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Abstract—Quadrotor vehicles have seen increasing interest in 

the industry and academia in recent years, for their mechanical 
design simplicity, instability / maneuverability, and high payload 
capabilities. However, due to the same reasons, successful 
implementations of such systems were limited to those groups 
with extensive experience with control systems theory. Therefore, 
the team set a goal of developing a flexible robotic autonomous 
platform that abstracts the different levels of control, providing 
users from different backgrounds access to the functions they 
wish to work with. Connecting the high level controller of the 
robot to operator(s) is done via a flexible mesh network that is 
built using the IEEE® 802.15.4 and ZigBee® industrial 
standards. This paper discusses the application of these 
standards in the project, the system overview and network 
topology, justification for the use of these standards, 
implementing the networking protocols on each system 
component, and finally a summary of networking tests and 
results. 
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I. INTRODUCTION 
N the past few years, manufactures have introduced a large 
number of low cost MEMS sensors and brushless motors 

which encouraged a large number of aerospace enthusiasts to 
attempt building Mirco Aerial Vehicles (MAVs). However, 
many were soon discouraged by the complexity of the control 
theory and filtering methods for sensor outputs [1-3]. Between 
early 2007 and up to the publishing of this paper, mid 2010, 
the number of university projects attempting to build 
quadrotors has increased significantly. This can be easily seen 
in the number of published papers in this time and the online 
videos posted by these groups. Almost all of the ones that had 
been able to achieve stable flight had people who are 
experienced with control theory and Unmanned Aerial 
Vehicles (UAVs). Interesting concepts and applications of 
using the quadrotor for mapping and other novel ideas are 
discouraged as a result of the difficulties of controlled flight 
[4-7]. This project hopes to push the MAV concept to non 
technical savvy users by developing a hovering robotic 
quadrotor platform that communicates with a main 
workstation and a number of controllers and peripherals. This 
report will discuss the wireless communication and 

networking aspect of the project and the application of the 
industry standard IEEE® 802.15.4 in doing so.   

II. SYSTEM OVERVIEW 
The Qx4 robotic platform system is mainly comprised of 

the quadrotor platform, a workstation and a number of manual 
controllers. These components are all nodes in a ZigBee® 
mesh network as shown in figure 1. This section will give a 
brief overview of each of these components.  

A. ZigBee® Mesh Network 
Connecting the Qx4 quadrotor platform, workstation, and 

controllers is a wireless mesh network established using 
XBee® RF1 modules. The Qx4 quadrotor platform broadcasts 
general telemetry over this network for the workstation to 
display to the operator, and for peripherals that allow 
information display to make use of this data. This network 
also allows the operator to send high level commands to the 
platform using the workstation. Furthermore, the manual 
controllers can request control over the robot from the 
workstation, and in case permission is granted, the workstation 
instructs the robot to listen to and process commands from the 
granted controller. Essentially, the network is the main method 
to connect more than one person to the robotic platform.  
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Fig. 1.  System overview – system components. 
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B. Qx4 Quadrotor Robotic Platform 
The Quad-rotor vehicle, the main component of the project, 

a ‘+’ shaped carbon fiber frame with a motor and propeller 
placed on each one of the four ends of the axes, and a speed 
controller attached to each one of the axes. At its center, it 
houses three microcontroller boards, ten proximity sensors, 
and three 3-axes inertia sensors. A propeller guard made out of 
foam and mesh wire was created as an ad-on that can surround 
the propellers to protect the vehicle and its surroundings in 
case the vehicle comes in contact with a wall or a person. The 
guard also serves as proximity sensors mounts. These sensors 
are what allows it to be operable in an indoors, GPS denied 
environment, allowing the implementation of such functions 
as mapping, obstacle detection and avoidance, and position 
hold. 

C. Workstation and Main Controller 
The workstation is a set of software applications 

implemented to run on a PC that is connected to the wireless 
mesh network and acts as a controller of the vehicle. It allows 
the operator to send commands to the vehicle and to tune 
control constants. It also displays real time telemetry received 
from vehicle. The telemetry includes but is not limited to; 
yaw, pitch, roll, height, errors from Proportional Integral 
Derivative controller (PID), and the distance of obstacles 
around the vehicle. The workstation also manages the wireless 
mesh network by granting permissions to the peripherals, such 
as manual controllers and other computers, to take control 
over the vehicle.  

D. Secondary Manual Controller – Wii Nunchuck 
The team created a manual controller using a Wii Nunchuck 

for the project which is used primarily as a proof of concept. 
The Wii Nunchuck shows how easy it is to program 
peripherals for the system. It is used to control the quadrotor. 
The manual controller is also used to show the 
maneuverability of the quadrotor.  

E. Other Controllers Adapter Box 
To increase the time required to develop software that can 

interface with the robot, the team created an external 
controller adapter box. It consists of a microcontroller and a 
wireless module which gives the developer a simple serial 
interface with very simple commands that it can receive and 
translate into data packets that are understandable to the mesh 
network. The intent of this box is to speed up the development 
third party components that could serve as a controller for the 
quadrotor. 

III. WHY IEEE® 802.15.4 AND ZIGBEE® FOR THE NETWORK 
In selecting the wireless communication technology multiple 

factors had to be considered. The main use of the 
communication is to relay telemetry and high level commands, 
therefore high data rates are not critical. However multi-node 
support and low power consumption are important factors in 
the decision. Figure 2 shows some of the main wireless 
technologies often considered for indoors wireless 
requirements [9]. Furthermore, table 1 shows the comparison 

of these technologies in addition to the cellular network (2.5G 
and/or 3G).  

Fig. 2.  Comparison between different wireless technologies [8] 

As shown in the comparison, ZigBee® is most appropriate 
technology for this application. That is because of its inherent 
support of multi-node networking, reliable communication, 
and very low energy consumption that the PHY and MAC 
implementation using the IEEE® 802.15.4 standard provides. 
ZigBee®, which is based on the above-mentioned standard, 
gives further levels of reliable communication and support for 
mesh networking which is desired. Even though ZigBee® fails 
to compete with the other technologies such as in range, 
throughput and data rate, it still is favorable because these 
aspects are not needed for telemetry and commands. In case an 
operator decided to add a sensor that requires high data rates, 
it is recommended that a second dedicated wireless module to 
be added with it. This is done to increase reliability and safety 
by ensuring that the mesh network’s bandwidth is dedicated to 
real time telemetry and controls.  

The ZigBee modules used do not emit high power RF 
signals. This is good for battery life and for the reliability of 
radio frequency sensitive electronics.  The most affected of 
those is the state estimation controller. Tests showed the state 
outputs were seriously corrupted when any wireless 
transmitter gets to a few centimeters away from it. The results 
of the testing showed that a minimum distance of 4 
centimeters was required between the state estimation 
controller and the ZigBee for the proper functioning of the 
state estimation controller.  

TABLE I 
ALTERNATIVES EVALUATION FOR THE WIRELESS CONNECTION 

Aspects W
eight 

Bluetooth® 

ZigBee® 

W
ifi® 

Cellular 

Multi‐node network support  100  5  10 10 10
Throughput 60  7  6 8 3
Data rate 60  7  6 10 10
Range 50  6  5 7 10
Ease of implementation 50  6  8 6 4
Power consumption ‐80  6  2 8 6
Cost ‐100  5  3 7 8
Total   460  910 390 200
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The ZigBee® wireless modems used in the project are the 
xBee® modules from Digi [9]. The xBee® hardware 
consumes an average 50 mA and can support up to 115200 
bps2. It was desired because of its reasonable price, low 
power, small footprint, light weight, and hardware 
upgradability. A higher power model can be easily dropped in 
the place of the current model. This also gives the user the 
ability to customize the quadrotor’s range for different 
missions by easily replacing the wireless module. The module 
used is shown in figure 3. 

IV. THE NETWORK 
The wireless mesh network uses ZigBee® hardware which is 

based on the IEEE® 802.15.4 standard for wireless personal 
area network. The xBee® modules provided the team with the 
ability to broadcast and receive packets from the network 
using simple UART serial communication protocol. However, 
the serial protocol is not enough to send the amount of data 
required to the robot and back.  Because the type of 
commands to the vehicle had to identify the source, a 
command action and value, the 1 –Byte communication 
provided by xBee® was not enough.  

Therefore the team set out to create a communication 
protocol that ensures that data sent to the robot arrives 
accurately in clustered packets. That is to make sure that all 
parts of the command packet are delivered all together, or, in 
case one byte is dropped, the whole cluster is disregarded. The 
communication protocol’s packet to send data to the robot is 
defined by a cluster of 6 bytes cluster of packets as shown in 
table 2. 

The definition of each byte in the cluster is described as 
follows: 

1) Every valid communication packet start with the 
start byte. The start byte is set as the ASCII 
character ‘*’ to provide legibility when debugging 
the communication protocol by eye.  

2) The source ID refers to the ID of the sender. The 
workstation has the unique ID of the ASCII 

character ‘a’. This is used by the robot to determine 
whether the workstation or another device is 
sending data to it. The source ID must fit within a 
byte of data, which limits the network to 256 
unique devices that the platform can communicate 
with.  

 
2 Bps: Baud per second 

3) The checksum is a byte of data that contains the 
count of digital 1’s that the entire package contains, 
omitting the 1’s in the checksum and start, and end 
bytes. This provides an added level of confidence 
that the data that arrives to the AMAV is the correct 
data. In case the robot could not verify the 
checksum, it considers the packet as invalid and 
sends a notification indicating that fact. Note that 
the checksum is only a byte wide which means 
there can be a maximum of 255 digital 1’s in the 
package. Since the package contains at most 40 
digital 1’s, the checksum is large enough to 
accommodate this.   

4) Command ID is the byte that determines the type of 
action required of the robot. A summary of 
commands implemented at the moment are listed in 
table 3. The system is implemented with 26 
commands, with the integer 0 not used. There is a 
maximum of 255 commands due to the size of the 
byte but only 26 commands are currently needed. 

5) Command value byte is the byte that stores the value 
needed for the commands. As shown in table 3, 
some commands like take-off to height x, require 
the source to indicate the height. The units of the 
values have to be predefined on both the source and 
the robot. 

 
Fig. 3.  xBee® wireless ZigBee® [9] 

TABLE 2 
COMPONENTS OF A PACKETS CLUSTER 

Byte[0] Byte[1] Byte[2] Byte[3] Byte[4] Byte[6] 
Start byte Source id Checksum Command id Command value End byte 

TABLE 3 
LIST OF COMMAND IDS USED IN THE NETWORK PACKET CLUSTERS 

Command ID 
[in decimals] 

Command 

1 Halt 
2 Take-off [to height x inches]2 

3 Land 
4 Go-up/down [to height x inches]1 
5 Go-front [for x ms]2 

6 Go-right [for x ms] 2 
7 Go-back [for x ms] 2 
8 Go-left [for x ms] 2 
9 Rotate-clockwise [for x degrees] 2 
10 Rotate-counter-clockwise [for x degrees] 2 
11 Emergency land [attempt an immediate land without 

verifying landing location] 
12 Emergency Halt [breaking all motors immediately] 

[13 – 25] Update PID constant [n] 1 to value [x (multiplied by ]2 
26 Listen to controller ID x2, [only valid if received from 

the workstation.] 
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A. The Qx4 Platform and Networking 
The Qx4 robotic platform is required to perform a number of 

hard real-time control functions. Those include filtering state 
estimation data from multiple sources at a high frequency, 
state control using PID controllers that command the four 
motors, and processing commands received from the mesh 
network. The team decided to use three microcontrollers 
onboard with distinct roles assigned to each as shown in the 
block diagram in figure 4. The control loops are divided 
amongst them as shown in figure 5. 

As seen from these figures, the high frequency loops were 
assigned dedicated controllers to perform them. However, for 
the other computations such as obstacle avoidance and 
networking, a high level controller is used.  

In the high level controller, the platform receives packets 
from the network, verifies their validity, stores them into a 
first-in-first-out queue, then interprets them one at a time and 
commands the low level controller accordingly. It is 
programmed to obey all valid commands received from the 
workstation, identified by the source ID. It can also serve 
commands received from the other controller, if and only if 
the workstation had commanded it to do so using the 
command number 26. 

B. The Workstation and Networking 
As the AMAV is fully autonomous, it does not need an 

operator to control its every move. The workstation provides 
the operator a simple set of buttons that will make the robot 
conduct an action such as move forward and move backwards. 
This is done for cases where manual control is desired. It also 
allows the operator to take control in cases where the platform 
behaves in an abnormal way. 

1) Administrator Panel 
The administrator panel is the primary controller of the 

robot, and the main interface on the work station. It is 
designed using Java to be cross platform, as long as Java is 
supported by the host machine. Figure 6 shows a screen shot 
of the administrator panel. It is clear that it provides users the 
ability to control the robot manually. It also works in the 
background to relay the telemetry from the robot over an 
Ethernet network to peripherals and secondary applications.  

 
Fig. 5.  Control loops as divided between the controllers, highlighting 

the wireless control loop 

The administrator panel saves all telemetry data received 
from the AMAV in the comma separated file format which is 
natively supported by numerous spreadsheet applications, such 
as Microsoft Office’s Excel. This helps in debugging and 
testing the system. 

2) Telemetry Graphing Application 
This application is written to accesses the telemetry data sent 

from the administration panel over the Ethernet. It then 
displays select telemetry data in figures in real-time. This is 
used to track the robot’s telemetry over time and for testing 
new settings.  

 
Fig. 4.  Qx4 quadrotor robotic platform block diagram. Fig. 6.  Administration panel screenshot. 
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3) The orientation Application 

Fig. 7.  Qx4 3D orientation and telemetry graphing application 
demonstration. 

This application is written in to accesses the telemetry data 
over the Ethernet as well to show, in real time, the orientation 
of the quadrotor while in flight using a 3D graphical model. 
The application displays the model oriented in the same way 
the vehicle is oriented. This is done using the state telemetry 
broadcasted from the robot. Other peripherals that are part of 
this network can also use this data and display them in various 
formats. Figure 7 gives a picture taken from the demonstration 
day showing the team demonstrating this application by 
forcing the robot to tilt, with the model showing that 
orientation as well as the new motor speeds to counter that 
force and restore the state to a stable one. 

4) The PID Application 
This application is written to give the operator a tool to fine 
tune the control constants through a graphical interface over 
the wireless network. It issues packet-clusters that have a 
command action between 13 and 25 alongside a new value for 
a given constant. The robot uses this information to update its 
PIDs in real time over the wireless network while in hover 
mode. This application is also used to track and graph the 
errors used in the PIDs. 

V. NETWORK TESTING AND RESULTS 

 
Fig. 8.  Range test – the areas in which the wireless coverage met 

the requirements of the system [10]. 

A number of tests were performed for the overall system and 
robot. This section however will discuss the main tests 
performed on the wireless link and network. 

A. Range Test 
The first test the team implemented once the network was 

established is a range test in the building where the final 
demonstration will be held. Knowing the possible places for 
the demonstration are two main clusters of tables, the team 
examined the range around each group. A workstation and a 
laptop with an xBee® module each are used for the test. For 
each place, the workstation was positioned stationary in the 
middle of the group of tables, while a team member walked 
around with a laptop computer measuring the number of 
received and dropped packets. The goal is to find the areas in 
which the packets were delivered at least 99% of the time.  

The areas found with this result were as expected from the 
specs of the wireless modules. That is about 30 meters for line 
of sight and about 10 meters for when obstacles and fading 
were present. The areas found are mapped as shown in figure 
8. 

B. Wireless Programming 
The team originally wanted to implement wireless 

programming while it is in flight. The xBee module came with 
digital input-output pins that the group used to assert the reset 
bit of the microcontroller. The platform’s multiprocessor 
architecture allowed it to be reprogrammed in flight while 
ensuring stability. It was also used to reduce time spent 
reprogramming the high level controller onboard since 
connecting it to cables can be cumbersome when the rotor 
guards are placed on. However, even though the team was 
able to program the high level controller wirelessly, this 
process was not reliable. The team ran a test to show its 
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unreliability, the results of which are shown in table 4.  
The table shows that wireless programming would only 

work 3/10 times. This proved the validity of the concept, 
however, the team decided to drop this feature due to time 
constraints.  

VI. CONCLUSION 
In conclusion, the team was able to build the system and 

meet all of the objectives of the project in a very timely 
fashion. The use of the industry standard IEEE® 802.15.4 
wireless mesh networking lowered the amount of time it took 
for the team to complete the project. It further illustrated the 
importance of using industrial international standards in that it 
eases compatibility of systems designed separately, which is a 
very important practice. The IEEE® 802.15.4 and ZigBee 
standards were preferred early in the project for their low 
power, high reliability, small footprint and light weight as 
perfect candidate to base the network on. As expected, the 
standards lived up to the task when the team received the 
xBee® modems developed by Digi. The modules performed 
well in the target location, giving the system a very good 
range to demonstrate the application with very high reliability. 
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