
Design, Communication, and Control of a Football

Playing Robot Team

Team Members

Armela Mane, Raihan Mir, Jeremy Nyikos, Cliff Sidwell, Matthew Thompson, Colton Witte

Department of Engineering, Indiana University Purdue University Fort Wayne

Fort Wayne, IN 46818

Faculty Advisors

Guoping Wang, Zhuming Bi

Department of Engineering, Indiana University Purdue University Fort Wayne

Fort Wayne, IN 46818

wang@engr.ipfw.edu, biz@ipfw.edu

Abstract— Robotics technology holds the potential to transform

the future of the country and is likely to become as ubiquitous

over the next few decades as computing technology is today [1].

To accelerate innovation in robotics, the Notre Dame University

plans to create an intercollegiate mechatronic football league; the

teams in the league compete against each other in robot football

games. The first game was successfully organized and reported as

a featured story by many influential media such as USA Today

and NFL [2, 3]. The next step for Notre Dame University is to

promote this league to a national level. Our senior design group

has been selected as a new robot football team sponsored by the

organizer. The goal of this project is to build a football-playing

robot team that will be competing in the Intercollegiate

Mechatronic Football League. Due to time constraints and a

limited team size, only three different robots of a complete

robotic team are built. In this paper, the accomplishment

through this project is summarized and the focuses are on the

applications of IEEE standards for robot communication and

control.

Keywords—IEEE 802, Zigbee, Xbees, Wireless

Communication, Playing Robot, Robot Team, Senior Design

Projects

I. INTRODUCTION

Robots have an ever-growing influence on our daily lives.
Robots are typical examples of mechatronic systems. Robotics
related research and development is a type of ideal student
projects due to the necessary application of Science,
Technology, Engineering, and Mathematics (STEM)
knowledge in creative engineering designs. To accelerate
innovation in robotics, the University of Notre Dame is
creating an intercollegiate mechatronic American football
league where robotic teams from the participating schools
compete against each other.

Our senior design group has been selected to kick-off a new
robot football team for IPFW. Due to the limitation of having
just six team members, only three robots (also referred as
players) were planned to be built during senior design project.
The three players to be completed are the quarterback, receiver,

and center. Those robots have been built using IEEE standards
including those for wireless, software, and system engineering.
These three design aspects are most critical to the execution of
a football game and also possess the most challenging design
opportunities. The completed players competed in the
Collegiate Mechatronic Football game on April 19, 2013 and
with very satisfactory performance.

A. Requirements and Specifications

A complete football robot team consists of eight robot
players on the field. Based on the role a robot plays, football
robots can be divided into offensive and defensive robots.
Since offensive robots require more functions and capacities
than defensive robots, the members of the IPFW team will
focus on offensive players including the quarterback, center,
and a receiver, while Notre Dame will provide the defensive
players from previous years. The quantified requirements of
those robots are,

 Robots must be capable of travelling 50 feet within 5
seconds starting from rest.

 Robots must be equipped with digital accelerometer to
sense upsetting event:

o Signal lighting system for 2 seconds, and
o Remove power to drivetrain for 2 seconds.

 Robots are able to replace batteries within a minute.

Besides, each type of robot serves for a spefici role, for
example,

 A center robot must deliver the ball to quarterback with a
success rate of 75% within 20 seconds; it must be able to
travel 50 feet within 8 seconds,

 A quarterback robot must complete a pass 65% of the time,

 A receiver robot must be able to travel 50 feet within 5
seconds,

B. Given Parameters

The following given parameters are specified by the
organizer to ensure fairness of the contest.

 Robots must be DC powered, with a 24 volt maximum
circuit voltage.

 Robots must include an externally mounted kill switch to
stop power to drive train for security reason.

 A robot must fit within a 16x16x24 inch box.

 The centerline of the robot must be located 3.0±0.1 inches
above the playing surface.

 Material used for a robot must be High Density
Polyethylene (HDPE) with a bumper of extruded Ethylene
Propylene Rubber (EPDM) that covers perimeter of base
plate.

 All robots should be remotely controlled from the field.

 Receiver and center robots cannot weigh more than 30
pounds, while quarterback cannot weigh more than 45
pounds.

 Cost of three robots is limited to $5,500.

C. Design Variables

The design variables include hardware and operating
conditions that may be varied to achieve the requirements of
the total system as outlines earlier. Some parameters are
practically unconstrained with others must fall within a
specified range.

Modular design concept is adopted to simplify the design
process and maximize the flexibility of later design changes.
The lists of hardware and software modules are as follows.

List of Hardware Modules:

 Base Plate shape

 Location of drive and not-drive wheels

 Motor and Gearbox

 Netting System for receiver

 Ball Transfer System for Center and Quarterback

 Handheld Controllers

 Tracking Hardware

List of Software Modules:

 Microcontroller

 Motor controller

 Programming Language

 Communication network and standards

D. Summary of Detailed Design

After a comparison of several design options for each
modular component, the design concepts are finalized for these
components as follows.

 The team decided to use the LeafLab Maple
microcontroller. The features of a fast clock processor, high
number of input/output pins and ability to use a Real Time
Operating System made this board the best solution.

 The team decided not to use the Handheld Controllers
previously used by Notre Dame. These are not as easy to
use and troubleshoot. On the other hand, the Arbotix
Commander V2.0 offers more programmable buttons and
joysticks allowing a complete customization for each
player. The capability of the controller to use Zigbee
communication module to communicate with

microcontroller made it a worthy match for the selected
microcontroller.

 In order to meet the requirement of the robots to travel at
least 10 ft/sec, two 4-7/8 inch diameter wheels, attached to
a RS-540 motor are used. Due to the motors having a rated
torque, BaneBots P60 Gearbox of 16:1 gear ratio is used.

 The locomotions of the center and receiver robots are
similar; while the quarterback robot differs due to its
functionality during the game. The drive trains of center
and receiver use two driven wheels located in the center of
the baseplate with 2 ball casters, one located in the front
and one located in the back. On the other hand, the
quarterback uses 4 omnidirectional wheels.

 In order to succeed in the ball transfer mechanism from
center to quarterback, the alignment is achieved using a
trapezoidal cutout section on the baseplate of the center;
which mates with the complementing male end on the
quarterback. Passing is achieved using a rotating clamp that
positions the ball into the ball feeder of the quarterback.

 The ball feeder of the quarterback is mounted on a turn
table at a 35

o
 angle. 2 passing wheels, equal to the ones

used for the receiver and center drivetrain. Two RS-540
motors are used for the ball launching mechanism. Since a
low torque is required, Banebots P60 Gearbox of 4:1 gear
ratio is used.

 In order to maximize our catching capabilities, the cross
pattern netting was implemented on the receiver.

 As an extra feature of the design, the team planned a simple
tracking and positioning scheme using the vision system
technique. The camera system chosen, CMUcam4, was
mounted on the quarterback. Due to the time constraints,
this feature was not functioned during the contest.

Three robots have been designed and tested within the
budget. In the following sections, the building process has been
overviewed and the robotic control as well as the
implementation of wireless communication have been
introduced.

II. BUILDING PROCESS

In this section, the mechanical building process is briefly
described to show how robots were structured and
programmed. The first stage of the building process was to
build the chassis of the Center and Receiver. The baseplates
were made of 0.5 inch thick High Density Polyethylene
(HDPE) while the side panels and lids was made of 0.25 inch
thick HDPE.

Firstly, the HDPE pieces for baseplates, lids and side panels
were cut down from a large sheet of HDPE using a handsaw.
The Receiver baseplate was cut to dimension of a 15x15 inch
square. Slots for 4 side panels inside the baseplate were created
using handsaw and hand drill. These slots are 0.5 inch inside
from the edge of the baseplate. In a similar way, the slots for
the wheels and motors were created. Wheels and gearboxes
were then mounted. The side panels were attached to each

other using L-brackets and non-locking polypropylene draw
latches were used on two sides to secure the lid on top of the
side panels. A complete view of the Receiver chassis has
shown in Figure 1.

Figure 1. Receiver Assembled Chassis

Netting was then put on the Receiver to finish its
mechanical assembly as seen in Figure 2.

Figure 2. Assembled Receiver.

The Center has the duty of placing the ball accurately into
the quarterback’s ball feeder at the start of every play. For
precise passing capabilities, a repeatable alignment was
accomplished in Figure 3.

The Center delivers the ball to the Quarterback using a four
bar linkage driven by a servo motor and given tension by a
steel wire. The Quarterback delivers the ball to a set of pitching
wheels using a lead screw delivery mechanism. Its final
assembly can be seen in Figure 4.

Figure 3. Center and Quarterback base in Solid Works

Figure 4. Delivery Mechanism

III. SOFTWARE DEVELOPMENT

The microcontroller codes are different from one player to
another due to the differences of the capabilities and
functionalities. The robot programs were developed using
Sabertooth and Commander Libraries that were downloaded
and added to the Arduino IDE.

A. Circuit Diagram

The circuit diagrams for the Receiver, Center, and
Quarterback are shown in Figure 5, Figure 6, and Figure 7
respectively.

The receiver has the simplest diagram; it has 2 drive wheels
controlled by one Sabertooth 2x25. The motor controller is
powered by a 12V battery that’s in line with a kill switch.
When the kill switch is engaged, power is removed to the drive
train. A GND wire and a signal/communication wire (TX0) are
the only connections to the Due board. The accelerometer and
the microcontroller are powered by a 7.2V battery. The
accelerometer is connected to the status LED and to the Due
through a power jack cable that connects to GND and PIN13.
The Xbee connects to microcontroller 3.3V, GND, TX, and
RX signal pins.

The center circuit diagram is equal to the receiver with the
addition of a servo to operate the passing mechanism. The
servo is powered by the 7.2V battery and connects to the
microcontroller through PIN12.

The quarterback circuit diagram is a complicated version of
the receiver circuit diagram. In fact, the quarterback uses 4
motor controllers: 2 for the four Omni-wheels, 1 for the two
pitching wheels, and 1 for the lead screw mechanism. All

motors are powered by the same 12V battery and connect to
the microcontroller through a single GND and signal (TX0)
wire.

Figure 5. Circuit Diagram of Receiver Robot

Figure 6. Circuit Diagram of Center Robot

Figure 7. Circuit Diagram of Quarterback Robot

Figure 8. Program Flow Chart

B. Software Flow Diagram

As an example of software, the program flowchart of
quarterback robot has been illustrated in Figure 8. The program
starts by initializing ports to be inputs, outputs, variables and
hardware interrupts. If the accelerometer signals the
microcontroller this is known as “tackle”; when a tackle
happens, the robot stops power to the motors for 2 seconds and
the accelerometer updates the robot status LED. When the
robot is not tackled, the robot reads the data from the UART; if
no signal is being received the robot does not powers the
wheels. If the signal is good the robot updates the individual
motors speeds and performs that individual robot function. In
the case of omnidirectional wheels, each wheel is governed by
a unique equation that allows the Quarterback to travel in any
direction and be able to turn about its central axis when
desired. The Quarterback remote controller provides the signal
for the pitching wheels speed. The remote also provides the
signal to pass the ball which activates the motor on the lead
screw and advances the ball into the pitching wheels. Then the
program repeats the entire process continuously.

Since the Center or Receiver performs much easier
operations than the Quarterback, their programs can be
implemented by simplifying the steps of the program for the
Quarterback, which has not been covered in detail here.

IV. COMMUNICATION AND CONTROL

The software used to program the electronic devices
depends on the selected hardware. At the beginning, the choice
was narrowed down to using a custom design microcontroller
that was developed by Norte Dame, an Arduino Uno, and a
Leaflab Maple. The programming environment (or integrated
development environment – IDE) was that for a
microcontroller. Generally, a microcontroller supplier
recommended to use IDE.

The initial design was going to use an Arduino Uno since it
has been widely recognized and all of the other electronic
devices that were going to be used have Libraries designed for
the Arduino microcontrollers. This means that the devices that
connected to the Arduino are a ‘Plug & Play’ type device.

The team decided to use the Leaflab Maple microcontroller
which has a 72 MHz clock speed and 32 bit processing power.
The Maple microcontroller’s IDE is based on the Arduino’s
IDE and claimed to be just as user friendly; however this was
not the case. The IDE itself was easy to install and use but
trying to get the computer to recognize the microcontroller was
difficult to say the least.

The installation process that the Leaflab’s suggested for use
was out of a forum. Once the device was finally able to be
recognized by only one of the team’s laptops, the Maple was
still temperamental when it came to downloading a program.
Then a miracle came along, the Arduino Due was released and
was in stock. The Due has a clock speed of 84 MHz clock
speed and a 32 bit processor.

The Arduino Due came with its own IDE which was used
in this project. Since no one on the team had used this
microcontroller or any of the other Arduino products, the

examples and tutorials were used to learn the programming
environment. After a few days of playing with LED’s, small
motors, and a tiny servo it was time to program robots.

As shown in Table 1, the first step was to identify all of the
variables, signal wires, the inputs and outputs. Since the
Quarterback has the most variables, signal wires, and I/O’s and
should have all the same basic components as the other robots,
it was decided to use its program as the model for the other
robots.

Table 1. Quarterback Variables

Type I/O or Internal

Variable

Quarterback

Commander Input Remote Controller

Sabertooth Output Front Motors

Sabertooth Output Rear Motors

Sabertooth Output Passing Motors

Sabertooth Output Ball Feed Motor

Int Output Front Right Motor

Int Output Front Left Motor

Int Output Rear Right Motor

Int Output Rear Left Motor

Int Output Right Passing Motor

Int Output Left Passing Motor

Int Output Ball Feed

Int Output Front Right Speed

Int Output Front Left Speed

Int Output Rear Right Speed

Int Output Rear Left Speed

Int Input Tackle Pin input

The Xbee chips and the motor controllers were assigned a
unique address which can be seen in Table 2. Note that the
Xbee chips have 2 chips per address so that they can
communicate only with the other Xbee that has the same
address.

 Table 2. Device Addresses

Device Address

Xbee (x high light) 1111

Xbee (b high light) 2222

Xbee (e high light) 3333

Sabertooth

(Receiver)

128

Sabertooth

(Center)

128

Sabertooth

(Quarterback)

128, 129, 130, 131

Before the Sabertooth motor controllers were assigned an

address, the team explored some of the other methods for
controlling the Sabertooth such as Mode 1- Analog Input,
Mode 2-R/C Input, Mode 3- Simplified Serial, and Mode 4-
Packetized Serial. Initially Mode 2 seemed to be the best route
because each motor has its own PWM signal. However, since
the motor controller was designed to receive a 0V to 5V signal.
There was going to be problems resulting from the

microcontroller since the I/O’s on the Due operate on a 0V to
3.3V system. This would have required the use of a logic level
shifter to increase the voltage to the desired voltage. The next
option was to use Mode 3-Simplified Serial as it appeared to be
a viable option for both the Center and Receiver since each of
them would only need one motor controller. The Quarterback
however needed to have 4 motor controllers and the Due only
has 4 predefined UART’s. This posed a problem since a fifth
UART would be needed for the Xbee chip. After some testing
were completed using the Simplified Serial, the team began
testing the Packetized Serial option. This only required a single
transmission line which meant fewer wires and easier
debugging as well as simplified programming.

At this time, the Commander remote controller was being
tested using tutorials found in the Commander Library. Note
that the initial testing was done using Arduino UNO. The
testing did not take long as the remote controller was
successfully able to turn on and off different LED on a
breadboard depending upon what button was pressed. Next, the
joysticks were used to vary the brightness of an LED.

Next, the team tested how to simply turn on and off a motor
using the remote controller, motor controller, and the DUE.
This was when some crucial problems were brought to light
about the libraries that were imported for the remote controller
and the motor controller. The key problem was that the
libraries were designed to work with the UNO, which only has
1 UART. So both of the libraries would only work on Serial
Port 0 and both devices required different Baud Rates as well.
After identifying the problem, the solution was found. In
Commander.cpp file, wiring.h was changed to Arduino.h and
Serial0 to Serial1 or any other desired Serial port. For testing,
first one motor was hooked up and then 2 motors were hooked
up. Below is an overall flow of the drive train system.

 Check if there is a new message on the UART

 Read the data from the UART

 The library handles how the message is broken up, for
further details see the Commander’s data sheet

 Call the motor controller operator and give it the remote
controller data and to which motor.

The next task was to develop an equation of motion for the
quarterback’s omni-directional wheels. The team found several
papers about using position, speed, and various other systems
to monitor the path traveled using omni-directional wheels.
However, these papers were truly unnecessary for this
implementation of omni-direction wheels since a human
operator who can compensate for any slippage of the wheels is
used. See Table 3 below for the original equations and the final
product.

Table 3. Testing for the QB’s drivetrain

Old

 Front_Right_Speed = round(.707*(WalkH + WalkV) +

LookH));

 Front_Left_Speed = round(707*(-WalkH + WalkV) -

LookH));

 Rear_Right_Speed = round(.707*(WalkH + WalkV) -

LookH));

 Rear_Left_Speed = round(.707*(- WalkH + WalkV) +

LookH));

Current

 Front_Right_Speed = round((boost/100)*((WalkH +

WalkV) + .75*LookH));

 Front_Left_Speed = round((boost/100)*((-WalkH +

WalkV) - .75*LookH));

 Rear_Right_Speed = round((boost/100)*((WalkH +

WalkV) - .75*LookH));

 Rear_Left_Speed = round((boost/100)*((-WalkH +

WalkV) + .75*LookH));

A layout of the Quarterback’s handheld controller is shown
in Figure 9. Originally the .707 factor was thought to account
for the wheels being set at a 45° angle. After playing with the
robot it was determined that it wasn’t a necessary scalar. In an
intermediate step to the final equation, the .707 factor was
reduced to .3 to help increase the handling and control ability.
By doing this, the robot was slow and could easily be run down
by a defender. For this reason, an added feature was
implemented that allowed the speed to be increased by the
user. This was done by pushing forward on the right joystick
(look joystick); when the value sent back from lookV of the
joystick exceeds 75 it then uses that value divided by 128 as
the new boost value but when it is below a value of 75 the
boost defaults to .25.

The buttons just above the right joystick are programmed to
control the speed of the passing wheel. The only issue was
finding a speed for the motors that achieved a 5ft, 10ft, and
20ft pass. The left most button above the left joystick is
programed to stop the passing wheels. The 2 triggers on top of
the remote controller are used to advance and retract the ball
retention mechanism into and away from the passing wheels.
See Figure 35 for Quarterback button layout.

The robots use Sabertooth 2x25 motor controllers as seen
in Figure 10. Each motor controller can regulate 2 motors at
most. The motor controllers operate using Packetized serial
mode which uses TTL level multi-byte serial commands to set
the speed and directions of the motor. Because packetized
serial is a one-direction only interface, multiple Sabertooths
can be connected to the same serial transmitter. The target
device is selected using an address byte that is set via the dip
switch; up to 8 Sabertooth (128 to 135 address bye) can be
ganged together on a single serial line.

Figure 9. Quarterback trigger functions and drive train function

Figure 10. Sabertooth 2x25 V2.0

Figure 11. Microcontroller Assembly

V. WIRELESS COMMUNICATIONS

IEEE 802.15.4 [4] was established in 2003. The mission for
this standard is to empower the idea behind simple devices
with a reliable, yet robust wireless technology that could run
for years on standard batteries. One of the various protocols
that are used to comply with this standard is Zigbee
networking. IEEE 802.15.4 is a member of the IEEE 802
family, however that does not mean that all the feature of the
IEEE 802 family of standards are involved. Some are not
desired for this low-rate, low-duty cycle standard. Since this
standard deals with mesh networking and sees Zigbee
networking as an acceptable fit, it is easily understood why
Xbee ZB chips were selected for wireless communication.

Now that IEEE 802.15.4 is understood, the Xbee chip can
be analyzed. It features a 2.4 GHz frequency, 1.25/2 mW
Power Output, 120 m range and a RF Data Rate of 250 Kbps.
Since there are 3 robots to control at any given time, the three
pairs need to communicate on different network ID’s.

A MEGA prototype board is mounted on top of the Due for
clean and secure wiring along with the Xbee chip. Although
the shield is intended to be used on an Arduino Mega board, it
is compatible with the Due. The Xbee module is held on top of
a shield which is soldered on the prototype board. A view of
the entire microcontroller assembly can be seen in Figure 11.

While testing the Xbee chips, they could retain constant
communication within 110 feet. If the signal is obstructed by
going around a corner, than the length of constant
communication is drastically reduced. However, this was not a
concern seeing as how the robots need to function in an open
area while playing.

VI. CONCLUSIONS

It is essential to ensure reliable wireless communication for
the robot team. To test the wireless communication between a
Xbee pair, the center is taken out to a parking lot to see how far
of a distance it can travel from the operator while retaining
constant communication. It has been proven that the Xbee chip
pair is able to retain constant communication within 110 feet.

We successfully designed and implemented three complete
football playing robots that competed at the intercollegiate
mechatronic game at Notre Dame University on April 19th,
2013 while meeting IEEE standards for wireless, software, and
systems engineering, specifically IEEE 802.15.4. Throughout
the building process, we made changes to the original system
design to overcome unforeseen issues. However, we were able
to solve these issues in order to meet all set requirements and
improve the proficiency of each robot.

ACKNOWLEDGEMENTS

We thank University of Notre Dame for sponsoring this
project and IEEE for granting supplementary funds. In
particular, we thank Notre Dame Professors, Dr. Michael
Stanisic and Dr. James Schmiedeler, for taking time and
coming to IPFW to give us a background of robot football and
a solid foundation to start upon. We also thank Notre Dame
student Joe Rudy for helping throughout this process by
answering our multiple questions and concerns. A special
thank you goes to SolidWorks Company for providing a one
year software license to each team member for sketching the
mechanical drawings. Finally, an immense gratitude and thanks
goes to Mr. Jan Witte and Mrs. Betty Witte for providing us
with a location and mechanical/electrical tools necessary to
construct the robots; without their generosity we would have
not being able to successfully complete our design.

REFERENCES

[1] G. Rosenthal, Notre Dame wins inaugural robot football game,
http://www.nfl.com/news/story/09000d5d82a5defa/article/notre-dame-
wins-inaugural-robot-football-game

[2] C. Szold, New technologies spread arrival of robots into our lives,
http://www.usatoday.com/tech/news/story/2012-07-04/robotics-
future/56022326/1

[3] IEEE standards: http://standards.ieee.org/findstds/index.html

[4] IEEE 802, http://en.wikipedia.org/wiki/IEEE_802.

[5] The rules of collegiate mechatronic football, Technical Report, Notre
Dame University, 2012.

[6] “Holonomic Control of a robot with an omni-directional drive,” by Raul
Rojas and Alexander Gloye Förster.

