified by the x, y and z coordinates.
The x, y and z coordinates of each of the corner points
of the polygon are stored for each video frame to be
constructed, as shown in FIG. 2 with respect to the
polygon 31. The “x” and “y” numbers represent, of
course, the horizontal and vertical positions, respec-
tively, of the points, while the “z” number specifies its
distance behind the video frame (image plane) being
constructed.

In order to be able to sample movement of the object
scene that occurs in the time period of one image frame,
a technique described in detail below, information is
also maintained for each polygon of its movement dur-
ing such time period. In FIG. 2, a second position 31’ of
the same polygon is illustrated with its corner point
coordinates being stored as incremental changes over
that of their initial positions. The position shown for the
polygon 31 is preferably, for example, that at the begin-
ning of a video frame, while the position 31’ is that at
the end of the video frame. The polygon can also
change its shape during this time period.
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Besides the positions of each object surface polygon
being stored in the data base, certain visual characteris-
tics are stored for each, as well. These include separate
red, green and blue color reflection signals, red, green
and blue transparency signals, extent of light diffusion
upon reflection, extent of light dispersion upon trans-
mission through the surface, and similar characteristics.
The use of these and others are explained below in
connection with the techniques of the present invention.

Referring to FIG. 3, a commonly used technique for
determining the color and/or intensity of each pixel of
the image frame is illustrated. The information in the
computer database, in this example that of the polygons
illustrated in FIG. 2, that is present in the space occu-
pied by a particular pixel is determined for a plurality of
points within the pixel. A large number of points are
illustrated in FIG. 3, being periodically distributed in
both dimensions, but there are even some techniques
that use only one or a very few sample points per pixel.
The nature of the object scene in each such sample point
is determined, and those determinations are combined in
some manner, such as by weighted or unweighted aver-
aging, in order to determine the color and intensity of
that pixel of the image frame.

FIG. 4 illustrates a similar periodic point sampling
technique, except that not all point samples are taken in
each case. Rather, the fuil density of the periodic sam-
pling pattern is employed only in regions of a pixel
where changes in the object scene occur, such as repre-
sented by a line 35. This image dependent technique
thus reduces the number of samples and the processing
time required.

But these and other periodic sampling techniques
result in reconstructed images that include “aliases” of
the real image to be displayed. Much effort has been
directed to anti-aliasing techniques, one approach being
to process the video signal obtained from a periodic
pattern point sample technique in order to eliminate the
aliasing effects of the technique. Others have suggested
sampling in a non-periodic, dithered manner for a num-
ber of specific sampling applications. The techniques of
the present invention include improvements to and new
applications of such prior approaches.

Three different specific pseudo-random sampling
techniques are illustrated in FIGS. 5, 6 and 7, wherein a
single pixel is illustrated and, for simplicity of illustra-
tion, only four point samples per pixel are described.
However, an actual implementation would likely use
sixteen, or even as many as sixty-four samples per pixel,
if all of the aspects of the present invention are utilized.
For other specific implementations, a lesser number of
samples, such as one per pixel, could be utilized. But in
any event, the pattern of point samples, both within
each pixel and across the face of the image frame in its
entirety, are non-periodic, and form a non-rectangular
and non-rectilinear grid pattern. Further, each selected
sampling pattern may, alternatively, extend over an area
of multiple pixels or only part of a pixel. But the exam-
ples described herein use a sampling area coincident to
that of one pixel, for simplicity of explanation.

Each of the embodiments of FIGS. 5, 6 and 7 deter-
mines the location of the sample points within the pixel
by first dividing the pixel into a number of non-overlap-
ping areas equal to the number of sample points, in this
case four. A sample point is confined within each such
area, thus aiding in keeping the sample points spread
out. The four areas of the pixel are labeled in the Fig-
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ures as numbers 41, 43, 45 and 47. The areas are shown
to be rectangular but can be some other shape.

In the embodiment of FIG. 5, the location of the
sample point for each of these four areas is pseudo-ran-
domly determined. Ideally, the “random” numbers to
be used to determine their locations are purely ran-
domly, but since they are so determined by computer,
there is some element of repetitiveness of sample posi-
tion within its defined area, although the distribution of
locations of a large number of sample locations matches
that of a random distribution. The most common way
for a computer to generate the x,y coordinates of each
sample point is to use a look-up table maintained in
memory that has a list of numbers with a distribution
being that of a random set of numbers. But the usual
technique is for the computer to step through the table
of numbers in sequence, so there are some repetitions
since the table of numbers has finite length. However,
the length of the list of numbers can be quite large so
that repetition does not occur for a significant number
of sample points. But in order to adequately describe
both a completely random selection of sample locations
and one controlled by such a computer look-up table,
the locations are referred to here in this description as
“pseudo-random”.

In an implementation of the technique of FIG. 5, the
same sample pattern is used on every pixel in a given
image frame. It is preferable, however, to eliminate all
periodicity of the sample pattern, including making sure
that no two adjacent pixels have the same sample pat-
tern. This can be done by using a sufficiently long look-
up table of-random numbers. It is preferable to generate
a sample pattern with no two adjacent pixels (including
those diagonally adjacent) having the same pattern, a
result of the techniques shown in FIGS. 6 and 7.

Referring to FIG. 6, each of the four non-overlapping
areas of the pixel illustrated has a reference point posi-
tioned at a fixed location in each, such as its middle.
Each actual sample point location is then determined by
the computer by adding a random positive or negative
number to each of the reference point’s x and y coordi-
nates. These offset numbers are randomly determined,
such as from the computer random number look-up
table, and so repetition of the pattern would not occur
for some very large number of pixels.

Another application of the same offset technique is a
combination of the techniques of FIGS. 5 and 6, as
shown in FIG. 7. This is similar to that of FIG. 5 and
differs from that of FIG. 6 by having its reference points
distributed rather than fixed in the middle of the adja-
cent pixel areas. The reference point pattern of the
embodiment of FIG. 7 may be the same for each pixel,
but the actual point sample locations are determined by
adding a positive or negative x,y coordinate offset in-
crement to the coordinates of each reference point. For
convenience, a limit is placed on the maximum offset of
each, as indicated by the dotted outline around each of
the reference points of FIG. 7. The sample points in the
embodiment of FIG. 6, however, can be located any-
where within its respective portion of the area of the
pixel.

By first defining non-overlapping areas in which a
single sample point lies, bunching up of sample points is
avoided. It can be visualized that if each of the four
sample points could be positioned anywhere within the
entire pixel, there would be occasions, because of the
random selection of those specific locations, where two
or more of the sample points would be bunched to-
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I
gether. Although defining a range of potential point
sample locations to be within a non-overlapping area
accomplishes this, there could obviously be some varia-
tions of this specific technique, such as by allowing the
areas to overlap slightly, or some other variation. It
may even cause no problem in particular applications if
the sample points are chosen in a manner that their
bunching together does occur occasionally. ,

Each of the specific techniques described with re-
spect to FIGS. §, 6 and 7 provides a picture sampled
from a computer database that has fewer aliased images
than if a periodic point sample distribution is utilized.
The technique shown in FIG. 5, wherein the same pat-
tern is repeated for each pixel of the image frame, pro-
vides some improvement, but the techniques according
to FIGS. 6 and 7 are significantly better in reducing
aliasing. The technique of FIG. 7 has been observed to
be the best of the three because it has an additional
advantage of being less noisy.

Referring to FIG. 8, an example of how an aliased
image can be obtained and displayed is given. FIG. 8(A)
is a “picket fence” image of “slats” 51, 53, 55, 57 and 59.
This image is being sampled by a periodic distribution
of points 61, 63, 65, 67 and 69, shown only in a single
dimension for simplicity. Since the period of the sample
points is greater than that of a periodic intensity varia-
tion of the image, all of those variations will not be
faithfully reproduced. FIG. 8(B) shows the image of a
video display that is developed from the samples of
FIG. 8(A), region 71 being of one intensity and region
73 being of the other. Of course, the image of FIG. 8(B)
is not a faithful reproduction of the image of FIG. 8(A).
But since three of the sample points hit a portion of the
image having one intensity and the other two a portion
of the image having the other intensity, the detail of the
other variations cannot be faithfully reproduced. The
curve of FIG. 8(C) represents the intensity variation of
the image of FIG. 8(A), the curve of FIG. 8(D) being
the sampling function, and the curve of FIG. 8(E) illus-
trating the resulting image of FIG. 8(B).

One way that has been suggested to avoid forming
such alias images is to increase the number of sample
points so that the detail can be captured. That is to say,
increase the number of samples in order to increase the
well-known Nyquist limit. But to use extra sample
points for this increases the computational complexity
and can never really solve the problem; it only reduces
its appearance somewhat. No matter how many samples
are used, however, there will always be some situations
of aliasing, particularly when the scene is changing. In
this case, such a picket fence can show as a flashing
black-and-white image over a large area, a very undesir-
able result.

Referring to FIG. 9, the effect of a randomly distrib-
uted pattern of sample points is illustrated. FIG. 9(A)
assumes the same “picket fence” image in the computer
database, as with FIG. 8(A). But the sample points in
FIG. 9(A) are distributed non-periodically so that the
resulting image of FIG. 9(B) appears to be gray rather
than having large areas that are all white or all black.
The image of FIG. 9(B) appears gray since alternate
portions of the image are black-and-white, rather than
having large areas of each color as in FIG. 8(B). Fur-
ther, as the point samples of FIG. 9(A) are scanned
relative to the “picket fence” image, there will be some
noisy visual effect, similar to film grain noise, but one of
considerably less annoyance than a large area flashing
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black or white. The noise level is controlled by the
number of samples per unit area.

FIGS. 10 and 11 show in the frequency domain the
effect of periodic and stochastic point sampling, respec-
tively. In both of FIGS. 10 and 11, curves (A) are the
same, being an original signal, chosen to be a sine wave
in the space domain. Curves (B) differ, however, in that
FIG. 10(B) shows the frequency distribution of a spa-
tially periodic sampling pattern, while FIG. 11(B)
shows the frequency distribution of the ideal stochastic
sampling pattern. In both cases, the sampling frequency
is assumed to be below the Nyquist limit of the original
. signal, so will not be able to faithfully reproduce the
original signal. But the comparison of the curves of
FIGS. 10 and 11 show the anti-aliasing effect of a ran-
dom distribution. The spatial sampling distribution
across the image is preferably chosen so that a Fourier
transform of such a distribution over an infinite plane
approximates a Poisson disk distribution, as shown in
FIG. 11(B). The primary characteristics of such a distri-
bution include a very high level at zero frequency, a
substantially zero magnitude to a certain frequency
(both positive and negative), and then a substantiaily
constant magnitude at higher frequencies. Except at
zero frequency, the sampling function in the frequency
domain (FIG. 11(B)) is substantially continuous. Such a
distribution in the frequency domain provides the de-
sired spatial position randomness and avoids bunching
of the sample points. The techniques described with
respect to FIGS. §-7 approximate such a distribution.

The distribution (C) in each of FIGS. 10 and 11
shows the sampled signal in each of those examples, the
result of convolving the signal of curve (A) with the
sampling distribution of curve (B). In the periodic spa-
tial sample example of FIG. 10, a number of extraneous
spikes are obtained since each of the sampling spikes of
FIG. 10(B) is individually convolved with each of the
spikes of the signal of FIG. 10(A). Since the frequencies
of the signal of FIG. 10(A) are in excess of that of the
sampling function of FIG. 10(B), the sampled signal of
FIG. 10(C) is not a faithful reproduction of that of the
original signal. When the sampled signal of FIG. 10(C)
is displayed, it is in effect multiplied by a lowpass filter
similar to that of of FIG. 10(D). The resultant sampled
signal is shown in FIG. 10(E), which is the portion of
the signal of FIG. 10(C) which is within the band pass
of the filter function of FIG. 10(D). The signal indicated
at FIG. 1(E) is capable of reconstructing alias images
that bear little or no resemblance to that of the original
signal which was sampled.

The sampled signal of FIG. 11(C) also does not corre-
spond with the original signal of FIG. 11(E), but when
multiplied by its filter characteristics of FIG. 11(D), the
resultant sampled signal of FIG. 11(E) is uniform over
the frequency range of the filter. This produces in an
image white noise, which is much preferable to recon-
structing an apparent genuine image that does not exist.

The techniques described with respect to FIGS. 5-7
can also be utilized in a sampling system that modifies
the sampling pattern in response to the content of the
image information being sampled, so called adaptive
sampling. For example, if image changes or detail
within a portion of a sampling area required it, the pat-
tern of sample points can be repeated in such an area
portion in reduced scale.

According to another aspect of the present invention,
similar sampling techniques are employed over time in
order to add realistic motion blur, such as exist in video
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and film techniques. Referring initially to FIG. 12, the
example pixel of FIGS. 5-7 is indicated to have each of
its four samples taken at different times t1, t2, t3 and t4,
regardless of the specific technique used to spatially
locate the point samples. These times are selected to be
within an interval that corresponds to a typical shutter
opening for video frame acquisition which these tech-
niques are intended to simulate. Therefore, if there is
movement of the objects during the interval of a single
frame indicated in the computer database, then the re-
sultant image of that frame reconstructed from the sam-
ples being taken of the database information will simi-
larly show motion blur.

In order to reduce or substantially eliminate temporal
aliasing, the distribution in time of the samples over the
frame interval is pseudo-randomly determined. Refer-
ring to FIG. 13, a time line is given wherein four non-
overlapping intervals of time are designated as bound-
aries for each of the four sample points to occur. A
pseudo-random selection of the time for each sample
within each of these intervals is what is shown in FIG.
13. The same time distribution in FIG. 13 could be used
for each pixel of the image frame'being constructed, but
is preferable that the sample times be different for at
least each of immediately adjacent pixels, in order to
maximize the anti-aliasing that is desired. Temporal
aliasing can occur when changes occur in the scene,
such as a flashing light, more rapidly than samples are
being taken. It will also be recognized that the distribu-
tion in time illustrated in FIG. 13 involves the same
considerations as the spatial distribution described with
respect to FIG. 5.

Similarly, FIGS. 14 and 15 illustrate psuedo-random
temporal sampling that is carried out in the same way as
the spatial sampling described with respect to FIGS. 6
and 7, respectively. In FIG. 14, the time of each sample
is chosen to be a pseudo-randomly determined offset
from the center of the interval designated for each sam-
ple to occur. In FIG. 15, a reference time is pseudo-ran-
domly determined for each sample within its interval,
and then the actual time for each sample is determined
as a shift from this reference an amount that is pseudo-
randomly determined within certain limits. In each
case, the time distribution of the samples is such that its
Fourier transform preferably approximates a Poisson
disk distribution, in the same manner as discussed above
with respect to FIG. 11(B) for the samples’ spatial dis-
tribution.

The time intervals set aside for each of the samples
need not always be non-overlapping. An example of
overlapping intervals is given in FIG. 16, the exact
sample time being selected according to either of the
techniques of FIGS. 14 or 15. But the difference in the
example of FIG. 16 is that the probability is increased of
the samples being weighted in the middle of the time
interval of the image frame. This stimulates a film shut-
ter that opens and closes relatively slowly so that mo-
tion of the object scene during the middle interval of the
shutter opening contributes more to the intensity of the
resulting blurred image than does motion occurring
near the shutter opening or closing. Regardless of
which of the specific techniques for determining the
time distribution of the samples of a particular pixel are
used, the total time period in which all of the samples of
all pixels of a given image frame are taken is the same
specified time interval represented in FIGS. 13-16 by
the length of the time lines.
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Referring to FIG. 17, a method is illustrated for sam-
pling the polygons of the object scene in the computer
database by the spatial and temporal sampling tech-
niques described above. A pixel 81 is shown, as an ex-
ample, as one of a large number combined together to
form an image on a video screen (image plane). Rays 83
and 85 are projected behind the image plane from each
of two of the point samples within the pixel 81. The
spatial location of these point samples has been deter-
mined by one of the techniques described above. Their
individual rays are then projected, usually perpendicu-
larly to the image plane, to determine the nearestmost
polygons that are intersected by the rays at their se-
lected time of sample. Much work has been done on
such ray tracing techniques and involves a significant
computer sort and matching of the x,y coordinates of
the sample points with those of the polygons in the
computer database at the instant designated for the
taking of each sample. Usually, more than one polygon
will exist at each x,y sample location, so the computer
also determines from the *“z” information of them which
is the closest to the image plane, and that is then the one
that provides the visual information (color, etc.) of the
object scene at that point. All of the visual characteris-
tics determined for each of the samples of a given pixel
are then averaged in some manner to form a single
visual characteristic for that pixel for display during
that frame.

Most computer graphics techniques show the entire
object scene for each frame in focus, as if it was being
viewed through a pinhole camera. This, of course, is not
an accurate simulation of the real world of cameras and
lenses, which have a limited depth of field. Depth of
field can be taken into account by a ray tracing tech-
nique illustrated in FIG. 18. A single pixel 87 has two
sample points with rays 89 and 91 extending from them
behind the image plane. The depth of field technique
illustrated in FIG. 18 is independent of the spatial and
temporal sampling techniques described above, but it is
preferable that those techniques be used in combination
with the depth of field techniques being described in
order to maximize the realism of the resulting image
frames. )

The example rays 89 and 91 of FIG. 18 do not extend
directly behind the image plane, as was described with
respect to FIG. 17, but rather are directed to intersect a
simulated lens 93 at points 95 and 97, respectively.
These rays then are directed again toward each other,
under influence of refraction of the simulated lens. The
rays intersect a focal plane 99 of the simulated optical
system in the same pattern as exists on the image plane,
as a result of defining the simulated optical system. The
sample point rays 89 and 91 will then intersect polygons
101 and 103, respectively. Only polygons within the
cone 105, shown in dotted outline, will be intersected
with rays from sample points of the pixel 87, as defined
by the characteristics of the optical system. Those poly-
gons that are close to the focal plane 99 will contribute
to a focused reconstructed image, while those further
removed from the focal plane 99 contribute to an unfo-
cused reconstructed image. In a computer software
implementation of this technique, it has been found
preferable to shift the x,y coordinates of the polygons
an amount dependent upon their z distance from the
focal plane 99 and the characteristics of the simulated
optical system, and then proceed with the sampling in a
manner similar to that shown in FIG. 17.
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But whatever specific implementation is carried out,
the technique has the advantage of adding considerable
realism to the simulated image at the time that the image
is first formed by sampling the database. Intersection of
sample rays with the simulated lens 99 occurs over its
entire defined aperture. In order to further reduce alias-
ing, the location of points of intersection of the rays
with the lens, such as the points 95 and 97 shown in
FIG. 18, are pseudo-randomly determined in the same
manner as the earlier described pseudo-random deter-
mination of the spatial location and time of each sample
point.

Other unrealistic effects that result from the use of
existing computer graphics techniques are sharp shad-
ows, glossy reflections, and, if translucency of objects is
taken into account at all, that also results in sharp im-
ages showing the translucent objects. This, of course, is
not the real world of diffuse objects and extended light
sources, but are required simplifying assumptions under
previous algorithms in order to maintain within reason
the complexity of the calculations. But the distributed
techniques of the present invention can also be applied
to these tasks, in a similar manner as described previ-
ously, to add these realistic considerations. Referring to
FIG. 19, a single ray 111 is traced from a single sample
on the image plane (not shown) and interacts with the
object scene in a manner specified by the characteristics
of the light sources and object surfaces that are specified
in the database. The techniques described with respect
to FIG. 19 are independent of the techniques described
earlier, but, of course, maximum realism is obtained if
all of these techniques are combined together. What is
to be described with respect to FIG. 19 occurs with
each sample point of a particular image frame.

The ray 111 is first determined to strike a surface 113
of the object scene, as specified by one of the polygons
whose characteristics are stored in the computer data-
base. If this part of the object scene surface is reflective,
a reflective ray 115 is then traced until it intersects
another object scene surface 117. The object surface
portion 117 may be observed in the completed image
frame as a reflection in the object scene portion 113. But
stored in the computer database is a diffusive light
spread of the surface 113, as indicated by dotted outline
119 and shown separately in FIG. 20. If the characteris-
tics of the surface 113 are specularly reflection, such as
occurs with a mirror, the spread of possible ray reflec-
tion angles will be limited to essentially one. But most
objects have some degree of diffusion and will scatter
light incident upon them. Therefore, each sample point
ray is traced in a manner to select one of the possible
reflection angles, thereby to result in a realistic blurry
reflection from diffusely reflecting surfaces since subse-
quent rays will be reflected off the surface 113 at one of
the other possible angles shown in FIG. 20. The possi-
ble ray reflection angles, as shown in FIGS. 19 and 20,
are weighted in one direction, as is actually the case in
diffusely reflecting surfaces. And, as before, the particu-
lar direction taken by any given ray 115 is pseudo-ran-
domly selected from the possible reflection angles.

The same consideration works in determining an
angle of transmission of a ray 121 through the surface
portion 113 if that surface portion is at all translucent.
Assuming that it is, possible angles of refraction are
stored in the computer database for that particular poly-
gon, the distribution of such angles being indicated at
123 in FIG. 19 and also shown in FIG. 21. The spread
of possible refractive angles depends, of course, on how
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diffuse the translucency is. Plain glass, for example, will
have a very narrow range of refractive angles, if not a
single angle. And once the ray 121 is pseudo-randomly
selected for a given sample point from the possible
refractive angles, another portion 125 of the object
scene can then be determined which is intersected by
the ray 121 and is partially visible through the object
portion 113.

In order to avoid sharp shadows, the realistic charac-
teristics of an object scene illuminating light source 127
is taken into account. As shown in FIGS. 19 and 22, the
light source 127 has a finite extended dimension, and is
not always a point as often assumed in present computer
graphics techniques. A ray 129 is traced from the illumi-
nated surface 113 back to the source 127 to see if there
is any other portion of the object scene, such as the
portion 131, that will cause a shadow to be cast on the
surface 113. As shown in the example of FIG. 19, the
ray 129 will detect no such shadow, but other possible
ray directions, as shown in FIG. 22, will be in the path
of the object portion 131 and thus indicate that the
object 113 is not illuminated by the source 127. The
particular direction of the ray 129 is pseudo-randomly
selected from those possible directions specified for the
source 127, as shown in dotted outline in FIG. 22. In the
example of FIG. 19, some of the rays will intersect the
object portion 131 and some will not, resulting in soft,
realistic shadows in the resulting image frame.

It will be recognized that each of the secondary sur-
faces intersected by rays, such as the surfaces 117 and
125 of FIG. 19, may also have reflective and translucent
properties. The process is continued until such reflected
or transparent images are so small in intensity as not to
make any difference in the resulting image being con-
structed.

Referring to FIG. 23, an example is given of the
broad extent of the techniques described above that are
a part of the present invention. The techniques can be
used to determine a center of mass of an object, an
example of something that is desirable to be determined
in the course of computer aided design (CAD). An
object 141 of FIG. 23 has its surfaces determined by a
pseudo-random distribution of sample points, shown to
extend through the object in dotted outline. The pseu-
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surement will be made on the actual object 141 and not
some alias image of it. .

The various techniques of the present invention have
also been described by the inventors in a published
paper, “Distributed Ray Tracing”, Computer Graphics,
Vol. 18, No. 3, pages 137-145, July, 1984, which is
incorporated herein by reference. This paper includes
photographs of images generated with the use of the
various aspects of the present invention. The result of
motion blur, as described with respect to FIGS. 12-16,
is shown in FIGS. 3, 6 and 8 of that paper. Computer
generated images having a depth of field are shown in
FIGS. 4 and 5 of that paper, having been made by the
techniques described with respect to FIG. 18 herein.
FIG. 7 of that paper illustrates the shadowing and re-
flection techniques of the present invention that were
described with respect to FIGS. 19-22 above.

Appendices A and B attached hereto are source code
listings, in the C language, of computer programs imple-
menting the various aspects of the invention described
herein. They are part of a hidden surface algorithm.
Appendix A is a general program that carries out the
spatial sampling techniques of FIGS. 6 and 7 herein, one
of which is optionally selected, temporal sampling of
FIGS. 14 and 15 herein, depth of field of FIG. 18
herein, and secondary rays of FIGS. 19-22 for shadow-
ing and reflection in a special image case. The resultant
images of FIGS. 3, 5 and 7 of the above-referenced
published paper, were made on a Cray computer with
the source code listing of Appendix A.

Appendix B is a program that implements all of the
aspects of the present invention for spherical objects
and resulted in the images of FIGS. 4, 6 and 8 of the

-above-referenced published paper.
35.

These computer programs contain material in which
a claim of copyright is made by Lucasfilm, Ltd., the
assignee hereof. This assignee has no objection to the
duplication of Appendices A and B by photocopying
and the like but reserves all other copyright rights
therein.

Although the various aspects of the present invention
have been described with respect to various preferred
embodiments thereof, it will be understood that the
invention is entitled to protection within the full scope

do-random nature of this sampling assures that the mea- 45 of the appended claims.

{

hsvis.c

#1fndef lint

statle char scesid]] == "O{#)asvis.c 1.40 (Lucasfilm) 5/20/85;
gendil .
finclude <ssvish>

finclude <ctyped>

#linclude <stdioh>

#lnclude <constants.h>

static Jot VisNewGrid(}, i’iandBuchl(), VisNewFrame{), VisEadFrame(), VisParam(),

static int CSGNewTree{), CSGResolve() ; .

Copyright © 1985 Pixar

APPENDIX A

VisCamera{), Visttfia(Nevidmnief) ;
Bl Ve Ny ot

statle struet vis_proes VisProcs == { VisNewGrid, VisEadBucket, VisNewFrame, VisEndFrame, VisParam, CSGNewTree, V

struet hbox (struet xy:z mis, max;) ;
struct visiblepoint {

struet visiblepoiat *pext ;
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struct xys AU
float minz, maxe ;
struet eolor eolor ;
struet color trans ;
struct visflags fiag ; -
float glmbu:kopacily H

#1t CSG
short esglree ;
short esgnode §
#endit €SG

foat drand() ;

statle: float Pi;

statle Int Minx, Maxx, Misy, Maxy ;

statie Int Dorderm] ;

statlc float Hither, Yon H

statle Int XPerDucket, YPerBucket, PixclsPerBucket, Fllurd"etBuciel :
statle Int SamplesPerBucket ;

statle Int MaxSamplesPerBucket ;

statle Int DucketsAcrossSereen ;

statle struct pixelrgbs *Pixel ;

statie struct visiblepoint **Point, *VisFrecList=0 ;
statle Int NVis==0, NVisinUse=0, NVisMaxUscd=0 ;
static int VisMallocSizem={16*1024~-84} ;

statle Int Ilit, Miss, Lerp ;

statle float  Focallength == 0 ;
statlc float FStop = 0 ;

statle foat  FocaiDistance = 0 ;
float Dolx_a, Dofx. b, Doly.s, Dofy_b
Int PinlioleCameram] ;

etatle float  FilleeWidth == 20 ;

statle int FillerType == 1 ;

statie Int BoxFilterFlag w= 0 ;

slatic float boxflter(x,y) float xy;

{ return (x>FilterWidth{ |y >FilterWidth) 1 0 : 1; )
static Goat gaussiaefiter(x,y) float xy ;

{ Boat wd ;
dm=x’x-+y°%y;
waFiller Width *FilterWidth /4.;
return (d>w) ? 0 : exp{~d) - exp{-w});

static Boat sinc(r) float 1;
{ return (r<.001L&r>=.001) ! cos(2*r)/1 : win(2%)/r; }
static float sincBlter(x,y) float xy ;
{ return sinc(x)*sinc(y); }
static float bessel(r) float r;
{ return (r<.001&&r>~.001) 1 1 : ji(2°)/r; }
static float besselfilter(x,y) float xy ;
{ floatr;
r = sqrt{x*x+y®y);
return bessel(r);

static Soal bartlettfilter(x,y) float xy ;
float ax,ay,w;
ax = (x<0) ? -x : x;
3y = (y<0)? -y :y;
w = FilterWidth;
return (w<ax!|w<ay) ? 0 : (w—ax)*(w—ay);

#define FILTERNAME 80

fidefine NFILTERS §

static char FnllclName[NFﬂ.TERS][FlLTERNAME] -
{"box", "Gaussian®, “sinc", "Bartleti®,
"Bessel™} ;

static foat ('Flleoutme[NFﬂ.TERSI)() -
{boxfilter, gaussianfilter, sinchilter, bartlettSilter,
besselfilter};

14

drand

YisMuallocSize

wbozxfilter
boz filter

gaussian filter

since
sincfilter
bessel
bessel filter

bartlett filter

Jloat
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" #define NJITTER 512 o float
statle Int JitterFlag=1;

static float XJiltcr[NJlTTER], YJiucr[NJITTER], TJitlerlNJITTER];
statle float LXJitter|NJITTER], LYJitter|[NJITTER] ;

static struct xy *Location ;

statle float *Filter ;

statle struct xy °Lens ;

static float MinXJitter=0, MaxXJitter ;

statie float MinYJitter=0, MaxYlJitter ;

statle Int NS ;

statle Int NxGrid=4, NyGridm4 ;

statle struct xy LeasiGit] = {
0.312500, 0.000000,
-—0.312500, 0.000000,
0.750000, 0.000000,
=0.750000, 0.000000,
0.000000, 8.312500,
0.000000, —0.312500,
0.000000, 0.750000,
0.000000, —0.750000,
0.625000, 0.375000,
0.375000, 0.623000,
—0.625000, 0.375000, °*
—0.375000, 0.625000,
0.625000, -0.375000,
0.375000, --0.625000,
=0.625000, —0.375000,
~0.375000, ~0.625000 } ;

struct vis_procs *VisLoad() { - VisLoad
Pi = 4*atan(1.0);
return{&VisProcs);

static int VisCamera{focaliength, fstop,focaldistance) : VisCamera

Boat focallength, fstop, focaldistance ;
{

PinlloleCamera == (focallengtbaem0.0) ;

If {PioHoleCamera) return ;

If (focallength<0.0 | fstop<==0.0 || focaldistance < =0.0) {
fprintf (stderr, “lnvalid arguments to visible surface camera routine:\n") ;
fpriotl (stderr, "\tfocal length  %f\n", focallength) ;
fprintf (stderr, "\tf stop %Mo~ fstop) ;
fprintf°(stderr, “\tfocal distance %{\n", focaldistance) ;

Focallength == focallength ;
FStop = fstop ;
FocalDistance == focaldistance ;

static int VisCameraSetup() VisCameraSetup

float lensradius
statle struct xyz Aeyem(0,0,1}, Beyem{1,1,1} ;
struct xy Ascreen, Bscrees ;

/® The perapective transformalion Jrom eye apace lo screen apace assumes
* a pinhole camera located at the origin in eye space, and transforms
cach point (XeYe,Ze) in eye space to & point (X3,Y2,2s) in screen
space.  For depth of [icld, however, different sample points essume
pinkole cameras located at different points on the lens. A point

that is &l (XeYe,Ze) in cpe apact of the center of the lens s at
(XclYel,Ze) in the eye apace of the point (lensz,lenay,0) on the

lens, where : )
Xcl-Xe m lensz * (1 - Zeffocaldistance )

Yel-Ye as lenay ® (1 - Zeffocaldistance )

The velues of ienaz end lenay that we wee are erpress a3 e Jraction

of the effective lecna radius, so thal our formulss are eclually

Xel-Xe == lenaz ® lensradivs ® (I - Zeffocaldistance)

Yel.Ye m lensy * lensradivs ® (1 - Ze/focaldistance)

whcre

-

. 8 % % 2 % 4 8% 6 8 0y
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lensradius = 0.5 * focallength [ fstop
We konow that the perapective m
2000

eb00

cdelf

ghio

so that

Xs = (3*Xe + ¢*Ze + g ) [ ("2}
Yo = ('Xe + d*Ze + b ) /

(£°Ze)

Xsl = (a*Xel + ¢*Ze + g ) [ {1*Z¢)
Yol s= (b*Xel + d°2Ze + & ) [ ((°2¢)
giving us

XskXs = (Xel-Xe} * af(f*Ze)

atrix is of the form

4,897,806

w= Jensx * lensradius * (aff) * {1/Ze - 1/focaldistance)

== Jensx * (Dofx_a/Ze + Dolx_b)

YskYs == (VelYe) ¢ bf(C°Ze)

s= kensy © leasradius ® (b/() * (1/Ze - 1/focaldistance)

= lensy * (Dofy_s/Ze + Dofy_b)

= (c+g)ft

XsB == (atedg)/l
XsB-XsA = aff
GB-YA = d/f

snd it follows that

Dolx_.s = (XsB-XsA) ® leasradius
* Dofy.a w= (YsB-YsA).® lensradius
® Dofx_b == -Dofx_a/focaldistance
® Doly_b == -Doly_a/focaldistance

*/

If (PintloleCamera) return ;

lensradius = 0.5 * FocalLeogth [ FStop ;

EyeToScreenXY(&:Acye, & Ascreen) ;
EyeToScreenXY(&:Beye,&Bscreen) ;

Dofx_a == leasradius * (Bscreen.x — Ascreenx) ;
Dofy_a = lensradius ® (Dscreen.y — Ascrecny) ;

Dofx_b = <Dofx_a / FocalDistance ;
Dofy_b = =Dofy_s / FocalDistance ;

static it VisEndBucket(xb,yb)

{

#ir

lat xbyd ;

float *jx, %y, *jt, *ilx, ity ;

Int xy ;

regiater Int s, § ;

register struct mpoly *mp ;

struct mpoly *MpGetBucket{) ;

Int left, right, top, bottom ;

float alpha, salpha;

ALPHABETA

float betad, betal, beta?, bita3, oma H

#endif

struet bbox bound{), box, speedbox ;
struct bbox bovedspend() ;

Int xmin, xmax, ymin, ymax ;

statle struet xyr vertex|t], v[4] ;

Int nsample, pixel ;

float locx, locy, dx, dy, Ix, Iy, x, 1y ;
float ax, ay, bx, by, lensx, lensy ;

left == Minx + xb*XPerBucket H

top == Miny + yb*YPerBucket ;
right == left + XPerBucket - 1 :
bottom = top <+ YPerBucket — 1 H

These (crmulas are the ones we use lo transform screen space points
ta account for different lens locations.
We caw calculate the key variables in these equations bty finding the
the screen space coordinates of the points A={(0,0,1) and Bme(1,1,1):
XsA = (20 + ¢*1 + g} [ (1*1)

18

~VYsCameraSctup

VisEndDucket
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mp=MpGetBuckel(xb,yb};
it (!mp) goto emptybucket;

bzero {(char °)Pixel, FiltersPerBucket*slzeof{struct pixelrgba)) ;
CalcSamplesPerBucket{mp) ;

bzero ((char *)Point, SamplesPerBucket®slzecf{struct visiblepoint )
ix = &Xlitter[(int){23*drand())} ;

jy = &Ylitter[(int){23*drand()) ;

jt = &TJitter{(int)(23*drand(}}] ;

jlx = LLXJitter|(int)(23*drand(})] ;

jly = ZLYlitter|(int)(23*drand())] ;

for (; mp; mp=mp~>pext) {

beopy ({char *)mp—>v,(char *Irertex slzeof{vertex)) ;
vertex|0].x —w= et ;
vertex|l].x —m= Jeft ;
verlex[2].x —m= feft ;
vertex[3].x —== left ;
vertex|0].y —= top ;
vertex{lly —m H
vestex|2]y —w= top ;
vertex|3]y === top ;

box == bound{vertex) ;
mp->min.z == box.mint ;
mp—>max.z = box.mar.z ;

#If MOTIONBLLR && !GLOSS

If (mp~>fiag.moving) {

speedbox = hound{mp=—>speed) ;

If {speedbox.min.z <0} box.min.z 4= specdbox.min.z ;
If (speedbox.max.2>>0} box.max.z +m= speedbox.max.z H
mp—>min.z = box.min.s ;

mp—>max.z = box.max.s ;

#!If DEPTHOFFIELD

it (!PinlloleCamers)
bounddof (Lbox) ;

sendlf DEPTIIOFFIELD

speedbox.min.x /== NS ;
speedbox.max.x fa== NS ;
speedbox.miny = NS ;
speedbox.max.y /== NS ;
Af {speedbox.min.x<0) box.min.x +e= speedbox.min.x ;
If (speedbox.max.x>0) box.max.x +== speedbox.maxx ;
If (speedbox.min.y <0} box.min.y 4= speedbox.min.y ;
If (speedbox.max.y>0) box.max.y +e= speedbox.max.y ;
for (s=0; s<NS; s+4) {
salpha = s/{foat)NS ;
locx == Location]s].x ;
locy == Location[s].y ;
lensx == Lens[s].x — .5/NS ;
lensy = Lens|s].y — .5/NS ;
xmin = box.min.x = locx — MaxXlJitter ;
ymio = box.miny — locy — MaxYlJitter ;
xmax = box.max.x —~ locx /* + MinXJitter %/ ;
ymax == box.maxy — locy /* + MinYlilter %/ ;
If (xmin<0) xmin=0 ;
1 (xmax>=XPerBucket) xmax==XPerBucket—1 ;
if (ymin<0) ymiom0 ;
i (ymax>=YPerBucket) ymax=YPerBucket~1 ;
for {yaymin, dy=locy+ymin; y <mymax; dy++, y++) {
pixel == y®XPerBucket + xmin ;
ssample = pixel*NS+s ;
iw= 7% + 2*pixel ;

20

wVieEndDucket

for (xmxmin, dx==locx+xmin; x<==xmax; nsample+mNS, j+m=2, dx++, x++) {

alpba = aalpha + jtfi+9 ;

#1if ALPHABETA

’ oma == 1 — alpha ;
beta0 == alpha / {alpha + oma*mp—> sbratio]0]) ;
betal == alpha / (alpha + oma®mp—>abratiofl]) ;
beta mr alpba / (alpba + oma®mp~>>abratiol2]) ;
betad = alpha / (alpha + oma*mp—>abratiol3)) ;

Welse

#define betal alpha
#define betal alpha
#define beta? alpha



#deflne beia3 alphs

#endif

#1if DEPTHOFFIELD

fendif

}
tlse

. fendlf
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0].x = vertex{0].x
I|.x = vertex|l].x
2.x == vertex|2].x
‘5],: - verlex]3].x
0]y = vertex|0].y
1)y == vertex|l]y
2]y = vertex[2]y
3]y == vertex|3].y
0].1 == vertex]0].2
1.2 = vertexl
x = vertex|d]
3.2 = vertex|3]

+ betal*mp—>speed|0].x
+ betal*mp~>speed|1].x
+ beta2®mp—>speed[2].x
beta3*mp—>speed|3].x
betad’mp->> speed|0].y
betal®mp—>speed|i].y
beta2*mp—>speed|?].y
beta3*mp—>speed|3].y
betad*mp— >speed{0}.2
3 + belal®mp—>rpeed|i]2
3 4+ beta2mp—>speed|2].2
3 + beta3’mp—>epeedjd]s

44+

A (IPintoleCamera) {
Ix = lensx 4 jhli+3] ;
by = lensy + jlyli+4} ;

bx = Ix * Dofx_b ;
by == Iy * Dofy_b ;
vio].x 4= ax / v]o]s
vil]x 4= ax / v]1)s

v[2x 4w

v[ol.y +== ay / v]0ojx

v[ijy 4=
violy 4=
v[3]y +m=

ry = dy + jyli+1} = by ;

else

v

v|i].x
vi2}x
v{3].x

ax / v|2]e
v[3]x +m= ax [ v[3]2

sy / v|l]z
ay [ vj2)2

sy [ v[3j2
Crx o= dx 4+ jx[i] = bx;

o= dx + jxli] ;
ry = dy + jyli+1] ;

{0].x == rx ; v[0]y

—= rx ; villy
—-u= X ; vj2]y
- 1x ; v[3)y

sample{nsample,mp,v) ;

)

box.min.x +== speedbox.min.x ;
box.max.x +w= speedbox.max.x ;
box.min.y +== speedbox.min.y ;
box.max.y +== gpeedbox.max.y ;

}

{ :
#1f DEPTIIOFFIELD
If (PintioleCamers) {

#if GLOSS

fendlf

bounddof

float d ;

(&box) ;

3333
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d = sqrt (mp—>>speed|0].x"mp~ >speed|0].x +
mp~>speed|0] y*mp—>speed|0] y +
mp~>speed[0].2°mp~>speed|0] 2) ;

v[0].2 =
vjif.z =
v[2| 2 =
v[3]2 =

vertex|0].2 ;
vertex|l]z ;
vertex|2.z ;
vertex(3].s ;

for (s=0; s<NS; s++4) {
Jocx == Locationls].x ;
focy = Location|s].y ;
lensx = Lensls].x ~ .5/NS ;
lensy w Lensls]y ~ .5/NS ;

22

wVieEndDucket



#If GLOSS

Fendlf

: 23
xmin = box.min.x = locx = MaxXJitter ;
ymin = box.miny — locy = MaxYlitter ;

xmax = box.maxx — boex /* + AMinXJitler %/ ;
ymax = box.maxy — locy /* + MinYlJitter %/ ;

1f (xmin<b) xmin=0 ;

If (xmax>==XPerBucket) xmax==XPerBuckei—1 ;

i (ymin <0} ymin=0 ;
Y (ymax>=YPerBucket) ymax=aYPerBucket=1 ;

for {ysymin, dy=locy+ymin; y<=ymax; dy++, y++) {

pixel == y*XPerBucket + xmin ;

ssample == pixe]*NS+s ;

i = 7" + 2%pixel ;
for (x=xmin, dx=slocx+xmin; X<==xmax; asample+s=NS, i+=2, dx++, x++) {
Ix == lensx + jlfi+3] ;
ly = lemsy + jlyli+4] ;

Ix ®==d ;

ly *=
ax = Ix * Dolx_ s ;

sy m=
bx
by ==
X ==
r’ -
v[o}.x
v[1].x
v[2].x
v{3].x
v[ol.y
viily
v[2}y
v{3l.y

d;

ly * Doly_a;
Ix * Dofx_b ;
®* Dofy b ;
+ jafi] -
+ jyli+1]

vertex|0)

vertex

X

vertex|
verlex
verlex!
vertex;
vertex|3,

ly
dx
dy
= vertex
-
-
-
-
-
-

0D = D L D
e e e MM

bx ;

- by

sample{psample,mp,v) ;

v[o}.2 == vertex{0]z ;

vji].a = vertex|t].z ;

v[d.z == vertex|2]z ;

v(3].2 = vertex|3]: ;

for (s=0; s<NS; s++)
locx == Location[s|.x ;
locy == Localionls]y ;
xmig = box.min.x — loex — MaxXlitter ;
ymia = box.min.y ~ locy = MaxYJitter ;

xmax = box.matvx — locx /* + AfinXJitter %/ ;

Qq33qq=nA

R A §
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ax/vertex
ax/vertex
ax/vertex

ax/vertex
ay/vertex
ay[vertex

/]
ay/vertex

€O 8D e €3 C) 8D = O

ay [vertex

B b0 o8 be M B0 e e

s ws ws me Wo Ws we wo

ymax == box.maxy — locy /* + AMinYlitter %/ ;
1t (xmin<0) xmin=0 ;

It (xmax> = XPerBucket) xmaxweXPerBucket—1 ;
if (ymin<0) ymin=0 ; ’
Y (ymax>=1TcrBucket) ymax=YPerBucket~1 ;
for (y=ymin, dy=locy+ymin; y<==ymax; dy++, y++) {

pixel me y*XTerBucket + min ;
ssample == pixel*NS+s ;
i = 1% + 2%ixel ;
for (x=mxmin, dx=locx+xmin;
rx o= dx + jxfi] ;

ry = dy + jyli+1] ;

v[0].x = vertex

0}.x
1].x
2.x
3.x
0.y
1.y
2.y

v[l].x w= vertex
v[2].x = vertex|
v[3].x == vertex
v{0].y == vertex
v[l]y = vertex
v[2]y = vertex
v[3]y = vertex

3y

IIIIAAAR

24

X<=xmay; psample+w=NS, i+=2, dx++, x4+) {

WVisEndDucket
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samplc(nsample,mp.v) ; ..VieEndDucket
} .
}
)
}
)

)
CSGResolve{) ;
filter{) ;
freepoints{) ;

DisplayWindow (Pixel, left—Border, right+Border, top—Border, boltom+Border) ;

MpEmptyBucket{xbyb) ;
return 1 ;

emptybucket:
DisplayWindow {(struct pixelrgba *)0, leu-Bovdet, tight+Border, top—DBorder, bottom+DBorder) ;
MpEmptyBucket{xbyb) ;
return 0 ;

static int VisEndFrame{) VisEndFrame

MpBe-ketEndFrame{) ;
DisplayEndFrame{) ;

static int VisFilter{type,width) : ' VisFiller
char “type; )
floal width ;

Inti;

it (FilterWidth<=0.) goto Error;

for(i=0;i<NFILITRS i++) {

ir ('stremp(type FilterNameli])) (
_ FilterType = § ;

FilterWidth == width;
BoxFiltetFlag == (widthees=].0 £& fstremp(type,box”));
return;

) .

fprintf (stderr, "The stochastic bider only bas the following filters:\n") ;
for(i=0;i KNFILTERS;i++)
fprintf (siderr, "%s " FilterNameli}) ;
tprin\$ (stderr, *\n") ;
return;
Error:
fprint! (stdere, “Filler width must be >0\e") ;

static int VisNewFrame (ininx,maxx,miny maxy,xper,yper sidewaysbither,yon) V_:'s,\'eu'F rame
float hither, yon ; :
{

int ox ;

Hither = hither ;

Yon == yon ;

Border == FilterWidth/2. + 0.499 ;

XPerBucket = xper ;

YPerBuckel = yper ;

PixclsPerBucket = XPerBuclet * YPerBucket ;
FiltersPerBucket == (XPerBucket+2*Border) * (\?aBuckeH?‘Botder) H
tablesinit{NxGrid NyGrid);

MaxSamplesPerBucket = PixelsPerBucket * NS ;
Minx == minx = Border ;

Miny == miny — Border ;

Maxx = maxx + Border ;

Maxy = maxy + Border ;
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px == Maxx = Minx + | ; WA TeNewGrd
BuckelsAcrossScreen = (nx+XPerBucket—1) [ XPerBucket ;
it (Point) {

free{(char *)Point) ;

free({char *)Pixel) ;

Point = (struct visiblepoint **) maliec ((unslgned)(MaxSamplesPerBucket * slzeof(struct visiblepoint *) )) ;
Pixel = (struet pixelrgba *) malloc {{unsigned)(FiltersPerBucket ® sizeof{struct pixelrgba} }) ;

VisCameraSetup() ; )
MpBucketNewFrame (Minx, Maxx, Miny, Maxy, XPerBucket, YPerBucket, sideways, hither, yon) ;
DisplayNewFrame (minx, maxx, miny, maxy, Border, XPerBucket, YPerBucket, sideways) ;

Jlit = 0 ;
Lerp == O ;
Miss == 0 ;

return Border ;

static int VisNewGrid(g) , ' VisNeuGrid

)

struet grid *g;

MpBucketNewGrid(g) ;

static int VisParam(ac,av) char **av; { VisParam

Int xy;
while{ac>0) {
8t (Istremp(*av, grid”)) {
i (ac==1 1] tisdigit{*av]1])) {

NxGridm=4;
NyGridwmd;
w4
K-

)
else if (ac>m=3) (
x=atoi(avl]) ;
y==atoi(av]2]} ;
If (x<=0 || y<=0) goto Error;
NxGrid = x;
NyGrid == y;
av4m3,
ac—m=3;

)
. else goto Error;

else If {Istremp{®av,"jitter™)) {

I (ae>w=1) {
JitterFlag == OnOf(av|1]) ;
vtm2;
ac—m=2;

}

else
JitterFlag = 1 ;
avit;
—=;

else goto Error;

}

return ;

Error:

Tprintf (stders,"The stochastic bider can take these parameters:\n®);
fprintl (stderr,"\tgrid %%d T%%d\n");
fprintf (stders,"\tjitler on/olf\n"};

static int VisPrint{s) VisPrint

{

char % ;



4,897,806
29 30

If (s && ('stremp(s,“stat”))) {

register struet visiblepoint *vp ;

register Int » ;

MpPrintStat(} ;

for (om0, vp=VisFreeList; vp; vpmevp—>next, n++) ;
print! (" Visiblepoints: Sp4d allocaied”™, NVis) ;
priatl (* 9344 kb", slieof{struct visiblepoint)*NVis/1024) ;
printl (* %44 used”, NVisMaxUsed) ;

printl {* %4d is use”, NVislnUse) ;

printl (* So4d free\n”, &) ;

o == Hit+Miss ;

it (n====0) nml ;

priotf (" Hider samples: 955.217%% (%d bits and %d mmes)\n R
100.*Hit/(Roat)n, Hit, Miss) ;
i (Hit)
printf {" Hider ¢ lerps: 955.215%%% {%%d lerps out of %id bits)\n”,
100.*Lerp/{foat)ilit, Lerp, Hit) ;
else {
priotf (* Hider: stochastic sampler™});

printf (" (%54 by %2d samples per pixel)", NxGrid, NyGrid) ;
printf (" jitter %Gs\n", JitterFlag™on™:"off™ } ;

printf (* Filter: %s, %I pixels wide\n", FilterName|FilterType], FiltertWidth) ;
if (PinHoleCamera)
printf (* Camera: pinbole\n”) ;
else {
printf (" Camera: focal length  %M\n”,Focallength) ;
printf (* . f stop %M\a" FStop) ;
) printf (" ' focal distanee %\n"FocalDistance) ;
}
|
static stract bbox bound{v) -

struct xyz v[4] ;

struet bbox b ;

i (vjo).x < vji)x) {

1t (vjodx < vf3}x) {
-+ buminx = {rjofx < v[2}x) ¥ v[Olx : vf2lx ;
bamaxx = {v{i}x > v{3x) ? v]i].x : v[3x ;

else {
b.min.x = {v]o):x < v[3].x) ? vj0].x : v[3]x ;
b.max.x == (vfi].x > v[2]x) ? v]t}x : v[2]x ;

else

It (v[2lx < v[alx) | .
baminx = (v[l].x < v{2}x) ? v]t]x : +]2x ;
bmaxx = (v[o].x > v[3}x} ? v|)}x : v[3]x ;

else {

bminx = (vitlx < v[3x) ? v]l]x : v[3)x ;
) bmaxx == {viojx > v[2|x} ? vjo}x : v[Hx ;
\ e
If (violy < s{i}y) {
ir (v|2|.y. < ¥[3ly) {

bminy = (v{0ly" < v[2y) ? violy : w3y ;

bmaxy = (villy > v[3]y) ? v]i]y : v[3]y ;

else {
b.miny = [rfoly < v{3]y) ? v[0]y : v[3]y ;
bmaxy = (villy > v[2y) ? vii]y : v|d}y ;

else {
ir (v[2].y. < v[3ly) {
b.miny = (villy < v[2]y) ? v[t]y : v[2]y ;
b.max.y —}(v[O]‘y > vj3ly) ? violy : vj3ly

Viefhnt

bound
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~.bound
else {
bminy = (v[l]ly < v{3]y) ? v]l]ly : ¥[3].y ;
b.maxy = (v[ol.y > v|2]ly) ? vio]y : v|2]y :
)
i (v[o).z < v{1).2) {
i (v]2)z < v[3)1) {
bmin.z = (v[0j.2 < v{2].2) ? v][0}.2 : v[2)s ;
bmaxz == {v{l].2 > v[3}z) ? v|1].2 : v[3]2 ;
else {
bmin.z = (v[o]a < v[3]3) ? v[0]3 : v[3]2 ;
bmaxz = (v[l}z > v]22) ? v]i).2 : v[22 ;
else {
If (vizx < vf3le) |
b.minz == (v[l}2 < v[2].2) ? v]l).z : v[2]2 ;
b.max.z = (v[o].s > v[3]2) ? v]oj.z : v[3}s2 ;
else {
b.minz = (v[1]2 < v[3].2) P v]1]z : v[3]s ;
bmaxz = (v[o]2 > v[2l2) ? v0]z : v[2)s;
return b ;
)
#1f DEPTHOFFIELD
bounddol(b) bounddof

struct bbox *b ;
foat bl, b2, tmin, 2max ;
/% (PinlloleCamera) return ;%/

tmin == b=>min.z ;
tmax == b-—>max.z ;
If (zmin<Hither} tmin == Iither ;
if (zmax> Yon) imax = Yoo ;

bl == Dofx_aftmin 4+ Dofx_b ;
b2 = Dofx_afzmax + Dofx_b ;
If (b1<0) bt = —=bl;

If (b2<0) b2 = —b2 ;

1f (b2>b1) blmb2 ;
b->minx —= bl ;
b~>max.x += bl ;

bl == Dofy_s/imin + Dofy_b ;
b2 = Dofy_aftmax + Doly_b ;
If (b1<0) bl = —bl ;

It (b2<0) b2 = —b2 ;

If {L2>b1) bl=b? ;
b=>miny —w= b} ;
b=>maxy += bl ;

)
#endlf DEPTHOFFIELD

satic CalcSamplesPerBucket(mp) reglster struet mpoly *mp ; {)

static spplyboxfiter()
{

Int x y;

register Int s ;

register struct pixclrgba *p ;

reglster struct visiblepoint **vpp, *vp ;
reglater float oneoverns ;

int bb ;

CaleSamplesPer Bucket

applyboz filter
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bb == 2°Dorder ;
oveoverns = 1.f(float)NS ;
vpp = Point ;
vp = *vpp++ ;
p == Dixel + Border®(XPerBucket+bb) + Border ;
for (y=0; ++y <=YDerBucket; p+=bb) {
for (x=0; ++x<=XPerBucket: p++) {
for (s=0; +4s<=NS; vp=(*vpp++)) {
if {(vp && Ivp->flag matte) {
p—>r +m oneoverns * vp—>-colorr ;
p=>g += oncoverns * vp=>colorg ;
p->b 4= oneoverns * vp—>ecolord ;
p->3 4= {vp—>8ag.opaque) ! oncoverns : onroverns * {1.—
) {vp=>>trans.r4+vp—>trans.g+vp~>trans.b)*(1./3.)) ;
)
)
}

" static Glter()

Intx, y;

register Int §, i ;

register float *f;

reglster struet pixelrgba *p ;
reglster struct visiblepoiot *vp ;
reglater Int 2 ;

struet visiblepoiot **vpp ;
float alpha ;

struct pixelrgba *ploop, *pp ;
int Iskip, pskip, pback ;

int width, bb ;

if (BoxFilterFlag) {
applyboxBilter();
return;

J* Set up increments so that in the inner loop:
’ J = O(Filter[s"FilterWidth *FillerVidth +§*Filter\Vidth +if} ;
¢ p = Pizel + (y+j)(XPerBucket+2"Border) + = + i ;
7
bb = Border+Botder ;
width = § + bb ; :
Gkip = width*width ; -
pskip = slzeof{*p) * (XPerBucket+bb—width) ;
pback == sizeof*p) * (width*(XPerBucket+bb)) ;
for (y=0, p=Pixel, vpp=Point, vp=(*vpp++); ++y <=YPerBucket; p+e=bb) {
for (x=0; ++x<==XPerBucket; p++) {
for (s=0, f=Filter; ++3<=NS; vp=(®vpp++)) {
¥ (vp & lvp=>lagmatte) {
I (vp~>fag.opaque) {
for (j=0; ++j<mwidi}; ) {
for (im0; ++i<mwidth; ) {
p=>t 4= ° * vp=>colort ;
p=>g += * * vp—>colorg ;
p=>b +== *f * yp—>colorb ;
pit=D2 +m 4+ ;

|); = (struct pixelrgba *N(char ®*Jp+pekip) ;
p = (struct pixelrgba *}{(char *)p—pback) ;

ele {
alpha = 1. — (1./3) *
(vp—>trans.r4vp=Dtrans.g+vp—>>trans.b);
for (j=0; ++j<=width; } {
for (i=0; ++i<=width; ) {
p=>t 4w *f * yp=>colorr ;
p->g += °1 * vp—Dcolorg ;
p~>b +m= *f * vp—>color.b ;
pH+=>3 +m= *144 ‘alphbs ;

}
p == (struct pixelrgbs *){{char *)p+pskip) ;

34
Jilter
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p = (struct pixelrgba *){{char *)p-pback) ;

else {
{ 4= fskip ;
}

}

Boat lerpz(v)
reglster struct xyz v[4] ;

{

® Interpolate 3 waing Shepard's method. Use the Afanhattan distance
® to each verlez as an approzimation to the actual distance.

Y4

float alphal4), dist}4], do1, d23 ;

float
dist
dist

dist
dist
dist
dist
dist
dist

PN =)

= (v[0].x>0.) ? v[0].x :
+== (v[0].y>0) ? v[0]y :
= (v[1]x>0) ? v{l}x :
+m= (v]lly>0) ? vjl]y :
= (v[2]x>0] ? v]2|x :
+m= (v|2].y>0) ? v[2y :
= (v[3]x>0) ¥ v[3]x :

+= (v]3l.y>0) ? v{3]y

dol == dist{0] * dist]l] ;
423 = dist{2] ¢ dist}3] ;

alpha
alpha
alpha

alphal

0] == 423 * distl] ;
1| = d23 * dist|0) ;
2] == dO1 * distf3] ;
3] == dO1 * dist]3) ;
alphalo] * vjojz ;

3 += alphafl] * v]i].z ;
2 += alphaf2] * v{2]z ;
T += alpha|3] * v[3]1 ;

t [= alphal0] + alphall] + alpbaf2] + alphal3 ;

Lerp++ ;
return 3 ;

#1if GOURAUD

gouraud{v,mp,vp)

reglster struct xyz v|4] ;
register struct mpoly “mp ;
register struct visiblepoint *vp ;

{

»

® Interpolate waing Shepard's method. Use the Afanhattan distance
® o cach vericz -ea on spprozimotion to the actusl distance.

/

float
dist[0)
dist{o]
dist{l
dist{1
dist[2
dist|2]
dist[3
dist{3]

o

alphalt], sum, alphasum, dist[4], 401, 423 ;
= (v[0]x>0.) ? v[o]x :
+w= (v[0].y>0.) ? vj0]y :
= {v[H{.x>0.) ? v{Hx :
+a= (v[l].y>0} ? vji}y :
= (v]2x>0) t ¥[2]x :
+= (v[2].y>0.) ? v[2]y :
= (v[3].x>0.) ? v[3]x :

4= {v[3.y>0) 1 v[3]y

do1 = distfo] * distfy]
423 = distf2] * dist3] ;

alpba
slphal
alpha]

alpha

alpbasum == alpha0] + alpha[l] + alpha2] + alpbal3] ;

0] = d23 * distlt] ;
1} = d23 * dist0] ;
2] = dO1 * dist{3] ;
3] = do1 * dist[2] ;

=v[o}x ;
~v{oly ;
=vjl]x ;
-v[l]y ;
~v[2x ;
=2y ;

~v[3)x ;

t-vi3ly 5

=v[0].x ;
=v[oly ;
=vii|x ;
=v|tly ;
-v[2x ;
=v2y ;
-v{3].x ;

c=vf3]y ;

sum = alpha[0] * mp—>colorf0].r ;
sum +a= alpha[l] * mp=>color{l].r ;

ilter

lerpz

gouraud
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sum +== alpha|2} * mp=>color[2]r ;
sum += alpha{3] * mp->color{d}r ;
vp—>color.r == sum/alphasum ;

sum = alpbal0] * mp—>colorj0].g ;
sum 4= alphafl] * mp->color|l]g ;
sum <+= alphal2] * mp=>>color[2] g
sum +== alpha[3] * mp—>color[3]g
vp—>color.g = sumfalphasum ;
sum == alpha0] * mp~>colorjn]b ;
sum == alpha|l] * mp-color|l]b ;
sum += alpha[2] * mp—>color{2]b ;
sum +m= alphaf3] * mp—~>colorf3].b ;
vp=>color.b == gum/alphasum ;

sum == alpbaf0] * mp—>trans{o].r ;
sum += alphall] * mp—>trans|i]s ;
sum 4w alphal2l * mp=>transf2]r ;
sum += alpha[3] * mp->>traos{3]r ;
vyp—>trans.r = sum/alphasum ;

sum = alpha[0] * mp~>trans|0} g ;
sum += alphajl} * mp—>transfl]g ;
sum +== alphaj2] * mp—>trans{2)g ;
sum += alphald]l * mp—>trans{3)g ;
vp—>1rans.g == sum/alphasum ;

sum = alpha[0] * mp=>trans|0)b ;
sum == alpha[l] * mp—>trans|1].b ;
sum +a= alpha[2] * mp~>trans|2fb ;
sum += alphaf3] * mp—>transf3]b ;
vp=>trans.b == sum/alphasem ;

- s -

¥
#endif GOURAUD

static sample (nsample, mp, v)
int asample ;
reglater struct mpoly *mp ;
seglster struct xyz vjq] ;

register struet visiblepoint *vp ;
register Int inside ;
float 3 ;.
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J* If the micropolygon ecrosses the hither or yon plane during this

* frame, sce if it crosses it for this sample
L J

#1¢ MOTIONBLUR && !GLOSS

if (mp~->fag.hithcryoncrossing £& mp—>>8ag.moving) {

float 1min, tmax ;
i (v[olz < v{3}2) {
i {v]22 < v[3)3) {

wmin = (v[ojz < ¥[2].2) ? v[0}z :
smax = (v]ilz > v[3}.2) ? v]l]s :

else {
wmia = (v[o].z < v[3].2) ? v[0]2

tue ¢
1 (v[2).z < {32} {
wmin == (v[i]ls < v[2z) ! v[1]a

else {
wmin = {v[t]z < v[3]1) ? V]1]3
wmax = (v|oj.z > vj2}2) ? v[0]a

L E
v[3]z ;

:vjd)s;

wmax = (v{i]z > v[2}3} ! v]l}x :

vi2jz ;

s v ;
smax = (vio).e > v.[sl.z) ? vjos :

v[3ls ;

: vj3le ;

tvj2a;

)
¥ (zmin<Hitber || tmax>Yon) goto Outside ;

Fendlf MOTIONBLUR && IGLOSS

s

® The inside test has been wnrolled for Jpee.d. This test waually takes
* 6 comparisons and branches, § mulliplications, end 1-3 assignments.

38
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> If vertices 0 and £ hove diffcrent y signs, then both ...sample
> The line Jrom vertez 1 lo cither vertez 0 or verlez 2 crosses the z azis, :
depending on the sign of verter 1.
> The line from vertex & to either vertcz 0 or vericz 2 crosaes the z azis,
depending on the sign of verter 3.
> Otherwise, if verlicca 0 end & have the some sign, then
> The lines from vertex 1 to vertez 0 and verlez 2 either bolh cross the =
azis or bolh do not cross the z azis, dcpending on the aign of verter 1.
> The lines from werlez 8 to vertez 0 and vertez 2 either both cross the z
8zis or both do mot cross the t azis, depending on the sign of verlez 3.
® For every line that crosses the x azis, we test the sign of the crossing
* and loggle "inside® if the croeaing is posilive. At the end, "inside® is
* sel if] we encounlered en odd number of positive = crossings.
Y4

. % & 8 8 & 88 8N

inside = 0 ;
i (vjofy > 0.0) {
i (v[2ly < 0.0) {
i (v[1]y < 0.0)
{ i (v[t}x*v[0l.y > ¥["].y*v[0].x) inside == “ipside; }
.
{ 1t (v[2x®[thy > v[2).y*v[t].x) inside = “inside; )
It (v[3ly < 00)
1.( i (v[3].x*vi{o].y > v]3].y*v[0].x) ipside me “inside; )
{1r (vl’.!).x'v[:i]..y > v{2.y*v[3].x) inside = “inside; }

else {
If (v[ily < 00) {
it (v[t].x*v[0].y > v]t]y*v[0].x} inside = “inside;
i (v[t)x*v[2}.y > v|1].y*v[2).x) inside me “inside;

i (v[3ly < 00} {
3t (v[2lx*v[oly > v[3].y*v[0].x) inside = “inside;
I (v{3lx*v[2ly > v[3].y*v]|2).x) inside me imside;

)

else |
I (v2ly > 00) {
it (vii].y > 0.0)
{ 1t (vilx*v[oly < v[t]y*v[0].x) inside == “inmside; )
else

{ 1t (v2lx®sfily < v[2fy®v[i}x) inside = “inside; }
i (vj3ly > 09)
.1..( I (v[3]x*v[0]y < v]3lyv[0].x) inside = “inside; )

{1 (v[Ax*v[3ly < v[2}y*v[3].x) inside == “imside; )

else {
¥ (vily > 0.0) {
I (v[1]x*vjoly < v{ily*s[0].x) inside == “imside;
It (v[1]x*[2].y < v]1].y*v[2|.x) inside == “inside;

i (vj3ly > 00) {
Ir (v[3]x*v[0].y < v[3].y*v[0].x) inside == “ipside;
If (v[3]x"v[2)y < v[3].y*v[2].x}) inside we “jnside;

®.If the somple point is inside the polygon, end the micropolygon
® crossea the hither or yonm plane, interpolate do find the vaiue of
* 2 of the sample point. Test whether this 1 is between the Asther
* and yon planes.

[ )

If (linside) goto Outside ;

1f {mp—> fag hitheryoncrossing) {
T == lerpz (v) ;
If (z<lither |1 2>Yon) goto Outside ;
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it (!VisFreeList) { sample
Int vismalloced, i ;
VisFrecList = (struct visiblepoint *} malloc {{unsigned)VisMallocSize) ;
vismalloced = VisMallocSize/slzeof(struct visiblepaint) ;
NVis 4= vismalloced ;
for (i==1, vp=VisFreeList; i<vismalloced; vp++, i+4) {
vp—>next = vp+l ;
}

vp—-Doext = 0 ;

}

vp == VisFreeList ;

VisFreeList == VisFreeList—>oext ;

NVislnUse++ ;

if {NVisloUse> NVisMaxUsed) NVisMaxUsed=NVislaUse ;

#If CSG
¥p—Dcsgiree s= mp—>csgiree ;
vp—>csgnode == mp—>>csgnode ;
s#endif CSG
vp—> glasshackopacity s mp—>>glasshackopacity ;
vp=>8ag == mp->flag ;
f (mp—>Bag.hitheryoncrossing) {
vp—->minz = ¢ ;
yp=>maxs = 3 ;
vp—>fag.lerpdone a= 1 ;

elee {
yp~->minz == mp—>mis.t ;
Yp—>maxz s= mp—>max.3 ;
yp—>Bag.lerpdone = 0 ; -
beopy ((char *)v,(char *}vp—>v.alseof{vp—>v)) ;
#if GOURAUD :
1t (mp—>fiag.gourand)
gouraud (v,mp,vp) ;
else {
vp—>color == mp—>>color{0] ;
vp—>lrans = mp->trans(0] ;

else

vp—>color == mp~>color ;
vp—>trans = mp-—2>trans ;

#endif GOURAUD
vp—>next = Point[nsample] ;
‘oint[nsample] = vp ;
Mit++ ;
return ;

Qutside:
Miss++ ;
return ;

* bit reversal, but mapped back onto On °/
permutefi,n) { permule
register Int jab;
j=0;
for(bm=1;b+b<n;b+=b) ; *
for(a=1;b>=1;a+mab/m2)
U (i-b>m0) {i—wmb; j4+=ra;}
If (j>wmn) jmatl—j;
return §;

)

tablesinit{nx,ny) { tablesinit
reglster Int i, j, s ; :
Intx, 5 ¢ (;
float dx, dy, dt, sum ;
Int width ;

NS = px’py;
SamplesPesrBucket ms PixelsPerBucket * NS ;
width == 1 + 2 * Border ;
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/* malloc room for tables %/
1f {Location) freci(char *)Location) ;
it {Filter) free{(char *)Filter) ;
If (Lens) free{(char *)Lens) ;
Locatiop == (struct xy *)malloc{NS*sizeof(struct xy)) ;
Filter == {foat *)malloc(NS*width*width*sizeof{ficat)) ;
Lens = (struct xy *)malloc(NS*sizecf{struct xy)) ;

/? Calculate fable of random mumbers %/
It (JitterFlag) {

MaxXlJitter = 1 /ax;

MaxYJitter == 1./ny;

for (s=0; s<NIJITTER; s+4) {
Xlitter]s] = drand()/nx ;
Ylitter|s] = drand()/ny ;
Tlitter]s] = drand{)/Ns ;
LXJittet|s] = drand()/nx ;
LYlJitter|s] == drand{)/ny ;

)
MaxXJitter === {float)0.000099 ;
MaxYlitter —= (float)0.009099 ;

else {

MaxXlJitter == 0.5/ax;

MaxYJitter = 0.5/ny;

for (s=0; s<NJTTER; s++) {
Xditter[s} = 0.5/ox ;
Ylitterls] = 0.5/ny ;
Tlitler]s] = 0.5/NS ;
LXJitter[s] == 0.5/0x ;
LYlJitter|s] = 0.5/ny ;

l«uxmm —m (float)0.000000 ;
MaxYJilter —m= (float)0.000999 ;
}
/* Calculate locations %/
for (s=0, x=0; x<nx; x++4) {
for (y=0; y<ny; y++, 3++) {
t==permute{s,NS);
Location|t].x = x / (float)ax ;
Locatiop|tly = y / {foat)ny ;

)

/* Create filler toble. %/
/® Caleulate filler values for the center of each sampling region. ¥/
sum == 0.0 :
for (s==0, f=0; s<NS; s++) {
for (j=0; j<width; j++) {
for (i=0; i<width; I++, i++} {
dx == Location[s}x + 0.5/nx = (i — Border +.5) ;
dy == Location|s].y + 0.5/oy = {j = Border +.5) ;
Filter|f] == (*FilterRoutine[FilterType]){dx,dy) ;
sum +me Filter[f] ;
}
}
}

/* Normalize filler */ .
for (im0; i<NS*width*width; i++ )
Filter|i] /= sum ;

/* Lens.  This is & kludge for now - wses & aguare lens %/
for (sm=0; s<NS; s++ ) {
Lens|s].x == Locationls].x ;
Lensls].y = Location[s}y ;
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static freclist {vp)
reglster struct visiblepoint *vp ;
{

reglster struct visiblepoint *p ;
reglster Int n ;

i 14 ('vp) return ; :
for (pm=vp, a=m=l; p=>next; n++, pmp=>next) ;
p->next == VisFrerList ;
NVislaUse —w= » ;
VisFreelList = vp ;

static freepoints{)

register Int » ;
reglster struct visiblepoiot **head ;

for (n=0, bead=Point; 8<SamplesPerDucket: bead++, a++) {

freelist (*head) ;

#If C5G

Ve CSG code ¥

¢ define CSGDifferenceOp 1
#define CSGlatersectionOp 2 .
#define CSGUnionOp 3

#define MAXTREE 64
static struct CSGnode *Tree]MAXTREE};

static jnt CSGNewTrec{n,tree)
Int a;
struct CSGoode *iree;

If (a>=MAXTREE) {
fprintf (stdesr, "Maximum mwmber of trees exceeded.\n") ;
Error) ;
return;

Tree|n] = tree;

static int CSGResolve()

Int niree ;

reglster Int a ;

reglster struct visiblepoiot **vp ;

register struct visiblepoint *resolvedlist, *front, ®vis ;
struct visiblepoint *treelist ; -

struct visiblepoint ®extract_csgtree{), *mergelists(};
struct visiblepoint *extract_csgaode(), *sortfront() ;

for (n=0, vp=Doint; a<SamplesPerBucket; vp++, n4+) {
vis == 0 ;
while {front==sortfront{vp)) {
If ({ront—">>fiag. pantshack) {
Svp == froot—>>next ;
front—>next = 0 ;
freclist(front) ;
front = sortfront(vp) ;
If (front && front=>>flag.torsohack) {
Svp = front—>next ;
froot—>pnext = @ ;
freelist(front) ;

|

46
Jreelist

Jrecpoints

CSGNewTree

CSG Resolve
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else If (front—>esgnode) .CSGRerelve
piree = front—>ciglree ;
treelist == extract_cegiree {ntree, vp) ;
esg_resolve_tree (Treejotree], O, Streelist) ;
resolvedlist we extract_csgnode (0, &treelist) ;
freelist { treelist ) ;
*vp == mergelists (resolvedlist,*vp) ;

else {

*vp == front—>next ;

¥ {vis) {
front—>color.r *me vis=>transr ;
front—>color.g *= vis—>transg ;
front—>color.b ®a= vis—>transb ;
{ront—>color.r 4= vis=>color.r ;
front~>color.g +== vis—>colorg ;
front—>color.b += vis—>color.d ;
front—=>>trags.t *=s= vis—>transr ;
front—>lrans.g *== vis—>transg ;
front—>trans.b *== vis—>trassb ;

fropt—>next = vis ;
vis = front ; )
If (vis—> Bag glasshack &X *vp) {
float alpba, comp ;
front == sortfront{vp) ;
alpha = vis—>glasshackopacity ;
comp == vis—>color.r ;
vis—>color.r *== alphs ;
vis=>color.r 4= (1-alpha) * comp * front—>color.r ;
comp = vis—>color.g ;
vis—>color.g *=s alpha ; .
vis—>color.g += (1-slpha} * comp * front—>>color.g ;
comp == vis—>color.b ;
vis=>color.h ®= alpha ;
vis—>color.b +a= (l—alpha) * comp * froat—>color.b ;

)
1P (vis—>>Bag.opaque) bresk ;

*yp = mergelists (vis, *vp) ;

)

}

static esg_resolve_surface (lista, listb, id, op) €8¢, resolve_sur jacc
segleter struct visiblepoint *lista, *listb ;
Int id, op ;

register Int a, b ;

/® Go through two sorted lists of points, dedermining which points ere
® gctually on (Ae surface according to the apecificd cag operator.

® Aark the poinls thal arc on the asurface with the apecified mode id.

A point from listd is on the surfoce if %* is act; a point from

lista is on the surface is "b" is set.

> For the union operator, sccepl points from lista iff we are outside
of volume b, and accept points from listb iff we are outside of
volume a. Since we aré initially outside of both volumes, "a" and
"b" are both initially true.

> For the intersection operator, sccept poinis from onme list ifl we
are inside the other volume. Since we are initially aot imside
either volume, 2" and "b" are both initially false.

> For the differepce operator (a mious b), sccept poiats from lista
iff we are outside of volume b aod accept points from listb iff
we are inside volume 3. Since we are initially outside of b and
not inside a, "L" is iniiially true and "a” is initially false.

> For all three operators, toggle "a" or "b" when we pass through
one of the surfaces of a or b respectively.

-

*/
am=bm=o;
switch (op) {
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ease CSGUnionOp: ) s = "a;
ease CSGDiflcrenceOp: bw b ;
case CS5GlntersectionOp: break ;

}

while {lista && listb) {

If (lista=>minz < listb~>minz) {
If (b) lista=>esgnode w id ;
lista = lista—>next ;

3 m "y ;

}

else {

If (a) listb—>esgnode = id ;
listh = listb—>mext ;
b "p;

}
}
it (b)
it (a)

4,897,806

for (listajlistamlista—>uext) lista=>csgnode = id ;

for (ilistb;listhamlistb—>uext) listhb—>cognode = id ;

static struct visiblepoint ®extract_csgnode (nodeid, list)

Int nodeid ;
reglster struet visiblepoint **list ;

reglater struet visiblepoint *thisid, *aotthisid, *vp, %aext ;

® eztracted pointa,
.

thisid == O
notthisid = 0 ;
mext == ®list ;
while (vpmenext) {

next se yp—2>next ;

i (vp—>csgnode mesm nodeid) {
vp—>oext == thisid ;
thisid == wp ;

}

else {
vp—>next == notthisid ;
notthisid = vp ;

)

}

*list =» molthisid ;
return thisid ;

static struct visiblepoint ®extract_csgtree (atree, list)

iot atree ;
register struct visiblepoint **list ;

pecificd mode mumber from the list.
d of & mew list containing only the

register struct visiblepoint *istree, *actintree, *vp, ®aext ;

intree = notintree == 0§ ;
vp = *list ;
while (vp) {

aext == vyp—-2>next ;

#f (vp—>csgtree mems atree) {
Yp—Dnext = intree ;
intree = vp ;

)

else {
vp—>>pext == potintree ;
sotintree == vp ;

50

-ty rndw.nrj-n

extracl_csgnode

exrtract_csglree
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}

vp = mext ;

*list == motintree ;
return intree ;

static struct visiblepoint *findfront(list) f ind f ront
reglster struct visiblepoint ®list;

regloter struct visiblepoint *front, *vp ;

/* This routine relurne & pointer o the frontmosl point of & list
® of wisiNepoints. The 2 walue of esch point is atored as the
® minimum and mezimum g values of ils mieropolygon. The ezad
® 1 value is only calculated (by intcrpolation) if it is meeded. .
® The ezact value is alored in both the minimum snd magimsm z Jiclds.
® > Find the point ‘front’ with the smallcst minimam 2.
> If thet point hes en interpolated 3 value, we're dome.
> If that point's maximum 2 value is in front of the minimum z
of every other point, we're done.
> Otherwise we go through the list again, this time using the
exact values of 2 calculaled by interpolation.

*® & & o 8

o

w.findfront
If {!list} returm 0 ;

for {front==vpalist; vp; vpmvp—>next)
¥ (vp~>minz < front—>minz)
front = vp ;

if (front—>8ag lerpdone) goto Done ;

for {vp==list; vp;. vpmvp—>pext)
If (vp!==lront & vp—>minz<front—>maxz) goto Lerp;
goto Done;

Lerp:
froot—>minz == froot—>maxz =e lerpz(front—>v) ;
front—>f8ag lerpdone == 1 ;
for (vp==list; vp; vpmevp—>pext) {
¥ {vp—>mioz < front—>minz) {
if (vp—>flag.lerpdone)
froat = vp ;
vp—>mint m vp->maxz = lerpz{vp->v) ;
vp—2>f8aglerpdone = 1 ;
i (vp->minz < front—> minz)
front = wp ;

}

Done:
return froat ;

static struct visiblepoint *mergelists{a,b) mergelists
reglater struct visiblepoint *a, ®b ;

register struct visiblepoint *p ;
If (!a) return b ;
If ('b) return a ;

for {pma; p~>next; pmp=Snext) ;
p—=>next = b ;
return a;
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. Btatic esg_resolve_tree (node, id, list)
reglster struct CSGoode *mode ;
int id ; ) S .
register struct visiblepoint **list ;

{
struet visiblepoint ‘listo, *list] ;
struet visiblepoint 'exlrac!_csnodr(), *mergelists{} ;
if (node~>>child[n]} esg_resolve_tree (vode~>child[o], node—>id[0], list);
IF (vode~>child|1]) csg_resolve_tree (vode—~>child]1], mode—>id|1], list);
listD == extract_csgnode (node~>>id[0], list) ;
listl = extract_csgnode (mode~>idj1], list) ;
If (listo |1 fisti) {
If (list0) sortlist (&1ist0) ;
if (list1) sortlist. (&list1) ; :
csg.resolve_surface (list0, list, id, sode=~>op) ;
*list = mergelists (list0,%list) ;
“list me mergelists (list1,*list) ;
o)
)

static struct visiblepoint *sortfront(bead)
register struct visiblepoint **head;

register struct visiblepoint *prev, *temp, *vp, *front ;

* (*head) pointa to o list of visible points. This routine puts
" % the frontmost point &t the hesd of the list,
L)

it (*head) return 0 ;
front == Sndfront(*bead) ; _
for (prevam *head, vpmprev—>apext; P, prevmvp, vpmvp—Suext) {
if (vp=e==front) { ’
preve=>next me front—>naext ;
froot—>next == head ;
*head == front ;
teturn ®head ;

}

)
return *head ;

}

static sortlist (list)
reglster struct visiblepoiot **list ;

IF {{*list)=>next) {

{vold) sortfront (list) ;
sortlist (K((*list)—>mext)) ;

}

Helse

static int CSGNewTree{)(;}

static iat CSGResolve{)(;}

#endlf CSG ; e e N
/* asvisk 1.9 85/05/20 %/ )

#include <reyesh>

struct visBags

unsigned moving : 1 ;
unsigned opaque : 1 ;
unsigned cubicmotion : 1 ;
unsigned matte : 1 ;

unsigned bitheryoncrossing : 1 ;
unsigned lerpdone : 1 ;
upsigned gouraud : 1 ;

unsigned pantshack : I ;
unsigned torsoback : 1 ;
unaigned glasshack : 1 ;

4

esg_resolve_tree

’

sorlt front

sorllist

CSGNewTree
SGResolve
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" struet mpoly {
struect mpoly *mext ;
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Int minx, mioy, maxx, maxy ;

struct xy: min, max ;
struet xyz w4 ;
#if MOTIONBLUR

struct xy:

#if CUBICMOTION

struet xyz
struct xyz

-mdlfl ;

speed2f4] ;
speed3|t] ;

fendlf CUBICMOTION
dendif MOTIONBLUR
#if GOURAUD
struct color
struct color
#else
struet color color ;
struct color trans ;
#endif GOURAUD
#if CSG
short csglree, csgnode ;
¥ adlif CSG -
! DEPTHOFFIELD
struet xy
#endif DEPTHOFFIELD
float glasshackopacity
struct visflags flag ;
L

colorld] ;
transid] ;

dofborder ;

catern float Dofx_a, Dofx_b, Dofy_a, Dofy_b ;
extern Int PinlloleCamera ;

[u0/tom/patent/pray.c

w (lmli;ht,l- NULL)
returnihitalphs);
return(-1.);

disperseray(oldray, maxdispersionangle)
vector oldray;
doubls maxdispersienangle;

double phi,theta,rtho;

double ab,e,v,x,y,3;

phi e= drand() «drand() maxdispersionangle;
thets w= drand() 2 Pj;

s = oldrayloj;

b = oldray|t
¢ = oldray|2];

tho = syri{{double)(s m+b A+c«));

8 = afrho; b m bfrho; ¢ = ¢frho;
" & == tho win{phi) «cos{theta);

y = thosin{phi) ain{theta);

s == tho sos{phi);

i ({v = sqrt{{double){b d+cx})) 1o 0)

eldeay.
}
cles -
{
oldraylo] = g
oldray(l] = y;
oldray[?] = oxog;

struet eolor

Copyright © 1985 Pixar
APPENDIX B

/u0/tom/patent/pray.c

«dighthit

disperseray

oldrayl0] = ixw + sn);
oldray{l] = ( yox -~ baxa + baa)fy;
2

= (-bey - exn 4 can)/y;
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trace[viewing, leveltime)
register struct ray sviewing;
float time;

double alpha,beta;

“struct ray aewny;

double diffuse, vdota, H kn, necuhr. uﬂ:cl.mnlen;th-
struct color & lor, vie

double lphcmeﬂcctinly.aphcnbump.
veclor normal, incoming, reflection, Lempvect, center;
double ndiu;

register struct sphere chp;

register atruct light dpty;

msatsiz tempmatrix;

doubie spinsagle;

[ opristl(ivoee ooy TG0 LTI GA TINS,
wewing-> eadpeintfV),

viewing-> ulpnll[ll.

vitcing-> endpoiant]t],

siewing-D direction[V],

siewing-> directionfl),

sicwing-> directionfs],

Teveltime);0 )

slphs = spherehit{viewing time,(levelmm0) E& Nranalucencyray);
beta == lighthiyviewing.time);
i ({bets > == 0) && {(slphs < 0) [| (beta < alpha)))
return(hidlight->rgb);
if (alphs < 0)
return{nuiteolor);
viewcolor.red ==
viewcolor.grn e=
viewcolor.blu = ©;
vieweolor.alf = 1.;
hp == hitsphere;
Vx.AddLﬂp(:lpha,vu-mg-)cadpomt,vu-m;—>dueemn,ne'uy endpoint);

FindCenter{hp time,center);
radius == hp->radiug

normsl[0] e= (newray.endpoi ‘p“ t ]0),‘
{1} = {newray.endpoint|l|-center|l]) /:
normal{2] = (newrsy.endpoint|2] --«nlerl )/nd»ur.
3

normai{3] = 1

/*
pot sermal through inverse tramsformation in order o estrect
eriginal povition on sphere.

that original position is then woed to look up the paremelcre
Jor the ephere

¢/
double duration;
struct movement smptir;
mptr == hp-Dmptr;
VxCopy(normal,tempveet);
MxVectorMultiply(tempvect,hp-> M, tempvect);
while (mptr)
il {mptr->starttime > time) break;
MxVectorMultiply(tempvect,mpte->MRIMR2 temprect);
i {mptr->mptr)
it (mplr-)mptr->unmmc S time)
duration == time - mptr->staritime;
else
duration e= mptr-Dmptr->tartlime - mptr->starttime;
else .
duration == time - mptr-D>starttime;
spinangle = MxDegredduntnn ViLength{mptr->transiate) /hp->
MxRotate(spinangle,’s umpmnn:),
MxVectorMultiply(temp i pvect);
MxVe:thull|ply(umpvecl.nplr->lR.lRl u-pnct).
mpis = mptr->mptr;
)
l .

sew (empycct containe the original pesition of this endpoint in (he
pciure map Jor this sphere,

) N
spherebump == hp->phong;
it (ADS{tempvect|2]) < hallstripewidth)

58
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{
spherecolor == hp->stripecolor; ~lrace

spherereflectivity == spherecnlor.alf;

1
:l":(ABS(u;npvtﬂ[!n < halfringwidth))

[*% cc ~g0 <4 % coek.o boeundipherc.o -IG -lrpsc Ipicie -lkp las -lmz -Ixm -Im
.

#include <stdioh>,
ginclude <aarg.h>
dinclude <math.h>
#include <pitio.h>
dinclude <rpach>
#include <ikehack.h>
dinclude <bliss.h>
#include <MxMatrixh>
ginclude <BuriOpen.h>

#include <rrandh>
finclude <ViVector.h>

ddefine 55 684
gdefine XSIZE 512
ddefine YSIZE 488

int spfx == XSIZE;
int smply e YSIZE;
int pplx = XSIZE;
int pply = YSIZE;
int ppp = I;
int mize = 0;
int rpp = SS;

#define  VPIX 7868852459 {o = {8/81, vertical height of & pizel of
d#define MANLEVEL 1|
$define  NSPIERE 100

Int translucencyray == FALSE; .
double fieldofview = 30.;

vector viewpoint; i .
matrix mormalizer,inversenormalizer;

double halfstripewidth - 4722,

double hallringwidth - .85;

double linethickness - - ,05;

double ringradius == {4

]* ringredive m= sert(1-(Ralfringuidth+linethickness) 8} of
int dms = @;

l;n yiat = O;
int yend = 100000;

setysasy) :  setystart

ystart = atoi{aargy(1]);
yend = stai(aargv]2]);
if (yend < ystant}

[printfistders,"bad y bounds\n"});
exiyt);

Int debug l FALSE;
setdebug]) {debug == TRUE;) setdebug

struct color
{
double red, gra, bly, alf;

1]
struct color nullcolor = {0.,0.0.0.);
struct eolor ivorycolor == {0.85,0.85,0.55,0.8};
double ivorybump = 1000.;
double ivoryreflectivity = 0.8;
struct color blackcolor == {0.05,0.05,0.05,1.};
double blackbump = 1000,;
double blackrefiectivity == 0.8;

struet window {int minx,maxz,miny,mazy;};
struct movement

{

matrix, MRIMR2,IR2IR;

double starttime;
vector transiate;
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struct movement emptr;
; .
struct. sphere

‘wector center;

double radius;

matrix M;

struct color outsidecolor,stripecolor;
struct movement emptr;

double refractiveindex; [ refractive indes of

double transmitivity; /¢ frectiondl intensity of transmited rays o/
double specularity; [* emount of specular reflection o/

double phong; - /¢ speeslar bsmp widih (Phong esponcat) ¢f

double reflectiondispersion;
A [ %) Iy e ar, FH .

int active;

struct window w;
BuniPuType buniptr;
Int [basise,fbysise;

}
sphere[NSPHERE};
struct sphere @sphere we sphere;

#define  NLIGHT S50
struct light

vector location;

double intensity0;

vector locationl; -
double intensityf;

double radius;

Struct coler rgh;

Tight{NLIGNT);

struet light elight = Jight;
dt:uble ambient;

struct ray

veetor endpoint,direction;
H

struct sphere hitaphere;
struct bight  shitlight;
fdefine EPSILON 1e-8

FindCenter{sptrtime,center) FindCenter
struct sphere sptr;

double time;

veclor center;

double duration;
struct movement empir;

VxCopy(sptr-> center,center);
mplk = IpLr->mpin
while (mptr)

if {mptr->atarttime > time) bresk;
i (mptr->mptr)
if (mptr->mptr-D>starttime >= time)
duration == time - mptr->starttime;
else
duration == mptr->mptr->starttime - mptr->atarttime;
else
duration = time - mptr->starttime;
VaAddLerp(duration,center,mptr->transiate,center);
Mptr = mptr->mptr;

}

double ) ' .
spherchit(oldray,time,level0) : spherehil
register struct ray oldray; :
flost time;

register struct sphere aptr;
double hitalpha;

double alphs, diseriminant, a, b, &
vector newendpoint; .
vector center;

double radius;
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[ oprint/f* epherchitfray:{ 5, &1, 51, 5,8, T EINS",
oldray-> endpoint[U] oldray-> endpeint[l] sldray-> endpeint[2],
sldray-> directionf0], oldrey-> divection[l], oldray-> divection of time);ef

J* This rextine tries to find o peint en the sphere optr and the oldrey.
Using elphe as the estent of the rey beyond oldray->endpeint,
& guedratic in alphe can be formed whose coeflicients o, b, ¢ are
a0 computed below,

o/

hitsphere = NULL;
3 - Vxl)ol(oldray->dir:tl.iou.oldny-)dinction);
for (sptr == sphere: sptr tm  esphere; sptr+)

if (flevelo | sptr->active)

FindCenter{sptr time.center);
radius == sptr->radius;

V:Sublrut(olduy-)endpoint.center,ae-endpoiml;
| 2OVxDot(mmndpninl.oldny-)diueﬁon);
¢ = VzDot(ne point,newendpoint]-radius sadius;
i ((discriminant = beb - 4nax)<0.)
tontinue; ]

discriminant e sqrif{double)discriminant);

dpha = (-bidiscriminant) /(2 a);
. it (EPSILON < alpha &L
(hitsphere w=me NULL || alpha < hitalpha)}

hitalphs == alpha;
hitsphere = spir;

alpha == (-b-discriminant) /(2 «a);
it {EPSILON < siphs &k ,
(hitsphere wwem NULL || slpha < hitalpha))

hitalpha = alpha;
hitsphere = spir;

)

if (hitsphere le NULL)
returnlhitaipha);
;cturn(-l.);

double

lighthit(oldray,time}

register struct tay wldray;
float time; :

register struct light dptr;

double hitalpha;

double alpha, diseriminant, a, b, [
vector mewendpoint;

veclor center;

double radius;

hitlight == NULL;
[ VxDot(oldray->direction.olduy-)dinclion);
for (lptr = [ight; Iptr fee elight; iptr4++) ’

VxLerp(ﬁmr.lptr->lo¢nion0,lpu->benioul,cenur);

radivs = Iptr-D>radier

VxSublucl(nlduy-)endpoint.tenler.newendpoinl.):

b o« ‘."VxDol.(ne-endpoinl.oldny->diretlion);

¢ = ViDot{newendpoint dpoint)-radius wadius;

it {{discriminant = beap - 49 x)<0.)
continue;

discriminant = sqri(double)dineriminant);

alpha w (-bidiscriminant) /{2 ;)
it (EPSILON < alpha L&
{hitsphere mem NULL || alpha < hitalpha))

hitalplia = alpha;
hitlight = Iptr;
}

alphs = {-bediscriminant) /(2 5);
if (EPSILON < alphs 2&
(bitsphere wee NULL §§ alphs < hitalpha})

64

..apherehit

lighthit
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{itslph; = alpha;

;itli;hv. - lpir;

h 1 * doenl

= hp-> 3
sphererefiectivity == spherecolor.all;

else :
it (ADBS{tempvect|?]) < balfringwidth+linethickness)
i (hp—>o|;uidecolor.nd e hp->stripecolor.red)

spherecolor == Llackeolor;
spherereflectivity = blackreflectivity;
rl (% mp - i ¥ bh p

}

alse
spherecolor = ivorycolor;

spherereflectivity == ivoryreflectivity;
spherebump == ivorybump;

}
else
ir (hp->bl;nipu]
int mapz,mapy;
RGBAPixeiType RGBA;
{
it (tempvectf2] > 0)

mapx w= hp->fbasizeql + (atan(tempvecti0]/tempvect(2])/(PI/2)) fringradius)/2;
mapy = hp->fbysizesl - (sun(lcmpu:lll)' [rempveet[2]) /(P1/2)) Jringradius) /2;

else

hp->fbasise {1 + (nan(umpncllgl [temprect{2]) /(D1 /2)) /ringradius) /2;
hp->foysize {1 - (lun(kmpvttlll)l Jremprect(2]) /(P1 /2] [ringradius} /2;

mapx
mapy

SetBuniY(hp->buniptr,mspy);
SetBuniX(hp-> buniptr,mapx);
GetBuniRGBA(hp->buniptr, k(RGBAY;
spherecolor.red == RGBA.Red /4005
spherecolor.grn e» RGDA.Green /1095.;
spherecolor.blu == RGBA.Blue /4095.;
sphereteflectivity == RGBA Alpha /4095.;
spherebump = 1000;

spherecolor = ivorycolor;
spherereflectivity == ivoryreflectivity;
spherebump == ivorybump;

vdotn = ViDot{ lviewing->dicection);
¥ (vdotn > 0

{
VxNegate(normal,normal);
kn == 1. /hp-Drelractiveindes;

Shtn - -vdoin;

)
if{vdotn 1= 0]
ViSealarMultiply(1 fvdatn,viewing-> direction,incoming);
] e the only difference between the viewing direction end the incoming
veetor ie this factor of 1[edetn, 1 evce the sin of the angle
between the siewing weetor and the mormel

¢/
if (vdotn w=w= 0))

VixCopy/{viewing->> direction,reflection);
else

VzAddLerp(2. incoming,normal,reflection);

H 13 A, ' A3 2 o
d P -,(. fl lun.hv-> P )v

teflectionkength = Vilengthreflection);

Cadrace

T trace
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L
¢ first, get the lighteonrce components
L]

viewcolor.red e« spherecolor.red sambient;
viewcolor.grn =ms spherecolor.grn ambient;
viewcolor.blu == spherecolor.bluambient;

for {lptr == light; Iptr le= elight; Iptr4+)

double intensity;
vector lighteenter;
vector random;
random(3] = {;

for (i)
random
random(l] == 2sdrand{)-1;
random|2| = 2a«drand()-1;

if (VxLength{random) <== 1) bresk;

- 2adrand()-i;

ViScalarMultiply{lptr- > radius,sandom,random);

ViLerp(time, Iptr-> location0,Iptr->locationt lightcenter);
VzAdd{lightcenter,random,newsay.direclion);
ViSubtract{newray.direction,newray.endpoint, newray.direction);
VxNormalise(newray.direction,newray. direction);

it {spherehit{&:newray time, FALSE) > 0.)
continue;
specular == ViDot{newrsy.direction,seflection) /reflectionlength;
if (specular < 0.} specular = 0;
L]
o Plastic olert
o

intensity == lptr-Dintensity0 + time {iptr->intensity]-fptr- > intensity0);
/e speculer w= intensity ® Ap-Dopeculsnity ¢ pewfepecular, sphercbump);ef

specular = hp-Dspecularity ¢ pow{specular, spherebump);
diffuse == intensity ¢ VaDot{newray.direction,normal);
viewcolor.red 4+ == specular + diffuse mpherecolor.red;
viewcolor.grn 4= specular + difluse spherecolor.gin;
viewcolor.blu +== specular + dilfuse wpherecolor.bly;

it (level == MAXLEVEL)

return(viewcolor);
»

¢ Now, the reflected compenent
]

it (sphetereBectivity fw 0.)

{
doxble espf) srhe;

/o

VxCopy{teflection.newrsy.direction);

tracecolor w= trace{&newray, level+ i time);
vieweolor.red 4= tracecolor.red ssphererefiectivity;
viewcolor.grn +em teacecolor.grn ssphererefiectivity;
viewcolor.blu +== tracecolor.blu mphererefectivity;

/° ’
if ((slpha == epherehit(Sncwray,time, FALSE) ¢ VilengtA(newray. direction}) > 0)
vicweolor.red -mm opherecolor.redeambicnt vopherereflectivity sesp{-alphs);

viexcolor.grn —~em apherecolor.grasambient eupherereflectisitysczp(-alpha);
vicwcoler.bly -mw spherecoler.blucambient eaphererefiectinityscap(-alphe);

o
, }

o Now, the tranemitied component
¢/
it (hp->transmitivity 1= 0. &% vdota l= 0.}

ViAdd{incoming.normal,tempvect};

kf = kn ¢ kn ¢ VxDot{incoming,iscoming) - VzDot(tempvect,tempvect);

it (> 0)
kf w= 1. /3qrt{(double)kl);

newray.direction(0] == kf4normal{0]+incoming[0]} ~ aormal
newsay. direction]l] « ki 4normal{l|+incoming|l]] -~ mormal|l
aewray.direction 2] +incoming(2]) - mormal|2

20 == kffnormal
newray.direction{d] == 1.;

disperseray{newray direction, hp-> teansmimiondispersion);

1 oprintf[ trace(rap:( T, 21, 2, %1,5), 1), G4, 550) -> *°,

68

..drace
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ncwrsy.endpoint[0],

newrsy. endpoint[l],

nexrey.eadpoint[s),

scwray. direction/U),

newrep.directionfl],

newrey. divectionft],

level+L,time); o/

translucencyray = TRUE;
tracecolor = trace(newray, leveltime);

translucencyray == FALSE;

[ oprintf[* 751, Gl SSINS" tracecolor.red iracecelor.gra,tracccelor.bln); o/
viewcolor.red 4 e tracecolor.red shp-> transmitivity;
viewcolor.grn 4= tracecolor. grn hp- >£nnsmnmty,
vie lor.blu $es t 1 ""P'>. ity;

}

nturn(vic!color);

pri2{x}
double x;

;«urn((im)(u «drand()+4080. 4x <0.70.:1. <x1.:x)});

double Fa = 0.0;
double focaldistance e 1.0;

struct color eyetrace(s, y, t)
"double 1, ¥, &
{

struct ray ray;
vector scecentarget.modeltarget,focaltarget, direction;
double filmplanedistance;

[ spristf" eyctrace(ST]. 5T, TINS" 3, 3.8);0]
screentarget[0] == x;
screentargetil] w= y;
screentarget(2] e 1
screentargetid] == 1

MxVeclorMuItiply(uuenlar‘u,invemnu- li deltarget);
- ViSubtract{modeltarget,vie wpoint direction);
filmplanedistance == ViLength{direction);
VaAddLerp{focaldi /Bimplanedi ,viewpoint,direction,focaltarget);

vector random;
random|?] == O;
random|l| = §;
for ()

nndcmﬂ o= 2adrand()-1;
vandom|t] = 2adrand()-1;
if (Vilength(random) <= 1) break;

ViScalarMultiply(Fn.rand dom});
MxVeetorMultiply(random,i lizer,ray endpoint);

VxSubtract({focaltarget,ray.endpoint,ray.direction);
return(trace(Enay, 0, t));

PFILE spicfile;
extern struct xy (llon 2.y;} Location[);
extern float

Tim
extern flost }"lm[i][SS][S](J]

double 10 = 0.0;
double t1 = L1.0;

settimef}
10 = atof{sargv]t
t1 = atof{asrgv|? ).
setpplxy()
pplx = lhi(nr‘vll )
pply = stoifasrgv|2]);
splx = 1 + (ppix-1)/ppx
sply = } + (pply-1)/pps
setasize()

ssize = slm(uv‘v[l]).
pps = 1 €< -ue.

70
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sellime
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spiz = 1 ¢ (ppls-1)/pps
sply = t + (pply-1}/pps;
tpp = SS5/{pps*pps);

struct sarg_cmd emdfjs{

0,¢tpplay, *{-s 64 %d".pplx ppfy®.0,0,0,0,

0. setsnize, *l-3s T5d<03>|", ssize: 0, 1, 2, 3°.0.0,00,

0, 3ettime, *I-t %ot Sul]","starttime endtime®,0,0,0,0,

0,setdebug, *[-d]*," debug” ,0.0,0.0,

0,setystart, *l-y %d Sod]’,"compute sample area %d to Tod in y°,0,0,0.0,

0,0,(char sstd emd,0,0,0,00,

0,0,0,0,0,0,0,0
}H
remain(arge, argv) remain
char argvi];

vector viewdirection,updirection,focuspoint,uppoint;
char [bname|128};
char label|256});
fnt =,5y;
register struct light «ptr;
vector abe;
matrix MR1,MR2;
int ¢
struct color pixel{SS];

yend = MIN(yend,sply-1); -

sprintf{label,"pray -s %d %id -m %d -t %I B! -y Sod %od”,
pplz,ppfy osite,t0t) ystart yend);

PicSetLabel(label};

PicSetPsize{pplx.(yend-ystart+ 1} spps);

PicSet Tsize(ppfr.{yend-ystart+1) pps});

PieSetPformat(PF_RGBA);

PicSetPmatting(PM_MTB);

PicSetForee(1); :

PieSetO set(0.ystart sppa);

if{(picfilemsPicCreat{argv[l], 0444)}m=NULL){
fprintf{stders, “sphere: Can‘t create o\n", argvil]);
exiy{1});

picPreEncodeScantine(picfle, OL);
*
I‘ Read soeme input
L]
while{{cmgetehar()) lme EOF) awitch{e){
case * ‘i ease \t': case "\n': break;
case '$°: do cegetchar(); while{e le “\n’ && ¢ le EOF); break;
case ‘[°: IF (scanl{"SCif &feldofview) fme 1)
fprintf{stders,"Invalid Beld of view \n');
break;
case ‘v7:
if{scanf(® SalTolCo M2 To A ICTIT IR,
Eviewpoint{0],Lviewpoint|l]. & viewpoint{2],
&focvspoint|0}, & focuspoint{t], L focuspoint{2),
&uppoint|0], Luppointt], & uppoint|2)]
fm 9

fprintf{stderr, *Invalid viewpoint\n"};

_ehe
{
wppoint{l] = 1;
viewpoint(3] = 1.;
focuspoint(3f = 1;
VaSubtract(focuspoint,viewpoint,viewdirertion);
focaldistance w ViLength(viewdirection);
VaSubteact{uppoint,viewpoint,updirectionl;
break;

case "2’
iscanf®ToI, &ambient) lem 1) .
fprintf{stders, "lavalid ambient Eght\n");

...remasin’
break;
case ‘1’

* double stimuth,pitch,roll:

mmnn'%mmmlmmlmmmmmmrmmlmlmmmmlmf.

&erphere-> center}0), &esphere-> center|l], &espheee->center|2],
Lesphere-> cadius,

& azimuth, & pitch, Lroll,
&esphere->outsidecolor.red, Lesph > idi

¢~ >ou

t \ gm,&.e:phen->oulsideeolor.blu.&esplme->outsidccold
&esphtu->llnpecolor.nd.kz!phen->nnpeeolor.xrn.&:spben->uripecolor.blu.keprere-)smp:mlor.alf.
&esphere- > relractiveindex, Lesphere=Dtr itivity,

&esphere~>specularity,Lesphere-> phong,
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fbname

) 1= 20)
tprintf{atders, *Invalid sphere\n®");

else’ :
double v;
matriz tempmatrix;
FbErrors(FBIGNORE);
if {{esphere->buniptr e= FbOpen(fbname)} ssws NULL)

fprintf{siders,”cannot opea %s\n",fbname);

else

{
BuniCSRType or;

esphere->[bxsize == - GetXSise{esphere-> buniptr);
esphere->fbysise w GetYSize(esphere-> buniptz};

esr.ChannelSel == 017; Jo ol of
csr.AutolneDer = INCREMENT;

ear. WriteTrigger == ALPHA TRIGGER;
est.ReadTrigger == RED TRlGGER.
esr.XYMod e X MOD; ™

est.BumpXY = §;

csr.WriteAddrMod = 0;
csr.ReadAddrMod = ©;

esr.LerpMode = 0;

est.LerpRequest == 0;
SetBuniCSR{esphere-> buniptz, eor);

lpnnl!(nderr.'%r %4 Td\a",fb ph

> Moxsi

74

MxRotate{azimuth, 2 * esphere->M);
MzRotate{piteh "y .lempmatnx)
MxMultiply(esphere-> M, tempmatrix esphere->M);
MzRotate{eall  ,°3° tempmatriz);
MaMultiply(esphere->M,temp ix caphers->M);

esphere->center]d] == 1.;
erphere->mptr = 0;
upben-)nﬂetuondlmnm -0

-0

L4

nphen++.

Ln:k'
esse “h°:

int epherenumber:

double starttime;

W{scanl(* d%elelSolTer,
&rpherenumber, starttime,
* Eabel0)]. l-:bc[ll Eabel2]) lee §)
fprintf{stderr, “Invalid hit\n®);

else -

struct movement wxldmpte, mewmptr;
double v;

abefd} = 1

.

Lesphere-> fbysiz)

-

" ...remain’

newmptr - (struet movement - malloe| {
ir ¢ = sph ber].mpts)

\ |r

ruct

while {oldmptr->mptr) oldmptr == old
oldmptr->mptr == newmptr;

elee
sphere[spherenumber]. mptr w» mewmptr;

newmptr->mptr = 0;
newmptr->staritime =» starttime; -
ViCopy{abc,newmptr->translate);

.
sbe fo the translation wector for the mosing sphere.
Let we take @ perpendicular wector to it in the same 2 plone
end [ollow the formules [rem page 256 of Newmen & Sprevil, ol
Jor votating about an erbitrary wector. *
o/
{double temp; temp == abc0]; abc{0] == abcfi}; abefl] -

VzNormalize(zbe,abe);

v - :qr\((double)(abell]'abe'l] 4+ abef?] abe[2))
*" Maxldentity(MR1);

MRII)[)] =  MRI2J[2] = abef?]/v ¢

MR2lf1] = (MRI{1]|2] = abefl]/v);
Mxlcenm y(MIt2);
MR2fojlo] =  MR2[2}2] = v ;
_ MR2[2j[0] = ~(MR2[0]|2] w lbelol).

ptr~>mptr;

~temp;)
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o/
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MxMultiply (MR1ILMR2. newmpte-> MR IMR2);
MRI{2J{1] = -MRI20)

MR1 = -MRI}[2]:

MR - -MR22|[0};

Mit2lo][2] = ~MR2{o0j[2):
;chMu.‘Liply(MRz,MRl.mmptr->lR'.‘IRl);

3 == ¢
S =

[=

break;
case ‘}:

if{seant(* S ICHCHITE TR ISRUTEI,

76

Eelight->location0{0], &elight-> location0[1], &elight-> location0|2],

&elight->intensity0,

Lelight-> loeation1[0], Zelight->locationt{l], &Lelight->lorationtf2},

Lelight->intensityl,
&elight->radiva) te= §)
fprinti{stderr, *Invalid light\n");

else (
cli;ht-—)lontionbl.‘n - i
elight->locationl|3] = I.;
“elight->rgb.sed =
elight->rgb.gra w=
elight->rgb.bly =
elight->rgb.all = 1
elight+ +;
break;
case 'pt
{double dummy;
If{scanf{” SUTOUTTT  Ldummy Ldummy, Ldummy, Ldummy) l== 4)
tprintf{stderr, "Invalid plane\n");
reak;
case ‘m°:
halfstripewidth = halfringwidth e linethickness == 0;
ringradius == 1.01;
break;
case ‘¢’
if{scant(" %I, LFn) twe 1)
tprintf{stderr, “Invalid camera lens\n');
break;
case ‘b°:
if{scanf(*%6d" ,Ldmsz} fem 1)
fprintf{stderr, "lnvalid border\n"});
break;
default:

fprintf{stderr, *Unrecognized command "};
o

{utc(e. stdert);
emsgetehar();

while (¢ = EOF &k c 1= ‘\n’);
pute(“\n’, stderr);

print{"%%d spheres, S5d lights\n", esphere-sphere, elight-light);
Jor (ipte == Kght; Iptr lam clight; Iptr++)
sNermalize(iptr=> locationt,Iptr-> locetiond);
VeNermalize(lpir->locationl,iptr->locationl);
allocatecolorlinebuffers();
if (debug)
fprintf{stders,*pps = %53d\n",pps);

fprintf{stders,”(pplz.pply) = (S53d,%53d)\n".ppfx.pply};
;priml(nden,'(spfx.spfy) = (9334,%3d)\n" spixsply):

CruCamerafvicupeinl, focuepeint, sppeint,0.);

CvuC a[dblvie wpoint,dbiviewdirection,dblupdirection,0.);
CruPerspective({fieldulview,1.333333,0.1,5.0);
CvuGetN{normalizer);
Mxinvert{normalizer,inversenormalizer);

CruViewPrint{);

o

ConSetScreentVindew(opfs-1.,0.,0pfy-1.,0.,255.,0.);

...remain
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CruSetScreenWindow(0. 3pfx-1.,0.,#ply-1.,0.,255.); -

78

struct sphere aptr;
matris N.PS,T;
CrvuGetN{N);

CvuGetP(P);
CruGetS(S);

...remarn

for (sptr T sphere; sptr == esphere; spirdt)
yeetor center; ! .
struct window wO,wl;
FindCenter{sptr,t0,center);
MaTranslate{{doublejcenter|0],
{double)centes{l],
(double)cenmlz ,T);
MxMultiply(TN,T);.
MxMultiply(T,P,T);.
MxMultiply(T,S,T});’
boundsphere(sptr->radius, T, &w0);

FindCenter{sptr il center);

MxTranslate({double)center|0],
{double)eenter|
(double]center

MxMultiply(T.N.T);

MxMultiply(T,P,T);

MxMultiply(T,S.T);

- boundsphere(sptr- > radius,T,kwl);

18
21.T)

it (w0.minx > wi.minx}) wO.minx == wl.minx;
it {wO.miny > wi.miny) wO.miny = wl.miny;
it {(wO.maxx < wlmaxx) wl.matx == wlmaxx;
if (wO.maxy < wlh.maxy) wO.maxy == wlmaxy;

' Souble duration;
strurt movement *mptr;

VxCopy(sptr-> center center);
I {mptt = spu->mptr)

while {mptr->mptr}
i ({0 < mptr-Dstarttime] && (81 > mpir-Dstasttime))

MxTranslate({double}center|0],
{double)center]t],
-double)eenlﬂl‘! LT):
MaMultiply(T.N.T):
MxMultiply(T.P.T);
MxMultiply(T,S.T};
boundsphere(sptr->radius, T, Lwl);

it («wO.minx > wimint) wO.minx = wi.minx:
it {(w0.miny > wl.miny) wO.miny = wilminy;
it (»0.maxx € wlmaxx) wOmasx = wlmaxx;
il {w0.maxy < wl.maxy) wO.maxy e= wil.maxy;

duration == mpir->mptr->starttime - mptr-D>starttime;
VxAddLerp{duration.centes,mptr- > transiate,center):
mptr == mptr->mptr;

it (0 < mptr-Dstarttime) & (11 > mptr-Dstantimel)

MzTeanslate({doublelcenter(0],
[double)center|1].
doubl-)cuuvH.‘l‘);

MaMuktiply(T.N.T);
MaMultiply{T.P.T});
 MaMulipl{TST)

P

...Temain
boundsphere{sptr-> radius, T, Lwl);

it (wO.minz > wlmint) wl.minx = wlminz;
if {(«0.miny > wl.miny) w0.miny == wil.miny;
if {»0.marxr < wl.maxx) wO.matx w wimaxs;
if (wO.maxy < wlmaty) wO.maxy = wlmaxy;

) .
sptr->w = w0; o o .
printf(" $2d:"%d, 53d.55d, e d\n" sptr,sptr- > w.minz sptr-> w.maxz 3ptr-> w.miny sptr- > w.maxy;
/¢ Cencatenste oll of the current matrices thet sffect the sphere.
o Let T be the concetenstcd matrz thet (remsforma the sphere [rom
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o medel space to object spece (cmz) to eye epsce [Nawbl) te sereen
¢ gpece (NYPS).
s/

}
for (sy = ystart-1; 5y <= yend+l; sy+4)

if {debug)
© {tprintf{stders,®  ,503d\r",sy);Mushistdout);}
cyclecoloslinebuflers();
if (yactivespheressy))
for {sx = 0; sz < splx sxt+)
i (aysctivesphereaisz,sy))
int =;
int timeoffset;
if (debug)
{fprintf{stders,” To3d\¢” sx);Blush(stdout);}
timeoffset o= sx & + 5y ;
for (ss = 0; 38 < SS; ss++)

pixelfssjmeyetrace{

2 «{sx+Locationfss]. l+dr;nd() /SS) /splx - 4,

1 = 2+sy+Location|s].y +drandl}/SS) /eply,

0+ (tl-w)1T’mesl(afumeoﬂxt)’cSSli-dnnd(lISS)),

sccumulateSS(pixel sz pps);

it ((sy l= ystart-1) EE {sy le= yend+1))
writecoloslinebuffers();

}
it {!picPustEncodeSeanline{piclile)}
print{(*sphere: trouble writing tile i Soo\n®, argv|[i]);
;’icCloat(plcﬁle),
RGBATizelType MRGDAline;

struct color eacolorlineptr; . .-
writeeolorlinebufers() wrilecolorlincbuffers
lntAi;
for {i = 0; i < ppr; it+)

converttoRGDAline(colorlineptrli+2);
gicEntodeSeuline(pitﬁle.RU BAline);

} .
alloeatecolorlinebuflers{) - allocatecolorlinebuffers
...allocalecolorlinebuffers
SM i

RGDAline == (RGDAPixeIType s)malloc{(unsigned)sizeof{RGDAPixelType) ppls};
eolovlmeptr we (struct eolor esjmalioc{{unsigned)sizecf{struct color o) {ppa+2));
for (i = 0; i < pps+2; i+4)
wlorlmepnbl = (struct color l)m:lloc((um:gned)nuof(nrucl color) {pps =splx+2));

qckeolorline)buﬂen() cyclecolorlinebuffers
{

int ij;
struct color semp0, sempl;
struct color eolorptr;

temp0 = colotlineptripps];.
templ == colorlineptripps+1};
for- (i = pps+l; i >w= 3 i=)

colorptr = eolorhnepttlll = colorlineptei-2];
for (j = pps=pls+2: j > 0; j—)
scolorptr++ = lullcnlor;

mlorllnepu“ - umpl
mnvernoRGDAlme(tok:rlmep'.r) converltoRGDAline
struet color =olorlineptr;

{

RGBAPixelType ‘RGBA.Ixneptr;

int x;

for {x = ORGBAlineptr = RCBAline; 3 < ppix; 1+ +,RCBAJineptr++,colorlineptr++)

RCDAlineptr->Red  smpvi2{colorlineptr->red);
RGBAlinept1-> Greenmpr 12{colorlinepts->gra};
RGDAlineptr->Blue s=pvl2{colorlineptr->blu);
RGBAlineptr-> Alphawepvi2{colorlineptr->all);

xyutivuphc!u(n,:y) zyaclivespheres
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struct sphere op;

int flag;

fag = 0;

for{pmsphere;p 1= esphere:p++)

flag |=
p->l¢tiv¢ -
{{sz >= p-dDwminz-dms) E& (m <= p->wmarz+dmi)} L&
({(sy >w= p->w.miny-dmi} L& {5y <= p->w.maxy+dmi)}};
[ eorinii* 51-'54\-'.r.'r> setive);of

return{fiag);
yactivespheres(sy) yaclivespheres

struet sphere op;

int flag;

flag = O;

for{p=aaphete;p. i wrphereipd+)

flag |=
p-Sactive = ((s5y Dwm p-dw.ming-dms) £& (oy <= p-dwmmytdmi))
...yaclivespheres

Joprntf( Gd:TAn ,p,p-> aclive); e/ ’

return{flag);
I/ )

The sctive flag indicates that the ephere teuches thiv scanline.

This can be answered by intersccting the plane determined by the

peint of vicw with the scanline with the ephere.  Actually, o

course, the plane is 34, ene scanline high; the sphere 00 {4,

moving o0 it doco throwgh lime.

A simple appresimation ts reduce the plane bock down to 24 is

to interecet st with & ophere larger in radive by omc ceatra

scanline. *

Furthermere, the moring sphere con be meglected by woing the

svcrage of the twe sphere cemtere, with ¢ radive increascd by

holf the differemce. ‘
o/

}
sccumulateSS{pSSptr,x} « accumulateSS
struet color #pSSptr; .

int =;

int Lj.kIm;

float «pir;

float [}

struct color ecolorptr;

s w0
for (j = 6 j < ppx j+4)

for (i = 0; i < pps; i++)
for (k = pp; k > & k=)

int zollset.yollset;

fpte == EFilter{ssise]lss]{o}{0];
zoffset == Localion(ss].x spps;
yoffset = Location|ss|.y epps;
for (m = 0; m < 3; m++)

colorptr au colorlineptrlyoffset4m}+xoflset+x;
for | = 6 1 < % 1++4)

- dptrét;
colorptr->ted 4= pSSplr-Dred of;
colorptr=-D>gra  +wm  pSSptr->gin o,
colorptr->blu 4= pSSptr-D>blus;
colorptr->all 4= pSSptr-Dalld;
;olorptn +;

pSSptr4+; mdd;

}

main{arge, srgv) matn
char argvil;

arge = do sargs{emd.arge,argy);
it (as_helpflag) exit(0);
it (arge < 2)
{print!*Usge: gt flename\n®}exit{1};)
...main
remain(arge, argv);
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It is claimed:

1. In a method of forming an electronic signal of a
video image frame that individually specifies character-
istic information of each of an array of pixels that forms
said frame, wherein the characteristic information of
each pixel is determined by sampling, at a plurality of
points within a boundary of each of said pixels, data
stored in a computer data base that specifies visual char-
acteristics of an object scene for said image frame, the
improvement comprising the steps of electronically
determining, for the sample points individually, a range
of angles of reflection of the object scene at such points,
and pseudo-randomly selecting one such angle for each
such sample point, whereby other portions of the object
scene that are visible by reflection from a sampled point
of the object scene are determined.

2. The method according to claim 1 wherein said
improvement additionally comprises the steps of deter-
mining, for the sample points individually, a range of
angles of rays extending from each such point to a
source of illumination of the scene, pseudo-randomly
selecting one such ray angle for each such point, and
determining for each of said selected rays whether
other objects are in the path of the ray, whereby penum-
bras are shown in the image frame.

3. In a method .of forming an electronic signal of a
. video image frame that individually specifies character-
istic information of each of an array of pixels that forms
said frame, wherein the characteristic information of
each pixel is determined by sampling, at a plurality of
points within a boundary of each of said pixels, data
stored in a computer data base that specifies visual char-
acteristics of an object scene for said image frame, the
improvement comprising the steps of electronically
determining, for the sample points individually, a range
of angles of rays extending from each such point to a
source of illumination of the scene pseudo-randomly
selecting one such angle for each such point, and deter-
mining for each of said selected rays whether other
objects are‘in its path, whereby penumbras are shown in
the image frame.

4. A system for developing an electronic signal and
displaying an image of an object scene therefrom, com-
prising:

a computer memory database that specifies certain
static and time varying visual characteristics of the
object scene,

means responsive to said computer memory for sam-
pling information of the database to determine the
visual characteristics of the object scene at a plural-
ity of points pseudo-randomly positioned across
the object scene, and

means responsive to said computer memory for caus-
ing said plurality of point samples to be pseudo-ran-
domly distributed in time,

whereby an image is displayed monitor with reduced
spatial and temporal aliasing.

5. The system according to claim 4 which addition-
ally comprises means responsive to said computer mem-
ory for positioning said sample points in a manner that
the resulting displayed image views the object scene as
if through an optical system having a limited aperture
size and specific focal characteristics.

6. The system according to either of claims 4 or 5
which additionally comprises means responsive to said
computer memory for pseudo-randomly selecting for
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each sample point one of a rage of angles of reflection of
the object scene at such points, whereby other portions
of the object scene that are visible by reflection a single
point of the object scene are determined.

7. The system according to either of claims 4 or 5
which additionally comprises means responsive to said
computer memory for determining partial blocking of
object scene illumination source, thereby to show
penumbras in the displayed image.

8. The system according to either of claims 4 or 5
which additionally comprises means responsive to said
computer memory for pseudo-randomly selecting for
each sample point one of a range of angles of refraction
of the object scene at such points, whereby other por-
tions of the object scene that are visible by transparency
through a single point of the object scene are deter-
mined.

9. In a method of forming an electronic signal of a
video image frame that individually specifies character-
istic information of each an array of pixels that form
said frame, wherein the characteristic information of
each pixel is determined by sampling, at a plurality of
points within a boundary of each of said pixels, data
stored in a computer data base that specifies visual char-
acteristics of an object scene for said image frame, the
improvement comprising the steps of electronically
determining, for the sample points individually, a range
of angles of refraction of the object scene at such points,
and pseudo-randomly selecting one such angle for each
such sampie point, whereby other portions of the object
scene that are visible by transparency through a sample
point of the object scene are determined.

10. In a method of forming an electronic signal of a
video image frame that individually specifies character-
istic information of each of an array of pixels that form
said frame, wherein the characteristic information of
each pixel is determined by sampling at at least one
point within a boundary of each of said pixels, data
stored in a computer data base that specifies spatial
locations and the visual characteristics of objects in a
scene for said image frame, the improvement compris-
ing electronically positioning said sample points in a
spatial distribution across said frame such that a Fourier
transform of such a distribution over an infinite extent is
substantially continuous in some regions and establish-
ing the characteristics of an optical imaging system,
including aperture size and focal plane relative to the
objects of the scene, and determining the characteristics
of the objects for each sample by taking into account
the distance of the objects from the focal plane and the
size of the lens aperture, whereby the image frame elec-
tronic signal contains information of the objects within
a certain depth of field as determined by the characteris-
tics of the optical imaging system.

11. The method according to claim 10 wherein said

‘improvement additionally comprises the steps of deter-

mining, for the sample points individually, a range of
angles of reflection of the object scene at such points,
and pseudo-randomly selecting one such angle for each
such sample point, whereby other portions of the object
scene that are visible by reflection from a sample point
of the object scene are determined.

12. The method according to claim 10 wherein said
improvement additionally comprises the steps of deter-
mining, for the sample points individually, a range of
angles of refraction of the object scene at such points,
and pseudo-randomly selecting one such angle for each
such sample point, whereby other portions of the object
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scene that are visible by transparency through a sample
point of the object scene are determined.

13. In a method of forming an electronic signal of a
video image frame that individually specifies character-
istic information of each an array of adjacent areas that
forms said frame, wherein the characteristic informa-
tion of each such array is determined by sampling, at a
plurality of points in a certain pattern within a boundary
of substantially every area across said image frame, data
stored in a computer data base that specifies spatial
locations and visual characteristics of an object scene
for said image frame, the improvement comprising elec-
tronically arranging said plurality of sample points
within substantially every such area in a spatial distribu-
tion therein such that a Fourier transform of such a
distribution over an infinite extent has substantially
continuous in some regions, and establishing the charac-
teristics of an optical imaging system, including aper-
ture size and focal plane relative to the objects of the
scene, and determining the characteristics of the objects
for each sample by taking into account the distance of
the objects from the focal plane and the size of the lens
aperture, whereby the image frame electronic signal
contains information of the objects within a certain
depth of field as determined characteristics of the opti-
cal imaging system. .

14. The method according to claim 13 wherein the
step of determining the characteristics of the objects
includes pseudo-randomly distributing the path of sam-
ple points through said lens aperture.

15. A method for point sampling image data in a
computer system for determining characteristic infor-
mation of pixels comprising said image data, said
method comprising the steps of:

selecting a plurality of sample regions comprising at

least a portion of a pixel;

selecting sample points within said regions such that

the distribution of sample points of the smallest
sample region is nonperiodic, and;

combining the characteristic information of the sam-

ple points in each pixel, thereby to determine a
single characteristic information of each pixel.

16. The method of claim 15 wherein said nonperiodic
distribution is repeated in each of said plurality of sam-
ple regions.

17. A method for point sampling image data in a
computer system for determining characteristic infor-
mation of pixels comprising said image data, said
method comprising the steps of:

selecting a plurality of sample regions comprising at

least a portion of a pixel, and;

selecting sample points within said regions such that

the distribution of sample points of the smallest
sample region is nonrectangular and nonrectilinear.

18. A method for point sampling image data in a
computer system for determining characteristic infor-
mation of pixels comprising said image data, said
method comprising the steps of:

defining a sample region comprising at least a portion

of said one of said pixels;

defining a grid pattern wherein a first number of

regularly spaced sample point locations are defined
in said sample region, and;

point sampling at a second number of selected sample

point locations of said grid pattern, said second
number being less than said first number, said se-
lected sample point locations disposed in a nonreg-
ular distribution in said grid pattern.
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19. In a method of forming an electronic signal of a
video image frame that individually specifies character-
istic information of each of an array of adjacent areas
that form said frame, wherein the characteristic infor-
mation of such area is determined by sampling at a
plurality of points in a certain pattern within a boundary
of substantially every such area across said image frame,
data stored in a computer data base that specifies spatial
locations and visual characteristics of an object scene
for said image frame, the improvement comprising the
steps of electronically defining a plurality of substan-
tially nonoverlapping portions within such area and
then locating each sample point within an individual
area portion pursuant to a nonregular distribution.

20. In a method of forming an image frame by indi-
vidually controlling characteristic information of each
pixel in an array of pixels that forms said frame, wherein
objects to be included in said image frame are repre-
sented by image data stored in a computer data base that
specifies spatial locations and visual characteristics of
said objects for said image frame, a method of accessing
the information of said image data for determining the
characteristic information of each pixel, said method
comprising the steps of:

spatially dividing the area of said pixel into a plurality

of non-overlapping areas;

determining a nominal point location within each of

said areas in a nonregular pattern;
determining an offset of each such nominal point
within each of said areas for each pixel within said
image frame to define an offset point such that a
plurality of offset points defines a nonregular distri-
bution; - -
determining the characteristic information at each
offset point for each pixel of said frame, and;

combining the characteristic information of said off-
set point in each pixel, thereby to determine a sin-
gle characteristic information of each pixel.

21. In a method of forming an electronic signal of a
video image frame that individually specifies character-
istic information of each of an array of pixels that forms
said frame, wherein the characteristic information of
each pixel is determined by point sampling at at least
one point within a boundary of each of said pixels, data
stored in a computer data base that spacifies various
parameters relating to an object scene, the improvement
wherein the sampling is electronically accomplished by
a pseudo-random distribution of at least one of said
stored parameters such that a Fourier transform of such
a distribution over an infinite extent contains substan-
tially continuous regions, said at least one stored param-
eters including location of objects in the scene relative
to the image frame.

22. The improved method according to claim 21
wherein said at least one stored parameter includes an
amount that the objects in the scene change during the
time represented by said video image frame, whereby
object blur of said object scene is represented.

23. The improved method according to claim 21
wherein said at least one stored parameter includes a
range of ray paths representative of that created by an
optical imaging system, whereby a depth of field of said
object scene is represented.

24. The improved method according to claim 21
wherein said at least one stored parameter includes a
range of angles of reflection from objects in the scene.
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25. The improved method according to claim 21
wherein said at least one stored parameter includes a
range of angles of refraction by objects in the scene.

26. The improved method according to claim 21
wherein said at least one stored parameter includes a
range of spatial intensity variations of illumination and
objects in the scene.

27. In a method of forming an electronic signal of a
video image frame that individually specifies character-
istic information of each of an array of pixels that forms
said frame, wherein the characteristic information of
each pixel is determined by sampling at least one point
within a boundary of each of said pixels, data stored in
a computer data base that specifies spatial locations and
visual characteristics of objects in a scene for said image
frame, the improvement comprising electronically posi-
tioning said sample points in a spatial distribution across
said frame such that a Fourier transform of such a distri-
bution of over an infinite plane is substantially continu-
ous in some regions, and said improvement additionally
comprises locating a plurality of sample points within
each pixel and wherein said computer data base con-
tains information of spatial movement of the objects
during a time period represented by said image frame,
and further wherein the characteristic information of
the objects is determined for each of the plurality of
sample points within each pixel at one of a plurality of
different instants during said image frame time period,
thereby to show any motion blur of the object scene in
the resulting image frame electronic signal.

28. The method according to claim 27 wherein said
improvement additionally comprises the steps of estab-
lishing the characteristics of an optical imaging system,
including aperture size and focal plane relative to the
objects of the scene, and determining the characteristics
of the objects for each sample by taking into account
the distance of the objects from the focal plane and the
size of the lens aperture, whereby the image frame elec-
tronic signal contains information of the objects with a
certain depth of field as determined by the characteris-
tics of the optical imaging system.

29. The method according to claim 27 wherein said
improvement additionally comprises the steps of deter-
mining, for the sample points individually, a range of
angles of reflection and/or refraction of the object
scene at such points, and pseudo-randomly selecting
one such angle for each such sample point, whereby
other portions of the object scene that are visible by
reflection from or transparency through a sample point
of the object scene are determined.

30. The method according to claim 27 wherein said
improvement additionally comprises the steps of deter-
mining, for the sample points individually, a range of
angles of rays extending from each such point to a
source of illumination of the scene, pseudo-randomly
selecting one such ray angle for each such point, and
determining for each of said selected rays whether
other objects are in the path of the ray, whereby penum-
bras are shown in the image frame.

31. In a method of forming an electronic signal of a
video image frame that individually specifies character-
istic information of each of an array of adjacent areas
that forms said frame, wherein the characteristic infor-
mation of each such area is determined by sampling, at
a plurality of points in a certain pattern within a bound-
ary of substantially every such area across said image
frame, data stored in a computer data base that specifies
spatial locations and visual characteristics of an object

20

25

30

35

40

45

50

55

60

65

88

scene for said image frame, the improvement compris-
ing electronically arranging said plurality of sample
points -within substantially every such area in a spatial
distribution therein such that a Fourier transform of
such a distribution over an infinite plane is substantially
continuous in some regions, wherein said electronic
information of spatial movement of the object scene
during a time period represented by said image frame,
and further wherein the characteristic information of
the object is determined for each of the plurality of
sample points within each frame area at one of a plural-
ity of different instants during said image frame time
period, thereby to show any motion blur of the object
scene that occurs during the time period of said image
frame.

32. The method according to claim 31, wherein said
one of a plurality of different instants of time is pseudo-
randomly determined for said sample points.

33. The method according to claim 31, wherein said
improvement additionally comprises the steps of estab-
lishing the characteristics of an optical imaging system,
including aperture size and focal plane relative to the
objects of the scene, and determining the characteristics
of the objects for each sample by taking into account
the distance of the objects from the focal plane and the

“size of the lens aperture, whereby the image frame elec-

tronic signal contains information of the objects with a
certain depth of field as determined by the characteris-
tics of the optical imaging system.

34. The method according to claim 33 wherein the
step of determining the characteristics of the objects
includes pseudo-randomly distributing the path of sam-
ple points through said lens aperture.

35. The method according to claim 31 wherein said
improvement additionally comprises the steps of deter-
mining, for said sample points individually, a range of
angles of reflection and/or refraction of the object
scene at each point, and psendo-randomly selecting one
such angle for each such sample point, whereby other
portions of the object scene that are visible by reflection
from or transparency through a sampled point of the
object scene are determined.

36. The method according to claim 31 wherein said
improvement additionally comprises the steps of deter-
mining, for the sample points individually, a range of
angles of rays extending from each such point to a
source of illumination of the scene, pseudo-randomly
selecting one such ray angle for each such point, and
determining for each of said selected rays whether
other objects are in the path of the ray, whereby penum-
bras are shown in the image frame.

37. In a method of forming an electronic signal of a
video image frame that individually specifies character-
istic information of each of an array of pixels that forms
said frame, wherein the characteristic information of
each pixel is determined by sampling, at a plurality of
points within a boundary of each of said pixels, data
stored in a computer data base that specifies visual char-
acteristics of an object scene for said image frame, the
improvement comprising the steps of including in said
computer data base information of changes in the object
scene visual characteristics that occur during the time
period of said image frame, and electronically sampling
the data base at said plurality of points at different in-
stants during said time period, whereby any motion blur
of the object scene is included in the resulting image
frame electronic signal, wherein the steps of sampling
the data base at said plurality of points includes doing so
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pseudo-randomly as a function of time for each such
pixel and within said time period of said image frame,
whereby the image frame signal has reduced aliasing in
time.

38. The improved method according to claim 37
wherein the step of sampling the data base at said plural-
ity of points includes the steps of defining an interval of
time for taking a sample for each of said plurality of
points for said pixel, and pseudo-randomly determining
the instant of each such sample within its said defined
interval of time, whereby the image frame signal has
reduced aliasing in time.

39. The improved method according to claim 38
wherein the intervals of time defined for taking each
sample are substantially non-overlapping.

40. The improved method according to claim 38
wherein the intervals of time defined for taking each
sample are overlapped in a2 manner to increase the con-
centration of samples in the middle of the intervals of
time relative to the concentration at their beginning and
end.

41. The method according to any of claims 37 and 38,
inclusive, wherein said improvement additionaily com-
prises the steps of establishing the characteristics of an
optical imaging system, including aperture size and
focal plane relative to the objects of the scene, and
determining the characteristics of the objects for each
sample by taking into account the distance of the ob-
jects from the focal plane and the size of the lens aper-
ture, whereby the image frame electronic signal con-
tains information of the objects with a certain depth of
field as determined by the characteristics of the optical
imaging system.

42, The method according to any of claims 37 and 38,
inclusive, wherein said improvement additionally com-
prises the steps of determining, for the sample points
individually, a range of angles of reflection and/or re-
fraction of the object scene at such points, and pseudo-
randomly selecting one such angle for each such sample
point, whereby other portions of the object scene that
are visible by reflection from or transparency through a
sampled point of the object scene are determined.

43. The method according to any of claims 37 and 38,
inclusive, wherein said improvement additionally com-
prises the steps of determining, for the sample points
individually, a range of angles of rays extending from
each such point to a source of illumination of the scene,
pseudo-randomly selecting one such ray angle for each
such point, and determining for each of said selected
rays whether other objects are in the path of the ray,
whereby penumbras are shown in the image frame.

44. In a method of forming an electronic signal of a
video image frame that individually specifies character-
istic information of each of an array of pixels that forms
said frame, wherein the characteristic information of
each pixel is determined by sampling, at a plurality of
points within a boundary of each of said pixels, data
stored in a computer data base that specifies visual char-
acteristics of an object scene for said image frame, the
improvement comprising the steps of establishing the
characteristics of an optical imaging system, including
aperture size and focal plane relative to the objects of
the scene, and electronically determining the visual
characteristics of the object scene at each point sample
by taking into account the distance of the objects from
the focal plane and the size of the lens aperture,
whereby the image frame electronic signal contains
information of the objects with a certain depth of field
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as determined by the characteristics of the optical imag-
ing system, wherein the step of determining the visual
characteristics of the object scene for each point sample
includes pseudo-randomly determining the point on the
lens from which the object scene is sampled within a
field of vie of the object scene that is determined by the
lens aperture and location of the focal plane.

45. The method according to claim 44, wherein said
improvement additionally comprises the steps of deter-
mining, for the sample points individually, a range of
angles of reflection and/or refraction of the object
scene at such points, and pseudo-randomly selecting
one such angle for each such sample point, whereby
other portions of the object scene that are visible by
reflection form or transparency through a sampled
point of the object scene are determined.

46. The method according to claim 44, wherein said
improvement additionally comprises the steps of deter-
mining, for the sample points individually, a range of
angles or rays extending from each such point to a
source of illumination of the scene, pseudo-randomly
selecting one such ray angle for each such point, and
determining for each of said selected rays whether
other objects are in the path of the ray, whereby penum-
bras are shown in the image frame.

47. The method according to claims 27, 31, 37, 38 or
44 wherein said improvement additionally comprises
the steps of determining, for the sample point individu-
ally, a range of angles of refraction of the object scene
at such points, and pseudo-randomly selecting one such
angle for each such sample point, whereby other por-
tions of the object scene that are visible by transparency

through a sample point of the object scene are deter-

mined.
48. In a method of forming an image frame by indi-
vidually controlling characteristic information of each
pixel in an array of pixels that forms said frame, wherein
objects to be included in said image frame are repre-
sented by data stored in computer data base that speci-
fies spatial locations and visual characteristics of said
objects for said image frame, a method of accessing the
information of the computer data base for determining
the characteristic information of each pixel, comprising
performance of the following steps electronically:
spatially dividing the area of said pixel into a plurality
of non-overlapping areas, v

pseudo-randomly positioning a sample point within
substantially each of said areas, thereby to deter-
mine the position of a plurality of sample points for
each pixel,

determining from the computer data base the charac-

teristic information of the closest of said objects at
each of the plurality of sample points for each pixel
of said frame, and

combining the characteristic information of the sam-

ples in each pixel, thereby to determine a single
characteristic information of each pixel; wherein
information of any movement of said objects dur-
ing the time period of said image frame is included
in said computer data base, and wherein the step of
determining characteristic information for each
offset point comprises the steps of pseudo-ran-
domly assigning each of said sample points to one
of a plurality of different times during the image
frame time period, and determining object charac-
teristic information for each sample point at its said
assigned time, whereby said image will include any
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motion blur that occurs during the time period of
said image frame.

49. The method according to claim 48, wherein said
determining step includes a method comprising the
steps of establishing the characteristics of an optical
imaging system, including aperture size and focal plane
relative to the objects of the scene, and determining the
characteristics of the objects for each sample by taking
into account the distance of the objects from the focal

.plane and the size of the lens aperture, whereby the
image frame electronic signal contains information of

the objects with a certain depth of field as determined

by the characteristics of the optical imaging system.

50. The method according to claim 48, wherein said
determining step includes a method comprising the
steps of determining, for said sample points individu-
ally, a range of angles of reflection and/or refraction of
the object scene at each point, and pseudo-randomly
selecting one such angle for each such sample point,
whereby other portions of the object scene that are
visible by reflection from or transparency through a
sample point of the object scene are determined.

51. The method according to claim 48 wherein said
improvement additionally comprises the steps of deter-
mining, for the sample points individually, a range of
angles of rays extending from each such point to a
source of illumination of the scene, pseudo-randomly
selecting one such ray angle for each such point, and
determining for each of said selected rays whether
other objects are in the path of the ray, whereby penum-
bras are shown in the image frame.

§2. In a method of forming an image frame by indi-
vidually controlling characteristic information of each
pixel in an array of pixels that forms said frame, wherein
objects to be included in said image frame are repre-
sented by data stored in a computer data base that speci-
fies spatial locations and visual characteristics of said
objects for said image frame, a method of accessing the
information of the computer data base for determining
the characteristic information of each pixel, comprising
performance of the following steps electronically:

spatially dividing the area of said pixel into a plurality

of non-overlapping areas,
determining a nominal point location within each of
said areas in a non-regular pattern,

pseudo-randomly determining an offset of each such
nominal point within each of said areas for each
pixel within said image frame,

determining from the computer data base the charac-

teristic information of the closest of said objects at
each pseudo random offset point for each pixel of
said frame, and;

combining the characteristic information of the sam-

ple points in each pixel, thereby to determine a
single characteristic information of each pixel,
wherein information of any movement of said ob-
Jects during the time period of said image frame is
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included in said computer data base, and wherein
the step of determining characteristic information
for each offset point comprises the steps of pseudo-
randomly assigning each of said sample points to
one of a plurality of different times during the
image frame time period, and determining object
characteristic information for each sample point at
its said assigned time, whereby said image will
include any motion blur that occurs during the time
period of said image frame.

53. In a method of forming an image frame by indi-
vidually controlling characteristic information of each
pixel in an array of pixels that forms said frame, wherein
objects to be included in said image frame are repre-
sented by data stored in a computer data base that speci-
fies spatial locations and visual characteristics of said
objects for said image frame, a method of accessing the
information of the computer data base for determining
the characteristic information of each pixel, comprising
performing the following steps electronically:

spatially dividing the area of said pixel into a plurality

of non-overlapping areas,

determining a nominal point location in substantially

the center of each of said areas,

pseudo-randomly determining an offset of each nomi-

nal point within each of said areas for each pixel
within said image frame,

determining from the computer data base the charac-

teristic information of the closest of said objects at
each pseudo random offset point for each pixel of
said frame, and;

combining the characteristic information of each

offset point in each pixel, thereby to determine a
single characteristic information of each pixel,
wherein information of any movement of said ob-
Jects during the time period of said image frame is
included in said computer data base, and wherein
the step of determining characteristic information
for each offset point comprises the steps of pseudo-
randomly assigning each said offset point to one of
a plurality of different times during the image
frame time period, and determining object charac-
teristic information for each offset point at its said
assigned time, whereby said image will include any
motion blur that occurs during the time period of
said image frame.

54. The method according to any of claims 48, 52 or
53, inclusive, wherein said determining step includes a
method comprising the steps of determining, for said
sample points individually, a range of angles of refrac-
tion of the object scene at each point, and pseudo-ran-
domly selecting one such angle for each such sample
point, whereby other portions of the object scene that
are visible by transparency through a sample point of

the object scene are determined.
* * * * x
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