
 1

A Wireless Multivariable Control Scheme for
A Quadrotor Hovering Robotic Platform

using IEEE® 802.15.4
Zaid Al-Khatib, Jaime Yu, Hasan Ghazi Al-Khakani, Samer Kombarji

Faculty Mentor: Dr. Amir G. Aghdam

Abstract—Quadrotor vehicles have seen increasing interest in

the industry and academia in recent years, for their mechanical
design simplicity, instability / maneuverability, and high payload
capabilities. However, due to the same reasons, successful
implementations of such systems were limited to those groups
with extensive experience with control systems theory. Therefore,
the team set a goal of developing a flexible robotic autonomous
platform that abstracts the different levels of control, providing
users from different backgrounds access to the functions they
wish to work with. Connecting the high level controller of the
robot to operator(s) is done via a flexible mesh network that is
built using the IEEE® 802.15.4 and ZigBee® industrial
standards. This paper discusses the application of these
standards in the project, the system overview and network
topology, justification for the use of these standards,
implementing the networking protocols on each system
component, and finally a summary of networking tests and
results.

Index Terms— Key Words: Robotic platform, Quadrotor,
VTOL AMAV, IEEE 802.15.4, ZigBee, Mesh Network.

I. INTRODUCTION
N the past few years, manufactures have introduced a large
number of low cost MEMS sensors and brushless motors

which encouraged a large number of aerospace enthusiasts to
attempt building Mirco Aerial Vehicles (MAVs). However,
many were soon discouraged by the complexity of the control
theory and filtering methods for sensor outputs [1-3]. Between
early 2007 and up to the publishing of this paper, mid 2010,
the number of university projects attempting to build
quadrotors has increased significantly. This can be easily seen
in the number of published papers in this time and the online
videos posted by these groups. Almost all of the ones that had
been able to achieve stable flight had people who are
experienced with control theory and Unmanned Aerial
Vehicles (UAVs). Interesting concepts and applications of
using the quadrotor for mapping and other novel ideas are
discouraged as a result of the difficulties of controlled flight
[4-7]. This project hopes to push the MAV concept to non
technical savvy users by developing a hovering robotic
quadrotor platform that communicates with a main
workstation and a number of controllers and peripherals. This
report will discuss the wireless communication and

networking aspect of the project and the application of the
industry standard IEEE® 802.15.4 in doing so.

II. SYSTEM OVERVIEW
The Qx4 robotic platform system is mainly comprised of

the quadrotor platform, a workstation and a number of manual
controllers. These components are all nodes in a ZigBee®
mesh network as shown in figure 1. This section will give a
brief overview of each of these components.

A. ZigBee® Mesh Network
Connecting the Qx4 quadrotor platform, workstation, and

controllers is a wireless mesh network established using
XBee® RF1 modules. The Qx4 quadrotor platform broadcasts
general telemetry over this network for the workstation to
display to the operator, and for peripherals that allow
information display to make use of this data. This network
also allows the operator to send high level commands to the
platform using the workstation. Furthermore, the manual
controllers can request control over the robot from the
workstation, and in case permission is granted, the workstation
instructs the robot to listen to and process commands from the
granted controller. Essentially, the network is the main method
to connect more than one person to the robotic platform.

1 Radio Frequency

I

Fig. 1. System overview – system components.

 2

B. Qx4 Quadrotor Robotic Platform
The Quad-rotor vehicle, the main component of the project,

a ‘+’ shaped carbon fiber frame with a motor and propeller
placed on each one of the four ends of the axes, and a speed
controller attached to each one of the axes. At its center, it
houses three microcontroller boards, ten proximity sensors,
and three 3-axes inertia sensors. A propeller guard made out of
foam and mesh wire was created as an ad-on that can surround
the propellers to protect the vehicle and its surroundings in
case the vehicle comes in contact with a wall or a person. The
guard also serves as proximity sensors mounts. These sensors
are what allows it to be operable in an indoors, GPS denied
environment, allowing the implementation of such functions
as mapping, obstacle detection and avoidance, and position
hold.

C. Workstation and Main Controller
The workstation is a set of software applications

implemented to run on a PC that is connected to the wireless
mesh network and acts as a controller of the vehicle. It allows
the operator to send commands to the vehicle and to tune
control constants. It also displays real time telemetry received
from vehicle. The telemetry includes but is not limited to;
yaw, pitch, roll, height, errors from Proportional Integral
Derivative controller (PID), and the distance of obstacles
around the vehicle. The workstation also manages the wireless
mesh network by granting permissions to the peripherals, such
as manual controllers and other computers, to take control
over the vehicle.

D. Secondary Manual Controller – Wii Nunchuck
The team created a manual controller using a Wii Nunchuck

for the project which is used primarily as a proof of concept.
The Wii Nunchuck shows how easy it is to program
peripherals for the system. It is used to control the quadrotor.
The manual controller is also used to show the
maneuverability of the quadrotor.

E. Other Controllers Adapter Box
To increase the time required to develop software that can

interface with the robot, the team created an external
controller adapter box. It consists of a microcontroller and a
wireless module which gives the developer a simple serial
interface with very simple commands that it can receive and
translate into data packets that are understandable to the mesh
network. The intent of this box is to speed up the development
third party components that could serve as a controller for the
quadrotor.

III. WHY IEEE® 802.15.4 AND ZIGBEE® FOR THE NETWORK
In selecting the wireless communication technology multiple

factors had to be considered. The main use of the
communication is to relay telemetry and high level commands,
therefore high data rates are not critical. However multi-node
support and low power consumption are important factors in
the decision. Figure 2 shows some of the main wireless
technologies often considered for indoors wireless
requirements [9]. Furthermore, table 1 shows the comparison

of these technologies in addition to the cellular network (2.5G
and/or 3G).

Fig. 2. Comparison between different wireless technologies [8]

As shown in the comparison, ZigBee® is most appropriate
technology for this application. That is because of its inherent
support of multi-node networking, reliable communication,
and very low energy consumption that the PHY and MAC
implementation using the IEEE® 802.15.4 standard provides.
ZigBee®, which is based on the above-mentioned standard,
gives further levels of reliable communication and support for
mesh networking which is desired. Even though ZigBee® fails
to compete with the other technologies such as in range,
throughput and data rate, it still is favorable because these
aspects are not needed for telemetry and commands. In case an
operator decided to add a sensor that requires high data rates,
it is recommended that a second dedicated wireless module to
be added with it. This is done to increase reliability and safety
by ensuring that the mesh network’s bandwidth is dedicated to
real time telemetry and controls.

The ZigBee modules used do not emit high power RF
signals. This is good for battery life and for the reliability of
radio frequency sensitive electronics. The most affected of
those is the state estimation controller. Tests showed the state
outputs were seriously corrupted when any wireless
transmitter gets to a few centimeters away from it. The results
of the testing showed that a minimum distance of 4
centimeters was required between the state estimation
controller and the ZigBee for the proper functioning of the
state estimation controller.

TABLE I
ALTERNATIVES EVALUATION FOR THE WIRELESS CONNECTION

Aspects W
eight

Bluetooth®

ZigBee®

W
ifi®

Cellular

Multi‐node network support 100 5 10 10 10
Throughput 60 7 6 8 3
Data rate 60 7 6 10 10
Range 50 6 5 7 10
Ease of implementation 50 6 8 6 4
Power consumption ‐80 6 2 8 6
Cost ‐100 5 3 7 8
Total 460 910 390 200

 3

The ZigBee® wireless modems used in the project are the
xBee® modules from Digi [9]. The xBee® hardware
consumes an average 50 mA and can support up to 115200
bps2. It was desired because of its reasonable price, low
power, small footprint, light weight, and hardware
upgradability. A higher power model can be easily dropped in
the place of the current model. This also gives the user the
ability to customize the quadrotor’s range for different
missions by easily replacing the wireless module. The module
used is shown in figure 3.

IV. THE NETWORK
The wireless mesh network uses ZigBee® hardware which is

based on the IEEE® 802.15.4 standard for wireless personal
area network. The xBee® modules provided the team with the
ability to broadcast and receive packets from the network
using simple UART serial communication protocol. However,
the serial protocol is not enough to send the amount of data
required to the robot and back. Because the type of
commands to the vehicle had to identify the source, a
command action and value, the 1 –Byte communication
provided by xBee® was not enough.

Therefore the team set out to create a communication
protocol that ensures that data sent to the robot arrives
accurately in clustered packets. That is to make sure that all
parts of the command packet are delivered all together, or, in
case one byte is dropped, the whole cluster is disregarded. The
communication protocol’s packet to send data to the robot is
defined by a cluster of 6 bytes cluster of packets as shown in
table 2.

The definition of each byte in the cluster is described as
follows:

1) Every valid communication packet start with the
start byte. The start byte is set as the ASCII
character ‘*’ to provide legibility when debugging
the communication protocol by eye.

2) The source ID refers to the ID of the sender. The
workstation has the unique ID of the ASCII

character ‘a’. This is used by the robot to determine
whether the workstation or another device is
sending data to it. The source ID must fit within a
byte of data, which limits the network to 256
unique devices that the platform can communicate
with.

2 Bps: Baud per second

3) The checksum is a byte of data that contains the
count of digital 1’s that the entire package contains,
omitting the 1’s in the checksum and start, and end
bytes. This provides an added level of confidence
that the data that arrives to the AMAV is the correct
data. In case the robot could not verify the
checksum, it considers the packet as invalid and
sends a notification indicating that fact. Note that
the checksum is only a byte wide which means
there can be a maximum of 255 digital 1’s in the
package. Since the package contains at most 40
digital 1’s, the checksum is large enough to
accommodate this.

4) Command ID is the byte that determines the type of
action required of the robot. A summary of
commands implemented at the moment are listed in
table 3. The system is implemented with 26
commands, with the integer 0 not used. There is a
maximum of 255 commands due to the size of the
byte but only 26 commands are currently needed.

5) Command value byte is the byte that stores the value
needed for the commands. As shown in table 3,
some commands like take-off to height x, require
the source to indicate the height. The units of the
values have to be predefined on both the source and
the robot.

Fig. 3. xBee® wireless ZigBee® [9]

TABLE 2
COMPONENTS OF A PACKETS CLUSTER

Byte[0] Byte[1] Byte[2] Byte[3] Byte[4] Byte[6]
Start byte Source id Checksum Command id Command value End byte

TABLE 3
LIST OF COMMAND IDS USED IN THE NETWORK PACKET CLUSTERS

Command ID
[in decimals]

Command

1 Halt
2 Take-off [to height x inches]2

3 Land
4 Go-up/down [to height x inches]1
5 Go-front [for x ms]2

6 Go-right [for x ms] 2
7 Go-back [for x ms] 2
8 Go-left [for x ms] 2
9 Rotate-clockwise [for x degrees] 2
10 Rotate-counter-clockwise [for x degrees] 2
11 Emergency land [attempt an immediate land without

verifying landing location]
12 Emergency Halt [breaking all motors immediately]

[13 – 25] Update PID constant [n] 1 to value [x (multiplied by]2
26 Listen to controller ID x2, [only valid if received from

the workstation.]

 4

A. The Qx4 Platform and Networking
The Qx4 robotic platform is required to perform a number of

hard real-time control functions. Those include filtering state
estimation data from multiple sources at a high frequency,
state control using PID controllers that command the four
motors, and processing commands received from the mesh
network. The team decided to use three microcontrollers
onboard with distinct roles assigned to each as shown in the
block diagram in figure 4. The control loops are divided
amongst them as shown in figure 5.

As seen from these figures, the high frequency loops were
assigned dedicated controllers to perform them. However, for
the other computations such as obstacle avoidance and
networking, a high level controller is used.

In the high level controller, the platform receives packets
from the network, verifies their validity, stores them into a
first-in-first-out queue, then interprets them one at a time and
commands the low level controller accordingly. It is
programmed to obey all valid commands received from the
workstation, identified by the source ID. It can also serve
commands received from the other controller, if and only if
the workstation had commanded it to do so using the
command number 26.

B. The Workstation and Networking
As the AMAV is fully autonomous, it does not need an

operator to control its every move. The workstation provides
the operator a simple set of buttons that will make the robot
conduct an action such as move forward and move backwards.
This is done for cases where manual control is desired. It also
allows the operator to take control in cases where the platform
behaves in an abnormal way.

1) Administrator Panel
The administrator panel is the primary controller of the

robot, and the main interface on the work station. It is
designed using Java to be cross platform, as long as Java is
supported by the host machine. Figure 6 shows a screen shot
of the administrator panel. It is clear that it provides users the
ability to control the robot manually. It also works in the
background to relay the telemetry from the robot over an
Ethernet network to peripherals and secondary applications.

Fig. 5. Control loops as divided between the controllers, highlighting

the wireless control loop

The administrator panel saves all telemetry data received
from the AMAV in the comma separated file format which is
natively supported by numerous spreadsheet applications, such
as Microsoft Office’s Excel. This helps in debugging and
testing the system.

2) Telemetry Graphing Application
This application is written to accesses the telemetry data sent

from the administration panel over the Ethernet. It then
displays select telemetry data in figures in real-time. This is
used to track the robot’s telemetry over time and for testing
new settings.

Fig. 4. Qx4 quadrotor robotic platform block diagram. Fig. 6. Administration panel screenshot.

 5

3) The orientation Application

Fig. 7. Qx4 3D orientation and telemetry graphing application
demonstration.

This application is written in to accesses the telemetry data
over the Ethernet as well to show, in real time, the orientation
of the quadrotor while in flight using a 3D graphical model.
The application displays the model oriented in the same way
the vehicle is oriented. This is done using the state telemetry
broadcasted from the robot. Other peripherals that are part of
this network can also use this data and display them in various
formats. Figure 7 gives a picture taken from the demonstration
day showing the team demonstrating this application by
forcing the robot to tilt, with the model showing that
orientation as well as the new motor speeds to counter that
force and restore the state to a stable one.

4) The PID Application
This application is written to give the operator a tool to fine
tune the control constants through a graphical interface over
the wireless network. It issues packet-clusters that have a
command action between 13 and 25 alongside a new value for
a given constant. The robot uses this information to update its
PIDs in real time over the wireless network while in hover
mode. This application is also used to track and graph the
errors used in the PIDs.

V. NETWORK TESTING AND RESULTS

Fig. 8. Range test – the areas in which the wireless coverage met

the requirements of the system [10].

A number of tests were performed for the overall system and
robot. This section however will discuss the main tests
performed on the wireless link and network.

A. Range Test
The first test the team implemented once the network was

established is a range test in the building where the final
demonstration will be held. Knowing the possible places for
the demonstration are two main clusters of tables, the team
examined the range around each group. A workstation and a
laptop with an xBee® module each are used for the test. For
each place, the workstation was positioned stationary in the
middle of the group of tables, while a team member walked
around with a laptop computer measuring the number of
received and dropped packets. The goal is to find the areas in
which the packets were delivered at least 99% of the time.

The areas found with this result were as expected from the
specs of the wireless modules. That is about 30 meters for line
of sight and about 10 meters for when obstacles and fading
were present. The areas found are mapped as shown in figure
8.

B. Wireless Programming
The team originally wanted to implement wireless

programming while it is in flight. The xBee module came with
digital input-output pins that the group used to assert the reset
bit of the microcontroller. The platform’s multiprocessor
architecture allowed it to be reprogrammed in flight while
ensuring stability. It was also used to reduce time spent
reprogramming the high level controller onboard since
connecting it to cables can be cumbersome when the rotor
guards are placed on. However, even though the team was
able to program the high level controller wirelessly, this
process was not reliable. The team ran a test to show its

 6

unreliability, the results of which are shown in table 4.
The table shows that wireless programming would only

work 3/10 times. This proved the validity of the concept,
however, the team decided to drop this feature due to time
constraints.

VI. CONCLUSION
In conclusion, the team was able to build the system and

meet all of the objectives of the project in a very timely
fashion. The use of the industry standard IEEE® 802.15.4
wireless mesh networking lowered the amount of time it took
for the team to complete the project. It further illustrated the
importance of using industrial international standards in that it
eases compatibility of systems designed separately, which is a
very important practice. The IEEE® 802.15.4 and ZigBee
standards were preferred early in the project for their low
power, high reliability, small footprint and light weight as
perfect candidate to base the network on. As expected, the
standards lived up to the task when the team received the
xBee® modems developed by Digi. The modules performed
well in the target location, giving the system a very good
range to demonstrate the application with very high reliability.

ACKNOWLEDGMENT
First and foremost, we would like to acknowledge our

supervisor, Dr. Amir G. Aghdam for putting his trust in us on
this very interesting and challenging project. His
encouragement, advice and motivation helped us make it
through the tough times during this project. We want to also
acknowledge Mr. Dmitry for his time, vital encouragement
and support

Also, we would like to acknowledge the following people
who have been there for us for expert advice, assistance and
support; Dr. Wei-Peng Zhu, Mr. Jeffry Landry, Mr. Dave Chu,
Mohannad Al-Khatib, and Nick Major

Last but not least, we want to thank all of our family
members, friends, colleagues, and loved ones for their warm
support and enthusiasm throughout the development of the
Qx4 project.

REFERENCES

[1] B. Cole, J. Cook, J. Forest, S. Johnson, E. Massie, and C.
Rogers N. Carlos, "IARC Team Quadrotor," Virginia
Tech University, Virginia, Project Report 2009.

[2] D. Korff, E. Gjioni, and H. Yang R. AbouSleiman, "The
Oakland University Unmanned Aerial Quadrotor
System," Oakland University, Oakland, Competition
Report 2008.

[3] F. Lewis E. Stingu, "Design and Implementation of a
Structured Flight Controller for a 6DoF Quadrotor Using
Quaternions," 17th Mediterranean Conference on
Control & Automation, vol. 1, no. 17, pp. 1233-1238,
June 2009.

[4] P. James, and J. Taylor E. Altug, "Control of a Quadrotor
Helicopter Using Dual Camera Visual Feedback," The
International Journal of Robotics Research, no. 24, pp.
329-341, 2005.

[5] G. Gremillion, B. Ranganathan, and J. S. Humbert J.
Conroy, "Implementation of wide-field integration of
optic flow for autonomous quadrotor navigation,"
Springer Science+Business Media, February 2009.

[6] T. S. Stirling, J. Zufferey, and D. Floreano J. F. Roberts,
"Quadrotor Using Minimal Sensing For Autonomous
Indoor Flight," MAV07, 2007.

[7] J. Chin, S. Mehrabian, L. Montejom, and H. Thompson
C. Canetta, "Quad-rotor Unmanned Aerial Vehicle,"
Columbia University, Columbia, Project Final Report
2007.

[8] University of Luxembourg, SECAN-Lab. (2008, June)
SECAM-Lab. [Online]. http://wiki.uni.lu/secan-
lab/ZigBee+technology+in+sensor+network.html

TABLE 4
WIRELESS PROGRAMMING TEST RESULTS

Test number Result Progress before sync error
1 Fail 63%
2 Fail 45%
3 Pass 100%
4 Fail 89%
5 Fail 28%
6 Pass 100%
7 Pass 100%
8 Fail 91%
9 Fail 53%
10 Fail 72%

[9] Digi International, XBee®/XBee-PRO® RF Modules -
IEEE® 802.15.4 RF Modules. Minnetonka, MN: Digi
International Inc., 2009.

[10] Department of Electrical and Computer Engineering -
Concordia University, "Capstone Project Manual,"
Concordia University, Montreal, Canada, 2009.

http://wiki.uni.lu/secan-lab/ZigBee+technology+in+sensor+network.html
http://wiki.uni.lu/secan-lab/ZigBee+technology+in+sensor+network.html

	I. INTRODUCTION
	II. System Overview
	A. ZigBee® Mesh Network
	Qx4 Quadrotor Robotic Platform
	C. Workstation and Main Controller
	D. Secondary Manual Controller – Wii Nunchuck
	E. Other Controllers Adapter Box

	III. Why IEEE® 802.15.4 and ZigBee® for the network
	IV. The Network
	A. The Qx4 Platform and Networking
	The Workstation and Networking
	1) Administrator Panel
	2) Telemetry Graphing Application
	The orientation Application
	4) The PID Application

	V. Network Testing and Results
	A. Range Test
	B. Wireless Programming

	VI. Conclusion

