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Reprints from The Early Days of Information
Sciences

Historical studies about a scientific discipline is a sign of its matu-
rity.  When properly understood and carried out, this kind of studies are
more than enumeration of facts or giving credit to particular important
researchers. It is more discovering and tracing the way of thinking that
have lead to important discoveries. In this respect, it is interesting and also
important to recall publications where for the first time some important
concepts, theories, methods, and algorithms have been introduced.

In every branch of science there are some important results published in
national or local journals or other publications that have not been widely
distributed for different reasons, due to which they often remain unknown
to the research community and therefore are rarely referenced. Sometimes
the importance of such discoveries is overlooked or underestimated even by
the inventors themselves. Such inventions are often re-discovered long after,
but their initial sources may remain almost forgotten, and mostly remain
sporadically recalled and mentioned within quite limited circles of experts.
This is especially often the case with publications in other languages than
the English language which is presently the most common language in the
scientific world.

This series of publications is aimed at reprinting and, when appropriate,
also translating some less known or almost forgotten, but important publi-
cations, where some concepts, methods or algorithms have been discussed
for the first time or introduced independently on other related works.

Another aim of Reprints is to collect and present at the same place
publications on certain particular subject of an important scholar whose
scientific work is signified by contributions to different areas of sciences.

R.S. Stankovié, J.T. Astola
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On the Contributions of Arto Salomaa to
Multiple-Valued Logic

Abstract

The present issue of Reprints from the Early Days of Information
Sciences discusses research work of Arto Salomaa on Multiple- Valued
Logic. It presents 14 papers by Arto Salomaa, and highlights the impact
of this work to the research at the time in this area. Included are also 8
reviews about his work in multiple-valued logic, and 12 reviews written
by Arto Salomaa on the work of other authors in this area. The publi-
cation includes an article by Arto Salomaa ”What computer scientists
should know about sauna”, and an interview with Arto Salomaa given
to the editors on March 17, 2009.
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This book contains several reprints of pages from books by Arto Salomaa
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the way they were presented originally has a particular value for the reader.
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1 Multiple-Valued Logic

Multiple-valued logic (MVL) emerged as a generalization and extension of
binary logic aiming at representation and study of discrete p-valued (p > 2)
systems, including at the final extent systems in terms of discrete variables
with an infinite number of values.

When related to concrete particular applications, MVL systems can be
viewed either as non-binary logic circuits, or particular algebraic structures,
or symbolic logic constructions.

Since variables are discrete, MVL systems can be viewed as subsets of
discrete systems. When p is of a limited value, and cardinalities of the sets of
function values are also limited, they are a subsets of digital systems [1], [6],
[11]. Therefore, MVL systems can be included in the study of digital signals
and systems. In this context, MVL appears to be an important tool in the
areas of electronic design and automation - computer aided design (EDA-
CAD), and circuit design. MVL circuits offer advantages as reducing the
power, improving speed, increasing packaging density, reducing complexity
of interconnections due to greater information content per line, etc., [5].
In this context, due to ever increasing complexity of systems in everyday
practice, the importance of MVL is supposed to increase in future. Another
area of applications of MVL is study of quantum logic circuits and algorithm
development. Due to recent developments in these areas, there is a renewed
interest in multiple-valued logic.

Mathematical foundations of MVL, after Aristotle and Boole, have been
set by many logicians and mathematicians. Already Aristotle has had some
doubts about exclusivity of binary logic, in particular the Law of excluding
middle (Tertium non Datur), as it can be seen in the so-called Aristotle’s
paradox of the sea battle, discussing the question whether every proposition
about future must be either true or false (De Interpretatione, Chapter 9).

Contributions to the theory have been done by logicians and mathemati-
cians in the beginning of 20th century. For instance, in 1920 Jan Lukasiewicz
introduced a third value possible to deal with Aristotle’s paradox of the sea
battle [4]. In 1921, Emil L. Post introduced the formulation of additional
truth degrees with p > 2, where p are the truth values [7]. Jan Lukasiewicz
and Alfred Tarski considered later a logic on p truth values where p > 2.
In 1932, Hans Reichenbach elaborated a logic of many truth values where
p — oo, see [8], [9], [10]. In 1932, Kurt Godel showed that intuitionistic
logic is not a finitely-many valued logic, and the Gédel logic - is called the
intermediate logics.
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In particular, different interpretations of the third value as possible, un-
defined, undetermined, senseless, paradoxical, etc., lead to formulation of
different ternary logics. Some of multiple-valued algebras were implementa-
tion oriented [2], [13].

Besides importance in theoretical computer science, ternary logic as a
part of MVL can be viewed as an engineering discipline. For instance, a
ternary computer has been realized in 1958 as a project leaded by Sergei
Sobolev and Nikolay Brusentsov in Moscow, USSR. Further, ternary and
quaternary memory chips are a reality already from eighties in the last
century.

A closely related subject is fuzzy logic that was initiated in the work by
Lotfi Zadeh in middle seventies.

The study of MVL as an engineering discipline is supported by IEEE,
through the IEEE Computer System Technical Committee on Multiple-
Valued Logic, IEICE though the Japan Research Group on MVL, and the
activities are regularly summarized at yearly international symposia on the
subject (ISMVL). The journal Multiple Valued Logic and Soft Computing is
dedicated to problems in this area.
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2 Arto Salomaa’s Work on Multiple-Valued Logic

Arto Kustaa Salomaa formally started his scientific research work by a pa-
per in Ajatus in 1959 and continued with his PhD Thesis in the area of
multiple-valued logic defended at the University of Turku, Turku, Finland,
in 1960. The Thesis was entitled On the Composition of Functions of Several
Variables Ranging Over a Finite Set, and has been supervised by Professor
Kustaa Inkeri.

Several publications that have followed were also devoted to various sub-
jects in MVL and will be reprinted in this issue of Reprints (Section 5)
together with reviews of some of these publications (Section 6).

Academician Prof. Salomaa serves as the Editor or several journals
devoted to the topics in MVL, and in particular, he has served as the Editor
of the Journal of Symbolic Logic in the period 1968-1984. In this journal,
Prof. Salomaa reviewed a number of publications by different authors (see
Section 7).

The most recent publication of Prof. Salomaa in the area of MVL ap-
peared in the book Grigore Moisil and His Followers, Romanian Academy
of Sciences, 2006, devoted to the memory of Grigore Moisil, the Romanian
mathematician working in this area, and recognized among other things, by
the axiomatization of ternary logic.

Table 1: Journals where A. Salomaa has published about MVL.

Journal Year of publication

Ajatus 1959

Journal of Symbolic Logic 1960

Ann. Univ. Turku 1960, 1962 (2), 1963 (2), 1964
Ann. Acad. Scient. Fenicae 1963 (2), 1965

Acta Philos. Fenica 1965

Archimedes 1968

The number in parentheses shows the number of papers published in the
particular year.
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Publications by A. Salomaa on Multiple-Valued Logic

”On many-valued systems of logic”, Ajatus, No. 22, 1959, 115-159.

”On the composition of functions of several variables ranging over a finite
set”, Ann. Univ. Turku, Ser. A I, No. 41, 1960, 48 pages.

”A theorem concerning the composition of functions of several variables
ranging over a finite set”, Journal of Symbolic Logic, 1960, 25, 203-208.

”On the number of simple bases of the set of functions over a finite domain”,
Ann. Univ. Turku, Ser. A I, N. 52, 1962, 4 pages.

”Some completeness criteria for sets of functions over a finite domain, I”,
Ann. Univ. Turku, Ser. A I, No. 53, 1962, 10 pages.

”Some completeness criteria for sets of functions over a finite domain, II”,
Ann. Univ. Turku, Ser. A I, No. 63, 1963, 19 pages, (Russian translations
of two previous papers in Kibernetitseskii sbornik, No. 8, 1964, 8-32.)

”On sequences of functions over an arbitrary domain”, Ann. Univ. Turku.,
Ser. A I, No. 62, 1963, 5 pages.

”Some analogues of Sheffer functions in infinite-valued logics”, Proc. Collog.
Modal and Many-valued Logics in Helsinki 1962, Published in 1963, 227-235.

”On basic groups for the set of functions over a finite domain”, Ann. Acad.
Scient. Fennicae, Ser. A I, No. 338, 1963, 15 pages.

”On essential variables of functions, especially in the algebra of logic”, Ann.
Acad. Scient. Fennicae, Ser. A 1, No. 339, 1963, 11 pages.

”On infinitely generated sets of operations in finite algebras”, Ann. Univ.
Turku, Ser. A I, No. 74, 1964, 13 pages.

”On the heights of closed sets of operations in finite algebras”, Ann. Acad.
Scient. Fennicae, Ser. A I, No. 363, 1965, 12 pages.
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”On some algebraic notions in the theory of truth-functions”, Acta Philos.
Fennica, No. 18, 1965, 193-202.

”Matematiikka ja tietokone”, Arkhimedes, 1968, 5-10.

”Sata vuotta matemaattista logiikkaa: paattelysaannoista tietokoneohjel-
mointiin”, In: Muuttuvat ajat, WSQOY, Porvoo, Finland, 1979, 116-130.
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3 One of the Twelve

The biography of Arto Salomaa has been published many times at differ-
ent occasions, as for instance, when he was accepted as a member of one
of four Academia, some round birthdays, etc. Therefore, instead of writing
yet another formal one, we will provide several photos and excerpts from
books written by Prof. Salomaa or devoted to him. These photos should
illustrate the main principles accepted and appreciated by Prof. Salomaa
in his life and work. Photos were taken while talking with Prof. Salomaa
about his numerous books (Section 4). They were taken without any preten-
sions except to be some simple reminders of particular details he presented,
however, later we realized that they can tell much more than that.

For details in biography of Prof. Salomaa and concrete data, we refer to

Juhani Karhumaki, ” A short biography of Arto Salomaa”, Information and
Computation, Vol. 151, 1999, 2-4,

and to the web site of Prof. Salomaa

http://vanha.math.utu.fi/staff/asalomaa/

To simply explain who is Arto Salomaa it is sufficient to say
One of the Twelve

as stated in the memorandum of letters used by members of the Finnish
Academy

AKATEEMIKKO EN AV DE TOLV | FINLANDS AKADEMI
ONE OF THE TWELVE FINNISH FELLOWS OF THE ACADEMY OF FINLAND
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4 Interview with Arto Salomaa

The interview was conducted by Radomir S. Stankovi¢ in the office of
Arto Salomaa, B-6035, Turku Centre for Computer Science (TUCS)
Joukahaisenkatu 3-5 B, 20520 Turku, Finland.

Interview

We would like to ask about your work in Multiple- Valued Logic, since this
would be the main subject of this issue of Reprints devoted to a part of your
work.

Recently I have not really done anything on that subject except, there is
one thing, I don’t know if you know about this, this is a recent book, it
appeared last year or 2006, here I wrote an article about Moisil and Many-
Valued Logic and it has some of my recollections. This is the only thing I've

really published about this after what I've said in 1964/65.

We would like to reprint your paper in Ajatus, the first paper from 1959 and
maybe we also have to take a look in this.

This was actually my first publication.
This is why it is so interesting.

Then my PhD thesis was about Sheffer functions and the main theorem
appeared also in the Journal of Symbolic Logic in 1960.

You were very active as a reviewer for Journal of Symbolic Logic.

That is true, however, only in early days, but not anymore.

Let me maybe first start with a classical question. Everyone knows who you
are in science, but it is very interesting to see how you view yourself in this

perspective, because you have so many different interests, including sauna,
on your web pages there are photos of your family, and so on. What you
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would say now about, what is your main?

It is very difficult to say what the main is, because there are so different
things in many years, but I have really always liked the things I'm doing
at the moment, and I have written many books. In another interview, not
so long ago, Christian Calude asked me what I liked, and I would say I
like my first book, " Theory of Automata” the most, and it was quite long,
seven years after my PhD, but it was the first book. The publisher was very
bad, this Pergamon Press, there were all kind of scandals, they screwed up
things enormously, but I still like the book. And I think that things that
are in the book still nothing much has changed from these days, it is very
mathematical, so it stays the same.

Ezactly as you say in one title: ”Theory is Forever”.

Yes, this was one book that was published for my birthday, so that was not
my invention, the title.

May I ask you about your name - Arto Kustaa Salomaa. Who gave you the
name, maybe your father?

Yes, so in the first place my last name, of course, comes from my father and
his original name was Grénholm, which is a Swedish name and means Green
Island. When he was very young, something like 15, in that time there was
a movement in Finland to translate names into Finnish, and Salomaa is
quite common name in Finland. There are many Salomaas and they are
not related to me. Then Arto, it is very easy to say, is the Finnish form of
German Arthur or English Arthur. Arthur Schopenhauer was my father’s
favorite philosopher and he wanted me to have this name. And Kustaa is
from Gustav Swedish name, and there are kings in Sweden with this name
Gustav and I got name Kustaa just because in Finland we have The Name
Days, and today (March 17) is the day of Kerttu, that is the women’s name,
and I was born on June 6, which is Kustaa’s Day, so this is the explanation
of the name.

Can you tell us something about the place where you were born, and early

days, how it looked in the primary school at that time, maybe you remember
your teachers or friends?
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Yes, I was born in Turku, and basically spent whole my life here, I've been
10 years abroad. I was born here and my childhood was here, and of course
childhood was at the time of the war, and these were very rough times. I was
pretty much alone, because my brother was in the front and my father was
also involved in war activities, and my mother and sister were also engaged.
My sister was actually 15 years older than me, so she was with me, but she
had to work until late in the evening, so I was just hanging around with
boys and this was my first contact with cryptography, because the boys
gangs were using this coding and I was very good in breaking codes and
doing things like this. I was also interested in mathematical problems at
that time.

For instance, one problem is when there are leagues of football teams,
for example, n teams, and how many games teams plays against each other.
Of course I didn’t know anything about Pascal’s triangle or binomial coeffi-
cients, but I was able to invent the rule for this and the boys did not believe
this rule and they came up with the counter example, and they took, ac-
tually fourteen existing Finnish teams and they took actual games. There
were 90 games and my formula gave 91, 7 times 13. But when we carefully
looked through the list, one game was missing. They had 2 Turku teams
and the game between them was missing, so my formula was correct. And
then, of course, the elementary school of that time was for one or two hours
per day, and there was bombing going on in Turku. Sometimes, some of the
activities were taking place in Naantali, the place not far from Turku and
the danger of bombing was not so high. After elementary school, I went
to classical lyceum, and five years after the end of war nothing much was
available. People usually say that people were much satisfied in that time
when there was nothing available. Of course I had some good teachers, for
example my math teacher in classical lyceum was very good, and also I liked
Latin very much, and now when I have time I still read some Latin and so
forth. In fact, it was by kind of accident that I haven’t studied Latin, so
I started the mathematic studies and I was the first years in Turku and I
found my research field, Formal Languages and the Automata Theory, when
I was in Berkeley.

What was the profession of your father?
He was a Professor of Philosophy in Turku.

What was the problem with books and text books of that time, because it was
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post-war era, no media available, how you got literature to study?

I would say that the math curricula of that time was very classical, it was
basically analysis, and a bit of algebra, and these books existed in Finnish.
But the modern books, I knew them only when I went to Berkeley.

How have you selected Berkeley?

This was more accidentally, there was a system of scholarships and grants.
Finland was the only state that paid its debts to United States after the
First World war and at some stage, around 1950, it was decided that from
that point on, all the further payments will be used for cultural exchange.
So scholars came to Finland and there were grants for Finnish students to
study in United States and this was graduate studies, so I have already had
my master degree when I applied this. And I really think it was kind of
accident, I knew the name of Tarski, who was in Berkeley, and I had listed
three universities, and the Committee chose Berkeley, so I went there. So
the Tarski’s name was my choice why I've put Berkeley.

Then you said you have met John Myhill.

Yes, John Myhill was one of the founding fathers of Automata Theory and
I attended his seminar. On that seminar there was a new book called ” Au-
tomata Studies” and we went through this book. My own work on this
seminar was about self-reproducing machines and in that time it was not
much known in biology or anything. For instance, it was a controversial
thing whether machines could at all reproduce themselves, because there
were all kind of arguments in articles that if you self-reproduce yourself, you
have to be more than what a machine can be. Von Neumann was the great
name and my work was more or less to do in detail what Von Neumann’s
paper was. My work there was never published, this was kind of very de-
tailed constructions of instructions for the machine. Parts for the machine
were randomly provided in plane and the machine was moving around and
collecting the parts. It was like Theory of Turing Machines.

Maybe in that time there were thoughts - can machines think?

Yes, the artificial intelligence was also forming, there were all kinds of ques-
tions what is possible for machines and what is not. If I compare the situa-
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tion then and now, the differences are that in late fifties early sixties, people
were very optimistic with machines translations, that it is a very easy thing
to translate from one language to another, but this was very difficult. And
people were thinking that machines could never play good chess, now it
turns to be the entirely opposite.

So, there have been some different opinions then and now? How do you
predict the future of machines nowadays, they will put us into slavery?

I don’t think so; I'm not into science fiction. Of course this is more political
question, like some search engines as Google, if they get too much power or
one gets information only from them, it is not so good. But, I think, once
you use your own judgment, it is a very good source to find information.

Do you think they have changed the way of learning or thinking of people,
because now we can find data and information everywhere?

Well, I think the learning is certainly totally different now, and this is of
course a problem for teachers, because if you have to write an essay, it is so
easy to copy from internet and it is very difficult for teachers to find this.
But, I think, in general this is a great asset, these new things.

You said that in your childhood there were your sister and your friends, but
now kids are growing near electronic media and after some years they start
reading, does it also influence their way of learning?

It certainly does, because some of my friends think that reading becomes
obsolete at some stage. But still, books are nicer to read than from the
machines.

What do you think after writing so many books, do you think it would be
possible to change something in the way of writing, to approach maybe clas-
sical books to electronic media presentations?

I think it is going very much towards electronic media. I have been involved
in one entirely electronic journal called the Journal on Universal Computer
Science. It brings also printed volumes, but these volumes are going mainly
to libraries. The publishing in general and the editing job now is much easier
than before. It is the same this peer reviewing, but earlier I had to make

27



many copies and mail an article and ask the person if he wants to review and
ask to send it back, but now I can just email the file, otherwise I would have
to make copies, etc. Also now I can just send the file and if he does want to
review, he will act as a referee and if disagrees, then I can ask someone else
in the same way just by forwarding the message. But how would be the pub-
lishing in general, I think the journals will still exist, because people want to
see the paper, not only at the screen. Maybe the more finalized version can
be printed, and in these electronic journals one can still change the contents.

What do you think about the quality printing? Would you like to see your
books printed in a good quality or maybe cheaper that would be easier acces-
sible?

I think this electronic means have certainly improved the quality, now it
is much easier to write papers than before. For example, the LaTex is a
very good tool and so on. I like when book appears in good quality and
usually the publishers do that, and then they can charge. I am an Editor
of this series of books, and these are nice books, and for one such book the
publisher can charge 100 euro.

How do you remember your colleagues and Professors from Berkeley, espe-
cially John Myhill as a person I mean?

John Myhill was a very difficult person, he had several nervous breakdowns
and sometimes he had to spend months in sanatorium and so forth, and I
was never so close with him. But, his lectures were very impressive, because
he was full of new ideas, but he was kind of out of this world. I have told
many times this story, it is a true story. We were waiting for him to come
to a lecture, and when he didn’t come we went to search him around and
he was in another room and he had already written the blackboard half full
without noticing that there was no audience. Tarski was, of course, entirely
different, he was very socializing, and was kind of a Man of the World, al-
ways dressed very elegantly and so forth. I took some courses from him.
There were many other people, like Roger Lyndon and Robert McNaughton
were there at that time, later they became very well known in this field.

In this book on the occasion of your 70th birthday, it is written that you are

one of the most influential researchers in the Theoretical Computer Science.
Of course, there are many directions, but which one would you maybe want
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to select, where you went deeper?

Certainly Automata and Formal Languages, these two subjects. Sometimes
you speak separately on Lindenmayer systems, because it is kind of biolog-
ical, but it’s much more Formal Language theory. I have also written two
books about Formal Power Series, and it is also kind of another extension
of Formal Languages because it’s not power series in the sense of classical
mathematics but in non-commuting variables, it is like words where letters
do not commute. The other field I have been working or teaching much is
Cryptography, and I have written a book about cryptography, but I’'m not
saying that I made any significant contribution to it, except maybe I was the
first one to teach cryptography in Finland and so many of these practical
people, in Nokia for instance, they are my students.

You actually started teaching cryptography when playing with kids.

It is true, but there was a time gap, this was in mid forties, then I came
back to cryptography only in late seventies, when there was this idea of
Public-Key Cryptography, very nice mathematically, very challenging and
interesting mathematically. I gave here in Turku first lectures, I think in
1982.

And then the book appeared in 1990.
Yes, the book appeared in 1990.

Here in your book could be found that William Stanley Jevons actually pro-
vided first idea about this one way function in cryptography. Do you have
any comment about this, maybe like this problem of factoring product of two
large numbers?

This is the key issue in this, but I'm not aware of any significant progress
in this. Of course, if some fast algorithm will be invented, this would mean
that RSA will become very vulnerable and a lot of these security things,
computers, are using RSA in some form.

It appeared this Shor algorithm related to the quantum computing. Is this a
problem for this area or still not?
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Not yet as far as I know, because the quantum computers are still develop-
ing, so I don’t think they still do some real big stuff.

You started speaking about your Professorship in mathematics in Turku, you
taught also cryptography and some other courses?

I can say that I have been teaching here in Turku, since I came back from
Berkeley, in 1957. And I have been teaching any kinds of courses, from
differential equations, calculus, number theory, algebra. Now I've just no-
ticed that also I gave course in game theory in 1965, and I've noticed that
I still have my lectures from this course and I've talked about this ”Nash
Equilibrium”, you know this now Nash became very famous, he won Nobel
Prize and there is this movie ”Beautiful Mind” which is about him. It was
a pretty new thing in 1965 this ” Nash Equilibrium”, so I talked a bit about
this in my lectures.

Does it mean that you like teaching or how do you feel teaching compared to
research?

Especially when I was younger I surely liked teaching. I also like very much
to guide PhD students. I have really wonderful PhD students, much better
than myself. They are all different and you need to have different approach
to every of them. Like, some students work entirely alone, and some you
have to see once or twice a week. So it very much depends on the person.

In one period, you also studied in Helsinki?

I have never studied in Helsinki University, but it was kind of formal reason
that I took one exam or degree. I have master degree here in Turku, and
then doctor degree in Turku, but it was kind of formal requirement that 1
have this intermediate degree, licentiate degree as called in Finland, so I had
this in Helsinki. I never actually studied there; I only took this degree there.

Then you went to Western Ontario in Canada?
I was two years there where, and I wrote this book ”Theory of Automata”

and it was a very nice period, it was an developing University and very nice
colleagues.
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How did you get contact to go to Western Ontario?

Actually, they have approached me, because Robert McNuaghton, whom
I’ve mentioned earlier, we were together in Berkeley, he had given lectures
in a summer school in London, Ontario, and he had mentioned about my
work on Axiom System for Regular Expressions and that is how they knew
me. So, they contacted me, actually by phone, it sounded like a nice oppor-
tunity and I went there.

Kai Salomaa?
Kai Salomaa, yes he is my son.
And he is there?

He is not actually there, but he is in Canada. He is in Queens University,
Kingston. He was, of course, a small boy when I was visiting there, but
actually I get regular contact with London and I have visited it almost ev-
ery year, including last fall. Now, of course I have additional motivation,
because my son is in Canada, and I want to visit him. But always when
I visit Canada, I spent couple of weeks in London, because still there are
actually many professors, my former PhD students, there are two who came
from here, Turku Center for Computer Science, Lucian Ilie and Lila Kari,
they are both there professors now.

Then you went to Aarhus, Denmark?

Yes, in between I was five years in Finland, and then I was a Visiting Pro-
fessor in Aarhus for two years. There I had also very nice time, that was
kind of beginning time of Lindenmayer systems, this biological thing. I had
some students in Aarhus, so we did some work there.

Then you also published this Mathematical Theory of L-Systems?
This was a bit later; it was actually written in late seventies, when I came
back to Finland. I was together with Grzegorz Rozenberg, who is, really I

can say, my best friend and we keep in daily contact, even now we phone
each other every day.
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Then in 1999, in a conference in Prague, you had a joint invited talk?

Yes, we actually started to talk and we practiced very much, saying the
same things together and we both gave some parts of the talk after that.

That’s really impressive, that you have so many co-authors, somewhere I
have found over 50. And also all these students, associates, you said very
close friends, for example Derick Wood or Hermann Maurer.

We all work in the so called MSW group and we work together.
How this group started?

It started, so that Hermann Maurer invited me to Graz, he had also earlier
worked with Derick Wood, and we started writing papers together and it
was a very nice collaboration. It was always starting in the following way,
that two of us start together and wrote the paper and the third one checked
it, so this happened in all places. Derick Wood was in Canada, and Hermann
was originally in Karlsruhe, Germany, but both came to Graz, Austria, and
I was here.

This huge group of your associates are from Romania, and they actually
came here.

Yes, actually Moisil I knew a little bit, we have talked few times in the early
sixties. I met him in a big math congress that is held every four years, and
it was in 1962 in Stockholm. After that he came to Helsinki and I met him
there. He had done work on mathematic logic, but then there was practi-
cally nothing in between, but only after the revolution in Romania. So first
Lila Kari came here and then after that I had very close cooperation with
Gheorghe Paun and Alexandru Mateescu, who died unfortunately few years
ago. So these are the closest Rumanians. And then of course, I had Roma-
nian PhD students here, Valeria Mihalache and Lucian Ilie here in Turku.
Lucian Ilie is now a Professor in London, Ontario.

And with Professor Mateescu you wrote a chapter in a handbook about lan-
guages something that is very interesting for me to ask. There is a table of
languages, how they develop, and in one place you are mentioning Serbo-
Croatian language, Bulgarian language, but not the Macedonian language.
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Is it just because it belongs to the same family of Indo-European languages?

I think this refers to this table; this is more or less the table that appeared
in some linguistic thing, it was in Scientific American or something similar.
This is basically where we did not do any more details, this is just kind of
introduction from language point of view, and this is more or less also from
Scientific American.

Was it so that it was one prototype language, proto-language, and that all
other languages developed from it?

This is how it is viewed in Indo-European languages, so our original contri-
bution here in this chapter starts from this Formal Language Theory, it is
more this telegraphic survey.

Your book on Formal Languages, published in 1973, was referred in 1991
among the 100 most cited texts, and it is really tmpressive and after that
appeared this Handbook on Formal Languages.

Yes, but this is entirely different thing. Like we say here, in some parts
of introduction, in that time, in 1973, one could really write about formal
languages in a single volume and still bring the topic to the area of recent
topics. But now, in nineties when this book was compiled, this book has 51
authors. It was impossible to conceive such one book, and that’s why we
wanted to make this Handbook. I think that I have written some articles,
like two articles with Mateescu and couple of others, and also one with Lila
Kari and Rozenberg about Lindenmayer systems.

Then about the origins of the Formal Language Theory, you wrote pretty
much about this story of origins in combinatorics, computability theory, etc.
What is you opinion now about these origins?

My opinion about origins has not changed. I have been mostly interested in
these aspects that are kind of mathematical aspects, dealing with Automata
Theory and combinatorics of words rather than these linguistic origins. For
the linguistic origins, for instance, the linguistic people, they kind of em-
phasize different things, which, of course, have also led to very interesting
mathematical formal problems. But, as regards the origins in general, I still
think that formal languages came from many sources.
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Emil Post, Azel Thue, Alan Turing, including Chomsky?

Chomsky is a bit different than the other three, from Post and Turing they
are more of this my type of origins.

But it is also interesting that Emil Post had just one paper about multiple-
valued logic, he started the same as you, and you also had several papers. Is
it the normal way of development, starting from multi-valued logic?

No, it is very accidental.

But beside these Formal languages you are also interested in the Turku di-
alect?

Well, to some extent, yes, surely. But I have not done anything formal about
this or anything in writing about this, but in translations of my cryptog-
raphy book, I have mentioned some examples of this Turku dialect. This
is the Chinese translation of Cryptography Book, I think here my point is
that if your language is Chinese, you don’t need any cryptography because
this is already a cryptography, and then I say that I ask whether the Chi-
nese people could read these phrases in Finnish. Jaakko Astola would surely
understand that. This last sentence is very good, you really have to know
Turku language to understand this.

Another interesting question is, since you have so many associates, so many
students, and you work with them in a different manner, maybe sauna was
the place to meet them?

Yes, some of them yes, but the point is that some people don’t want to come
to sauna. Some Finns make this mistake, they kind of force people to come
and my usual attitude is that, ok if you don’t want to come to paradise that’s
up to you. I have never forced anybody to come to sauna, but certainly I've
met some of them, like MSW group, we spoke about three-sauna-problems.
Because, I have an idea that the veins in your brain open when you are in
sauna. And then, if a problem is difficult, like Sherlock Holmes spoke of
three-pipe-problems, we spoke of three-sauna-problems and that you have
to go three times to sauna to solve this problem.
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Salosauna is?

Salosauna is my sauna, I had it since 1975, it’s about 50 km from Turku,
it’s very old building so we bought this, Salosauna was already built around
1870, so it’s an old wooden building.

There is a song about it by Herman Maurer?

There is a song, but it’s about people who came on the conference, it’s not
actually about Salosauna. Oh, he has also written about Salosauna, so you
are right, it’s actually in this book that I have. So this is Hermann Maurer’s
poem, he has written several things about Salousauna, both in English and
German.

And your paper ”What computer scientists should know about sauna”?

Yes, this appears in this Bulletin, actually several times. It is also available
in the net, and it’s also in German translation, somebody translated into
English and German.

Have you ever met any Serbian Professor?

I have certainly met, like there was this Oberwolfach Conference in earlier
times. I remember especially there was one Serbian, who was very good in
drawing, but I don’t remember his name. He drew a picture of me that was
very good.

And you became a Doctor Honoris Causa of sixz Universities?
Yes, actually of seven. It was six, but I think Graz was the latest.

What is your cooperation with those Universities? Do you have some coop-
eration in teaching or giving lectures?

The first one was the Swedish University in Turku, Abo Akademia and of
course I had some colleagues there, then University of Oulu also in Finland,
my former student is a Professor of Math there and I have been there. In
all of these Universities I have some contact and in Bucharest in Romania,
Szged in Hungary, then Magdeburg in Germany, there I also knew people.
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I have visited University of Latvia in Riga. I think in all of them there has
been some cooperation, more or less. Like, just yesterday I got an invitation
to State University of Latvia, they have some celebration, they could be 90
or 100 years old and they invited me, but I’'m not planning to go, because I
don’t travel so much these days anymore.

Then you became a Member of four Academia; it is Finnish Academy,
Swedish Academy in Finland, Hungarian Academy, then Academia Europaea?

Actually two in Finland, they are Swedish speaking Academy in Finland,
then Academy of Sciences in Finland.

You are active there?

I am not really very active; I very seldom go to these meetings. Like, these
two Academies in Finland, they meet in Helsinki and I usually don’t go
there, very seldom.

And about this Furopean Association for Theoretical Computer Science, you
have been there a president and chairing it, etc. What you can tell us more
about this Association?

This was kind of small at the beginning and I was somehow involved in
it from really early stages. And then it started to develop and it became
almost equally big as the corresponding association in America. It used
to have these main activities, so it has this Bulletin which they publish; I
had my Formal Languages column there for decades and it publishes other
things, like reports from the conferences, announcements of the conferences
and this Theoretical Computer Science journal used to be also the journal
of this Association. But I don’t really know what exact relations are now,
maybe it is not advertised that much anymore, this Association. Then also
we had this book series which were initiated by this Academy.

You have been very active in the Nevanlinna Institute and also in the jury
for the Gédel Prize. What are your memories about this?

I was a member when it started, about 10 years, but it seem very long time

ago now, now it’s something like that my job finished there in early nineties.
But it was first kind of Institute common to all Universities in Finland;
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it was in Mathematics and Computer Science. Its activities included, for
instance, and this is still true, they give prize for the best Doctoral disser-
tation in Mathematics in Finland each year. Some of my students have also
got this prize from the Nevanlinna Institute. The Godel Prize is kind of
common between this EATCS and corresponding American organization. I
was there and there are some rules how many years you serve there. I have
served there many years as the rules say and at least once, one year I was
Chairman in this. It selects what is called Godel Prize for the best article
in Theoretical Computer Science within the last five years also.

You said Mathematics and Computer Science; are they different or maybe
they are combined areas? How do you feel about this?

They are certainly combined areas; it is very difficult to say what about
Automata Theory and Mathematics, it is very close to Semirings Theory
and it is very mathematical and this Formal Power Series is of course very
mathematical. This of course concerns Theoretical Computer Science and
Computer Science in general.

You have selected very interesting titles for your books, one was ”Theory of
Automata”, then ”Computation and Automata” and then it was this ”Jewels
of Formal Language Theory”. It is a very interesting title.

This Jewels was kind of, actually the other two you have mentioned they
were kind of general research, but this Jewels was intended to present math-
ematically beautiful things in Formal Languages. The model for this book
was this Russian Khinchin’s book ”Three Pearls of Number Theory” so I
had this as a starting point for this Jewels book.

You have mentioned Russian authors and it’s mainly Soviet time. Was
there any influence of Soviet time to Finland, especially science in Finland?
Where they completely independent?

Yes, certainly. In my case there was no, but this can vary from field to
field, like there was some definite cooperation in certain technical areas. Of
course, | had some Russian colleagues who visited me here and so forth. My

main contacts were not in Russia.

How about the way of studying or life of a student here in Finland and maybe
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States? Was it so different?

Maybe not anymore now so different. But in my time it was very different,
because in that time students were really on their own, there was very little
guidance and Professors were very big bosses and you couldn’t see them
much. It was very different from when I went from here to Berkeley, to see
that famous persons, like Tarski, were available for ordinary student like me.

How could you see Finland and science in Finland now in the world perspec-
tive, because we all know Finland is one of the highest tech countries?

Well, it is very difficult to say in general for Science, but I think in my
area, Theoretical Computer Science, Finland is very good and there are my
students and there are also a lot of other people. And if you relate this to
the number of people in the country, I would say that only Israel is maybe
equally good in Theoretical Computer Science as Finland. Otherwise, Fin-
land is superior if you take the number of people in the population in the
country.

How do you feel, how it happened that Finland is so highly developed after
so terrible time, World War in FEurope? After Second World War, you had
very hard time, is it mentality of people?

I think one reason was, that there were few instances in history where a
small country like Finland, was able to defend itself from a vastly superior
power like when Finland was in the Winter War and in the Second World
War Finland was never occupied by foreign troops, and this makes Finns
kind of proud and maybe people didn’t want to leave the country. This is
of course one explanation. The other explanation would be that in sauna
veins open, but this is very difficult to say.

Turku was a former capital in some period. And is it Turku capital in science
and how are the relations between Turku and Helsinki, Turku and Tampere?

I think they are good, of course I can say that Helsinki now has a bigger
Institute and definitely much more people, it is also capital in science, there
is no question about it, but I think relations are good, and also with Tam-
pere relations are very good. I personally have very good relations with
both Technical Universities and former Rector Timo Lepistd, who is now
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late, he died unfortunately early, we were very close personal friends and
I have visited Tampere quite often. Even now I have good contacts there
with both schools, Technical University and University of Tampere. But
these are smaller places, but if you ask for capital, then you have to say it
is Helsinki.

I would like to ask you more about this Many-Valued Logic, because it is my
field of interest. Once you have written that the interpretation of the values
could be very important for practical application. But how to think about it,
what could be the interpretation, do you have your own opinion?

Well 1T have not been thinking about this so much lately. Of course, the
interpretation could be different kind of probabilities, but I think that ba-
sically some meta language level things start to be two valued after all.
My work in many-valued logic and my own contributions were not in these
interpretations, but this could be considered as purely combinatorial topic
that is this Composition Theory of Functions over finite sets, truth-values
are from finite sets and using this compositions, you can get any function.
This can be stated as strictly mathematical topic without any reference to
many-valued truth values. But I was also involved, this was a second part
of my thesis, I wrote something about axiomatization of logic, but it was
never published. Of course, later, there were many works done on this.

Since you analyze the history of many-valued logic and origins, do you see
the perspective of this area, maybe from engineering point of view, concrete
applications?

I know there are many people working in this area and many things have
been done since I was interested in this. Certainly, there are applications,
but I am not so much aware of them, so it is difficult to say, but certainly
the engineers have been working on this.

And about this DNA computing?

DNA computing is entirely different thing, so that was the field I've got
interested, because it is very nice from the Formal Language point of view,
because it brought entirely new problem areas. It is also very nice in these
steps that it could bring something entirely new, because you have this
massive parallelism, once you make this DNA soup, then you can encode
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all possibilities, and then all these complementarities and the combinations
form, you get kind of computation really in this sense. This really could lead
to something, but it is also difficult to compare which one is more promising,
the quantum computing or DNA, but really no striking applications have
been shown yet. It is kind of, how should I say, I do not believe either
one would ever substitute normal computers. In some problem areas, I can
visualize they can be very useful, especially Quantum computing could be
very useful in cryptography. And DNA computing also if one can really take
care of this massive parallelism in laboratory.

About these regularities that are described by using the L-systems, you also
mentioned the Sierpinski triangle, are they really appearing in nature, so
are they so natural that should be mapped into mathematics or they are
more mathematical and then we suddenly discover something in nature that
matches them?

Well, it’s both ways, so one speaks much about this general term Natural
computing, so it is computing model by nature, like genetic algorithms to
one can look as algorithms that started in nature. We look what happen in
nature, and then perhaps we can bring this to our own computing devices.
So, this is a really very very promising approach.

And about these regularities and automata - do you think that automata are
very good models to describe a lot of different phenomena or how would you
say? Automata, they are more mathematical models for many phenomena?

They have been used really, like this text editing and many things like this.
Now there is very much advanced theoretical work done on this complexity
of basic automata operations, these regular operations. For instance, if you
search certain texts, certain subtext, then really automata are very helpful,
but it is certainly not everywhere, so you have to look what kind of problems
come up and then decide.

What would be the vision for the development of Formal languages in the
future?

There is of course this, that I would like to call the French School, that are

very much in this combinatorics on words and this kind of mathematical
aspects of words. Then, there are these various linguistic approaches that
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are good topics for natural languages. Now there are all kinds of families
that are bigger than context-free languages, like one that we studied that
are good for natural languages. There are recent things like these biological
things like this slicing that we have done in DNA computing, and there are
many areas, so I cannot say which one will be most important in future.
The only thing I can say for sure is that this French School, this mathe-
matical topic are important, because mathematics will always be there, but
how important are other things will depend on whether they really bring
something significant to this.

Do you think that you, somehow, always support this mathematical approach
to Formal Languages? Does it mean that mathematics is essential thing in
this area?

Yes, certainly, of course.

And there is this binary Logic, Multi-valued logic, Fuzzy Logic? What do you
think about this Fuzzy Logic, because it is close to computing with words?

Yes, yes, there are all kinds of claims that Japanese have made all kinds of
equipment using Fuzzy Logic. I don’t know so much about this, but there
was one doctoral student here in Turku, who moved latter to Lappeenranta,
working in this area and then I had to know a little bit of this. I think it
certainly one can not ignore this topic, it is very promising approach, be-
cause I think that life is not this black and white, but there are this different
shades of gray and similar things in all kinds of situations, for instance if is
it cold or not in this room, etc. For all kinds of regulating devices, you need
this Fuzzy Logic for sure.

Would you like to visit East Europe one day, maybe Serbia, I would like to
mnuvite Yyou.

I would like certainly, however, as I said, I travel very little these days. My
health is otherwise ok, but I have very bad knees, so I'm using stick when I
walk outside. The only trip I like to go is that I usually go once a year to
Canada, and occasionally something else. But, very few trips abroad these
days.

There is another interesting question. Your son is working in your field.
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How does it feel to cooperate with your own son in the same field? Is it easy?

It is, of course, very easy, but we have not cooperated very much, but we
had some joint publications. But mainly, in all of these publications, there is
not a single publication where are just two of us, there is always somebody
else. My Chinese friend Sheng Yu is in many of these.

You have visited China?

I have not visited China, but also I have contact, because my son is married
to a Chinese.

And about translations of your books, they have been translated in many lan-
guages. How do you feel, is translation always very close to the original or
not so similar?

Except for German I cannot tell, for example for Chinese and Japanese I
cannot tell at all, then I think also Romanian and Vietnamese, they have
been really translated into languages that are not familiar to me. And there
is this German translation of Formal Languages that is very good. And
there is also a French translation of one of my books that is also ok. Then
Russian translations, I know and I can read a little bit of Russian, but I
cannot really tell is it good or not. There is this DNA computing in Russian
translation, and it is probably very good, because these are very good people
who translate.

You probably receive many letters from your former students all around the
world?

Yes, especially now e-mails.

How is to work with someone and became a friend at the same time? Is it
simplifies the scientific work or when you are friends you cannot fight that
much and argue on some topics or it just helps?

It certainly helps, so I would say that my best friends are really people with
whom I have worked very much. So it certainly helps, and I would say that
good cooperation is something where you don’t count how much work each
of you does, but everybody tries its best. This was always the case for this
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MSW group, we never counted we should do equally, and everybody tries to
do as much as possible. There are also different types of people, like some
people do not like to write things up, so I like to write things up. It is very
often, when we have certain results, then I write the paper up, and I produce
the final results.

How about mathematical proofs? Do you like to prove your theories or you
Just came up with some theorem, and you know that it’s correct and you
don’t like to write a complete proof or you prefer to do that?

Of course, if you publish it, you should write a proof and you should write
it in reasonable big details. When I write a proof, I usually do so, this is my
style of writing. I also provide some intuitive application. There are also
other styles, that are strictly formal, that say this is this, and this is this,
and it can go several pages, and one doesn’t really know what is happening.
Some people think this is not good, but I think it is good that I always like
explanations, like now we do this because we try to get this at the end, and
so forth.

And about examples in writing?

Examples I like really much. I liked very much, with this Romanian, my
very good friend, Alexandru Mateescu, who died three years ago. We were
different in this sense, I always provided an example when we came up to a
new thing, and then he started to generalize it to get algebraic generaliza-
tions, and I wanted to have specific examples to see where it leads to.

What is the topic that you maybe would like to say, and that I would ask,
and I didn’t ask about? Maybe some things considering work with students,
after so many years of experience?

There are of course many things, well one thing I would like to say is a
personal thing, I like classical music very much. I usually say that if you
have a very beautiful mathematical results, this is something like Beethoven
quartetto or something like this. Mathematics can be really very beauti-
ful and this is what I also like to say, that mathematics is a great fun. If
you really have some problem and you are really making some progress and
prove it, then there is no other thing that I would like to do more. Like I
want to watch football and my favorite example is that there was a World
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Cup Final in football, it was between Germany and Argentine in 1990, and
at the same time I had a really a very nice thing to write. Then finally I
watched the final, but immediately I came to this that was interesting.

Are you playing some instrument?
I’'m not playing myself. This is also when I compare music and mathematics,
it is that you can really enjoy in music without being professional, but I

doubt whether you could really enjoy mathematical beauty without being,
at least to some extent, professional.
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On Many-valued Systems of Logic

BY

ARTO SALOMAA

1. HISTORICAL AND PHILOSOPHICAL REMARKS

1.1. The present paper is divided into two parts. In the first
part we outline the historical development of many-valued logical
systems and discuss philosophical problems concerning many-valued
logics in general. A certain problem of many-valued propositional
calculus is investigated in the second part. The author is indebted
to Professor Georg Henrik von Wright for many valuable suggestions,
especially in the [lirst part of the paper.

In a many-valued system of logic the principle »Every pro-
posilion is either true or false» is not valid. Instead of two truth-
values, »truth» and »falsity», there are three or more truth-values.
The principle mentioned is replaced by another such as »Every pro-
position is true or false or tertium», From a philosophical point of
view, the difficulty with the many-valued systems consists in finding
an interpretation of the truth-values involved in the system, With-
out an interpretation assigning a meaning to the truth-values
the given many-valued logic remains an abstract structure. The
originators of many-valued logics have had various interpretations
in mind, as will be seen in the following brief historical remarks.

The first forerunners? of many-valued logics were MacCorr and

! The history of the law of the excluded middle lies beyond the
scope of this work. We refer to some works among the vast literature
on this subject. Lukasiewicz is of the opinion that while Aristotle was
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Peirce. The former refers to his logic as a »logic of three dimensionss,
opposite to the logic of Schréder and that of Venn which have only
two dimensions. [Gf. MacColl, p. 182.] MacColl divides all pro-
positions into three classes:

propositions which are certain, i.e. always and necessarily true; pro-
positions which are impossible, i.e. always and necessarily false; and
propositions which are variable, i.e. which can be true or false. As
examples of these classes, respectively, he mentions the following
propositions: »2 + 3 = 5, »~ (2 + 3 = b)» and »xr = 2. [Cf. Lovett,
pp. 166 —68 and MacColl, p. 157.] The logic of MacColl is developed
in the form of an algebra where the law of the excluded fourth
holds, i.e. every proposition belongs to one of the three classes.

familiar with this law he did not accept it without reservations bhecause
it is not applicable to propositions which refer to future contingent
events., The actual inventor of this law was Chrysippus, a [ounder of
the Stoic school. Therefore, we should rather speak of »mon-Chrysippian»
than of snon-Aristotelian» logics. [Cf. Lukasiewicz 2, pp. 63—64 and
75—76; and Lukasiewicz 3. The Stoic insistence that every proposition
must be either true or false is pointed out also in Bochenski, p. 91.]
Opposite views have been stated especially in a discussion concerning
the matter during recent years. [Cf. eg. Anscombe. Most of the papers
belonging to this discussion have appeared in the »Philosophical Reviews.
The view that Aristotle did not want to introduce a third truth-value
has been expressed earlier in Becker. Cf. also Prior 2 where strong
evidence is given to the opinion that il Aristotle had a three-valued
logic then his disjunction was not truth-functional.]

There is an extensive study by Michalski concerning the history
of the law of the excluded wmiddle during the Middle Ages. [Cf.
Michalski, especially pp.285—331.] It is emphasized that both Duns
Scotus and Occam considered it necessary Lo introduce a third truth-
value. Their argument was based, following Aristotle, on propositions
which refer to future contingent events. On p. 301 of Michalski's work
we read:

» .. dans Pargumentation d’Ockham I'idée d’une troisi¢me valeur

dans la logique n’est pas le résultat d’une discussion théologique,

mais en est un instrument tiré du traité d’Aristote De Interpretatione.

Jean Duns Scot puisait sans nul doute aussi 4 ce méme traité, quand

il expliquait I’essence des propositions qui ne sont ni vraies ni erronées,

complexa neutra.»
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[CE. Lovett, pp. 166 —68.] MacColl applies his logic especially to the
calculus of probabilities. In fact, he is to be considered as a fore-
runner of the view which interprets truth-values as probabilities,

Peirce has expressed his ideas in a rather fragmentary form,
mostly in an unpublished paper »Minute Logicy, dated 1902. He
speaks of a »trichotomic mathematics» which could be interpreted
as mathematics with three truth-values. However, he thinks that
a trichotomic mathematics entirely free from any dichotomic element
is impossible. [Cf. Peirce 4.308.] Peirce failed to develop his
trichotomic system to any considerable degree.

The work of VasiLicv which was published about ten years later
but has remained fairly unknown comes closer to the modern con-
ception of a many-valued logic. Vasiliev has in his logic three »forms
of the judgments: simple affirmation »S is P»; simple negation »S is
non-P», and combination of the affirmation and of the negation
(indifferent judgment) »S is simultaneously P and non-P». [Vasiliev,
p- 108.] The law of the excluded fourth is valid. Vasiliev constructs
a consistent system on the basis of these suppositions. In essential,
Vasiliev’s theory was directed against conceiving the principle of
contradiction in too general a fashion.

We quote finally a statement by Gurarie from 1916 where some
main ideas leading to a many-valued logic are very clearly expressed.
[Guthrie, pp. 157 and 336.] Guthrie did not develop his ideas any
further. '

:Not only can logic include more than the logic of Aristotle, as the
modern logistic does, there might have been non-Aristotelian logics
with principles different from the familiar laws of contradiction and
excluded middle. What final authority would judge between the
ultimate ’correctness’ of Aristotle’s logic which offers two contra-
dictories, obeying the laws: -2’ =0, v +a’ =1, (2') ==z, and
a logic which would provide three contradictories, obeying the laws:
zrxvx" =0, 4+ +2" =1, (x) =" () = x? It is true that
we can only discuss other logics in terms of one logic, but this is
no more a proof that they are therefore unreal than is the fact
that an Englishman in discussing German must use English, a proof
that English is the a priori condition of commmunication, valid for
all times and all places.»
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1.2. The actual discovery of many-valued logics was madein-
dependently by Lukasiewicz and Posr about 1920.

Lukasiewicz published a three-valued logic in 1920 which he
generalized two years later into a logic with any denumerable number
of truth-values. [Ci. Lukasiewicz 1 and Tarski, p.47.] The l'idée-
force leading Lukasiewicz to the discovery of many-valued systems
of logic is his conviction that two-valuedness is not adequate for
modal logic. He chooses three principles to be the basis for modal
logic. Of these we mention the third: for some p, it is possible that
p and it is possible that not-p. This principle is the result of a study
concerning propositions about future contingent events. Using this
principle and the hypothesis that the modal operalor M (vt is
possible thats) is a two-valued functor, Lukasiewicz easily deduces
some contradictions from well-known tautologies of the two-valued
propositional calculus. [Cf. Lukasiewicz 2, pp. 53 —62. The principle .
mentioned above is the main source of contradictions. The other
two principles only make modal concepts unnecessary by reducing
Mp to p.] These difficulties are overcome by the introduction of a
third truth-value. And Lukasiewicz concludes [Lukasiewicz 2, p. 71]:

». .. alle fitr modale Aussagen Uberlieferten Sitze sind im drei-
wertigen Aussagenkalkiil widerspruchsfrei erwiesen. Dieses Resultat
scheint mir im hohen Grade bemerkenswert zu sein, Es hat nédmlich
den Anschein, als ob unsere, mit den Begriffen der Moglichkeit und
Notwendigkeit verbundenen Intuitionen auf ein logisches System
hinweisen wiirden, dass von der gewohnlichen, auf dem Zweiwertig-
keitssatz gegriindeten Logik grundsiitzlich verschieden ist.»

Although the value of Lukasiewicz’'s discovery is not to be
underestimated, the argument which led him to this discovery seems
to be rather vague. The problems of modal logic and those of truth-
logic are on different levels, and solutions are not found by simply
introducing an intermediate truth-value »possibles. Lukasiewicz’s
whole argument rests on the hypothesis that modal operators are
truth-functional. This leaves only four choices for each (one-place)
modal operator, eg. M, and none of them corresponds to our intuitive
ideas of M. On the other hand, Lukasiewicz takes these intuitive
ideas to be the basis for modal logic. Therefore it is no wonder
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that contradictions arise. Lukasiewicz's hypothesis is to be rejected
because it has been generally accepted that modal operators are
not truth-functional but more like quantifiers. [Cf. Prior 1 and
Prior 2, p. 324.] Of course, these remarks have no bearing on the
formal results of Lukasiewicz.? They merely make il questionable
whether his three-valued system possesses an intuitively acceptable
interpretation. [This is claimed in Lukasiewicz 2, p. 74.]

We mention finally an interesting problem formulated by Lukasie-
wicz: what is the difference between an m- and n-valued logic
{m > 2, n > 2), especially from a philosophical point of view? [Cf.
Lukasiewicz 2, p. 73.] Lukasiewicz was earlier of the opinion that
only three-valued and infinite-valued logics have philosophical im-
portance, and n-valued logic is essentially the same as three-valued
logic, for any finite n. [Lukasiewicz 2, p. 73.] Later on, while studying
a new system of modal logic, he changed his opinion. [Lukasiewicz 4,
p- 129.] The whole problem is still far from a satisfactory solution.
It is closely related to the problem which will be discussed in section
1.6. In the solution especially some formal results have to be taken
into consideration. [Cf. Kalicki, p. 177.] ‘

Post discovered many-valued logics independently of Lukasie-
wicz and published his results in 1921. [Post, pp.180—85.] He
never published anything concerning the matter since then and
thus his contributions to the theory of many-valued logies fill only
six pages. Unlike Lukasiewicz who begins with a three-valued
system and generalizes it afterwards, Post presents his ideas at once
in their full generality. He even considers an arbitrary number of
designated truth-values while Lukasiewicz has only one designated
truth-value. [For the notion of a designated truth-value, cf. Rosser-
Turquette, p. 12.] On the other hand, Post does not generalize his
systems to contain an infinite number of truth-values. He does not
try to find an intuitively acceptable interpretation for his systems.

1 It is customary in the literature Lo refer to these results as the
sLukasiewicz-Tarski calculi». It is to be emphasized that only the
definition of the modal operator M in terms of implication C and
negation N is due to Tarski. [Cf. Lukasiewicz 2, p. 66; and Tarski,
p. 38.]
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His many-valued logics are a direct generalization of the truth-table
technique invented by him.

1.3. In the following four sections we shall discuss some of the
major philosophical problems concerning many-valued logics in
general, The interpretation of the truth-values is one of them.
Lukasiewicz had in mind three modal concepts »necessity», »con-
tingency» and »impossibility» for his three-valued logic. As seen
above, there are several difficulties involved in this kind of inter-
pretation of the truth-values. It seems more plausible to interpret
the truth-values through epistemic concepts such as »knowns, »un-
known» and sundetermineds, or »verified», »falsified» and »undecidedn».
If this is done then the set consisting of »true» and »false» is replaced
by a set consisting of three epistemic concepts. This does not
necessarily mean rejection of the law of the excluded middle but
only indicates that the latter set is more useful than the former.
The same thing is expressed by Baylis as follows [Baylis, pp. 164 —65]:

»Of course it may be that some who deny that every proposition
is either true or false do so not because they confuse truth and
verifiability but because they wish to use the word "truth’ to signify
what is ordinarily signified by the word ’verifiability’. With such
persons there seems little need to dispute, for what they propose
is only a terminological change and they could not object logically
to the use of some other word for what is now signified by the word
*truth’ ... Much more important than such terminological con-
siderations are such questions as the following., Are there sets of
concepts, other than the truth-falsity set, such that every pro-
position exemplifies at least one member of the set and that the
concepts of the set together exhaust the relevant possibilities? If
there are such sets, are they more useful than the truth-falsity
set?... For any such exhaustive classification of propositions into
n classes the work of Lukasiewicz and Tarski has provided us with
an n-valued matrix calculus for the precise statement of certain
relations between members of these various classes.

When the number of truth-values grows larger then the inter-
pretation becomes still more difficult. Some have tried to identify
the truth-value of a proposition with probability. However, this
is futile because of the following reason noticed first by Mazurkie-
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wicz. [Cf. Zawirski 1, pp. 516 —17.] In all existing systems of many-
valued logic disjunction is truth-functional, i.e. the truth-value of
a disjunction is known when the truth-values of both components
are known. The same does not hold true with respect to the
probability of a disjunction. There are some attempts in the literature
to overcome this difficulty by letting the truth-value of a disjunction
depend on the truth-values of both components and, in addition,
on a third independent parameter. |CGf. Reichenbach 1 where this
parameter is called »Kopplungsgrad». The question has been studied
more thoroughly by Zawirski., The remarks above apply to both
disjunction and conjunction. Gf, Zawirski 2.] According to the theory
of Zawirski, in an n-valued logic Lhere are n-1 possibilities for the
truth-value of a disjunction after the truth-values of both components
have been fixed. This is not plausible and, therefore, this solution
of the problem is not satisfactory. [Cf. Zawirski 2, especially p. 440.]
So no advantage for many-valued logic is derived from this inter-
pretation. On the other hand, the calculus of probabilities can be
developed within the framework of two-valued logic and, thus,
there is no use of combining these two things.

To sum up, we see that the prohlem of finding an interpretation
for the truth-values is still far from a satisfactory solution, at least
in the general n-valued case. This need not deter us. The abstract
nature of truth-values has been indicated already by Peirce. [Cf.
Peirce 3.366.] And in the formal development of many-valued logic
the semantical meaning of truth-values is quite unessential, As a
matter of fact, it is an advantage from the formal point of view
that we have no prejudices regarding the possible interpretations.

The precise formal development of many-valued logic has so
far not been carried beyond the level of the [irst order predicate
calculus. It seems probable that when one has constructed many-
valued logics which are at least rich enough to include a theory of
numbers then it is also easier to find a plausible interpretation for
the truth-values. [Cf. also Rosser-Turquette, p. 2.]

1.4, A variety of problems arises from the fact that, as it is
claimed, in the development of a many-valued logic the meta-
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language is Lwo-valued. This was pointed out already by Post
[Post, p. 185.] as follows:

»We must however take into account the fact that our develop-
ment has been given in the language of | T; and for thal very reason
every other kind of system appears distorted. This suggests that
if we translate the entire development into the language of any one
«Tm Dby means of its interpretation, then it would be the formal
system most in harmony with regard to the two developments.»

Since then, the alleged two-valuedness of the meta-language has
heen the chief argument used by the opponents of many-valued
logic. [Cf. eg. Linke who refers to many-valued logics as only »logoide
Formalismen».|] To meet this objection, one can state that n-valued
logic is nol meant to be the only existing logic. It is used for those
purposes for which it suits better than two-valued logic. [This is
also the point of Rosser and Turquette. Cf. Rosser-Turquette, p. 1.]
It is not even necessary to go so far because the whole question
about the two-valuedness of the meta-language is unclear. The two-
valuedness of the meta-language is doubtful, if not untrue, and at
least cannol be precisely stated without a formalization of the meta-
language.

As regards the critisisms directed against many-valued logics,
a couple of other points are to be mentioned. Leblanc points out
that if the number of designated truth-values in an n-valued logic
is greater than one then the epistemological significance of n-valued
tautologies is obscure. [Leblanc, p. 45.] In our estimation, it will
then be more difficult to find a satisfactory interpretation for the
designated truth-values than for the undesignated ones.

The following fact noticed by Frey might be very fruitful for
further study, We cannot define a many-valued logic by using only
the axiomatic method, An ordinary axiomatization does not involve
many-valuedness. The latter is obtained by introducing truth-tables.
[CGf. Rosser-Turquette where the difference between a struth-value
slipulation» and an »axiomatic stipulation» is pointed out.] In order
to obtain a many-valued logic through the axiomatic method, we
should introduce a separate axiom system for each of the truth-
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values. In the following quotation [Frey, p. 58] Frey refers to three-
valued logie.

»Eine mehrwertige Logik ist vom axiomatischen Standpunkt aus
erst dann mehrwertig, wenn [iir alle Grundbereiche ein eigenes Axio-
mensystem angegeben werden kann, Es muss aber klar sein, dass
die drei verschiedenen Axiomensysteme als solche ohne jeden inneren
Zusammenhang sind. Dieser Zusammenhang ist nicht axiomatischer,
sondern wieder rein funktionaler Natur. Es bleibt also die vorhin
ausgesprochene Tatsache bestehen, dass die Mehrwertigkeit einer
Logik nur vom funktionalen Standpunkt aus sinnvoll ist, wihrend
eine Logik vom axiomatischen Standpunkt aus immer aristotelisch,
d.h. zweiwertig ist.»

1.5. Many-valued logic is often compared with non-Euclidean
geometry. Euclidean and non-Euclidean geometry cannot be given
preference over one another on purely formal grounds, and the
same holds true with respect to two-valued and many-valued logic.
[Cf. eg. Ushenko. Cf. also Post, pp. 182—85, where the following
interesting difference between point spaces and struth spaces» is
studied: we are able to intuite a three-dimensional point space but
only a two-dimensional truth space.] This analogy has been carried
even farther. Just like only one geometry is true of the actual world,
some authors claim that only one logic is »right», i.e. only one logic
can be accepted as actual logic. [Gf. Ushenko, p. 612.] Lukasiewicz
is of the opinion that the choice between a two-valued and a many-
valued logic is not arbitrary. Experience will decide which of these
logics is right. [Gf. Kokoszyiiska.] Lukasiewicz does not, however,
indicate how this decision is made and which logic experience is
based upon.

This analogy does not seem well-established. There are no fixed
laws of logic which could be found out in the same way as the laws
of the universe. At this point, we share the view of Lewis [Lewis,
pp. 483 —84.]:

»There are no "laws of logic’ which can be attributed to the universe
or to human reason in the traditional fashion. What are ordinarily
called ’laws of logic’ are nothing but explicative or analytic state-
ments of the meaning of certain concepts, such as truth and falsity,
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negation, ’either-or’, implication, consistency, etec., which are taken
as basis,

A ’system of logic’ is nothing more than a convenient collection
of such concepts, together with the principles to which they give
rise by analysis of their meaning.

There are an unlimited number of possible systems of logic, each
such that every one of its laws is true and is applicable to deduction.
These systems are alternatives in the sense that concepts and prin-
ciples belonging to one cannot generally be introduced into another
— because of fundamental differences in category.

e

Sufficiency for the guidance and testing of our usual deductions,
systematic simplicity and convenience, accord with our psycho-
logical limitations and our mental habits, and so on, operate as
criteria in our conscious or unconscious choice of 'good logic’. Any
current or accepted canon of inference must be pragmatically de-
termined. That one such system should be thus accepted does not
imply that the alternative systems are false: it does imply that
they are —or would be thought to be — relatively poorer instruments
for the conduct and testing of our ordinary inferences.»

1.6. Many-valued logical systems have purely theoretical interest
as formal systems of a certain kind. From a pragmatic point of
view, however, it is natural to ask whether these systems have
useful applications. More precise formulations of this question would
be: what problems can be solved by means of many-valued logics
which cannot be solved by the ordinary two-valued logic, or what
are the problems whose solution is simplified by the use of a many-
valued logic? [Cf. also Rosser-Turquette, pp. 110—11.] This question
is closely related to the one discussed in section 1.3 and, therefore,
it is natural that very little has been found out so far.

Many-valued logics seem to lead the way out of certain well-
known paradoxes. Bochvar has developed a three-valued system of
logic without a theory of types and shown that Russell’s paradox
cannot arise in this system. [Cf. Szmielew.] Recently, Skolem has
obtained a more general result. Suppose a definition of a set is
built of statements of the form »u belongs to »» by using only
sentential connectives, Then, according to Skolem's result, no con-
tradiction can arise from this definition, provided that the connectives
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involved are interpreted as in Lukasiewicz’s infinite-valued pro-
positional calculus. [Cf. Skolem, pp.1—6.]

The idea that many-valued logics may have applicalions in
physics was suggested by certain results which, according to some
physicists, called for a new type of reasoning. Thus in Zwicky we read:

»From a deeper scrutiny of the foundations of scientifie truth
it follows that every scientific statement referring to observations
should possess a certain minimum degree of flexibility. In other
words, no set of two-valued truths can be established with the
expectation that this set ultimately will stand the test of experience.
Formulations of scientific truth intrinsically must be many-valued.»

Many authors have taken it for granted that the logic of modern
science is al least three-valued. [Cf. eg. Reichenbach 2, pp. 144—48
and 160—66.] In more recent years onc has become more cautious
concerning the necessity of the use of a many-valued logic in physics.
[CE. Margenau and Rosser-Turquette, p. 2. Cf. also Birkhoff—von
Neumann where it is clearly pointed out that from the point of
view of quantum mechanics distributive identities are the weakest
link in logic and so there is no special need for many-valuedness.]
It has been emphasized that new systems of logic are highly
interesting and useful in their own right but their establishment
need not be justified by the allegation that they are implied by
scientific procedures. It has also been pointed out that one cannot
use three-valued logic and, at the same time, some parts of mathemat-
ics which are based on two-valued logic. [This is done, for instance,
in Reichenbach 2. Cf. Margenau, p.87.] Thus the possibilities of
the use of many-valued logics in modern science are still unclear
and the proposals made so far are to be considered premature.!

2. GENERALIZED CONNECTIVES

2.1. In what follows we shall study generalizations of the
familiar connectives in two-valued propositional caleulus: implication,

1 'We consider as premature also some recent more or less informal
attempts to apply many-valued logics in ethics, [Cf. Cohen.]
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equivalence, negation, conjunction and disjunction. This is one of
the problems in many-valued propositional calculus.® It is not clear
how, for instance, implication is most suitably characterized in an
n-valued propositional caleulus. Therefore, it is natural to ask how
one can define connectives for n-valued propositional calculus which
are analogous to those in two-valued calculus,

After a few historical remarks we discuss various conditions which
may be imposed upon the genéralizations in question. Furthermore,
we choose some sets of these conditions and investigate problems
concerning consistency and independence. (Sections 2.2—2.5.)
Then we establish interconnections between Sheffer functions and
generalized connectives (section 2.6), investigate methods of deciding
whether a given function satisfies a certain condition (section 2.7),
as well as methods of calculating the number of functions satisfying
a certain condition (sections 2.8—2.9). Finally, we obtain results
concerning the validity of some tautologies of two-valued pro-
positional calculus when the connectives involved are replaced by
some generalized ones and the caleulus is considered to be n-valued
(section 2.10).

The first generalized implication was introduced by Luxasie-
wicz. [Cf. Lukasiewicz 1 and Lukasiewicz 2, p. 72.] Its truth-function
c (x, y) is defined as follows:

! We use the word in the sense of Rosser and Turcuette, [Gf. Rosser-
Turquette, pp. 10—12.] We also apply, without further explanations,
some customary terminology such as swell-formed formula» or »wi,
rdesignated truth-values, struth-function» or shortly sfunctions, and
»Sheffer functions, [Cf. Rosser-Turquette, pp. 10—12 and 25.] We
shall always use the numbers 1,2,...,n to denote truth-values
and the numbers 1, . . ., d to denote designaled truth-values (d < n).
d and n are used instead of S and M in Rosser-Turquette, So the
number of truth-values is considered to be finite. We refer to 1 as
the sgreatest» truth-value and to n as the »leasts» truth-value. Thus,
by the expression sa greater Lruth-value» is to be understood »a
numerically less truth-values. All operations, eg. addition, are carried
out modulo n. We finally mention that for our purposes it is not
necessary to introduce in the meta-language new names for the
variables and connectives. Thus, we simply let every variable,
connective and wff serve as its own name.
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¢z, y) = max (1, 1—z 4 y).

Lukasiewicz does not motivate the choice of this particular function.
However, his function satisfies most of the requirements for a
generalized implication, as will be seen in section 2.2. This is the
case only when the number of designated truth-values is one.

According to LEwis and Lancrorp, implication is any connective
whose truth-function c (x, y) satisfies the following condition: if i
is designated and j undesignated then c (i, j) is undesignated. [Lewis-
Langford, p. 233.] This condition guarantees the validity of modus
ponens. In our estimation, however, it is too weak to be an adequate
characterization of an implication function. As a matter of fact,
in two-valued propositional calculus there are eight functions satis-
fying it.

A much stronger characterization for an implication function is
given by WEeBB. According to him, ¢ (i, j) has a designated value
if and only if i = j. [Cf. Webb, pp. 162—64. As a matter of fact,
Webb deals with calculi with only one designated value but we
have »translated» the condition for the general case. This remark
applies also to the reference Lo Lewis-Langford given above.] In
the two-valued case only one function, namely material implication,
satisfies this condition. The same condition with the exception that
the case i = j is left open is given by Swirr. He introduces also the
condition that implication should be transitive, as well as a condition
whose generalization is condition 12) in section 2.2. [Cf. Swift,
p. 615. For the latter, cf. also Dienes.]

For other generalized connectives, very few characterizations
are given in the literature. Negation, conjunction and disjunction
are usually taken to be the connectives whose truth-functions are,
respectively: ne () = n + 1—=z, k (z, y) = max (2, y) and a (z, y) =
min (z, y). They originate from Lukasiewicz. [Cf. Lukasiewicz 1 and
Lukasiewicz 2, p.72.] HempEL speaks of a system of generalized
negations [cf. Hempel] but, in our estimation, there is no reason
for calling his one-place functions negations. The same holds true
for the so-called cyclical negation ne (z) = x + 1. [Cf. Post, p. 180
and Reichenbach 2, pp. 150 —60.] More general conditions for con-
junction and disjunction are given by Dienes. [Cf. Dienes.] They

99




128 ARTO SALOMAA

are essentially the same as conditions 1), 1), 7) and 7’) in section
2.5 below. Dienes gives also a list of tautologies of two-valued pro-
positional calculus which are supposed to remain valid when the
connectives involved are replaced by the generalized ones and, thus,
obtains some further characteristics of the generalized connectives,

Finally, we mention the very strong conditions imposed upon
generalized connectives by Rosser and TuRQUETTE. According to
them, implication satisfies »standard conditionss if its truth-function
¢ (¥, y) assumes an undesignated value if and only if z is designated
and y is undesignated. Conjunction satisfies standard conditions if
its truth-function k (r, y) assumes a designated value if and only
if @ and y are both designated. Standard conditions for other con-
nectives are defined analogously. [Rosser-Turquette, pp. 25—26.]
Thus, by the definition of generalized connectives, every tautology
of two-valued propositional calculus remains valid in n-valued pro-
positional calculus. [Cf. section 2.2.]

2.2. We use capital letters G, E, N, K and A to denote implication,
equivalence, negation, conjunction and disjunction, respectively. The
corresponding truth-functions will be denoted by small letters:
c(2,y), e(xy), ne(), k(z,y) and a(z, y). (The function cor-
responding to negation is denoted by »ne» to avoid confusions with
the number of truth-values n.) In this section we discuss the following
conditions which may be imposed upon implication. Only such
conditions are taken into consideration which can be stated without
defining any other generalized connective.

1). Foreveryi sdand j >d, c(i,]) >d.

2). For some i and J, ¢ (i, j) £ d and ¢ (j, i) >d.
3). For some j >d, ¢(i,]) < d.

4). Forsome i £dandj =d, c(i,]) £ d.

5). For every i, ¢ (i, i) = d.

6’). For all i and j, if { > thenc (i, ]) = d.

6). Forall i and j, if { = jthenc(i, ) £ d.

7). For all i and j, if i < j then ¢ (i, j) >d.

8). For alli, j and h, if { > ] then ¢ (h, i) 2 c(h,J).
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9). For all i, j and h, if i > j then ¢ (i, k) < ¢ (j, h).

10). Always when e (b, i) < dandc (i, j) £ dthenalsoc (b, j) < d.
11). ¢ (i,j) >d if and only if both i £ d and j >d.

12). ¢(1,n) = nandc(n, 1) =c(1,1) =c(n, n) = 1.

In syntactical terms, these conditions read as follows:

1). Modus ponens is a valid rule of inference for implication C.

2). Implication is not commutative (symmetrical). As a matter
of fact, this condition defines non-symmetry in a strong sense.
Weaker condition would be: for some i and j, ¢ (i, j) % ¢ (j, i).

3). pCq does not require ¢, i.e. in modus ponens the minor
premise is not superfluous.

4). pCq does not exclude ¢, i.c. modus ponens is not empty.

5). pCp is always assertable.

6"). pCq is assertable when p has a smaller truth-value than g.

6). pCq is assertable when p has a smaller truth-value than g
or a truth-value which is equal to that of ¢.

7). pCq is not assertable when p has a greater truth-value than .
(6) and 7) together imply that pCq is assertable if and only if the
truth-value of p is less than or equal to that of ¢.)

8). Suppose the truth-value of p is less than that of g. Then the
inference from any r to p cannot have a greater truth-value than
the inference from r to ¢. _

9). Let p, ¢ and r be as in 8). Then the inference from p to r
cannot have a smaller truth-value than the inference from ¢ to r.

10). Implication is transitive in the following sense. If pGq and
¢Cr are both assertable then also pCr is assertable.

11). pCq is assertable if and only il p is not assertable or ¢ is
asserlable (inclusive »om). '

12). Implication reduces to the standard two-valued one if the
vintermediates truth-values are left out.

At least these conditions (and perhaps some others) have to be
taken into consideration when one wants to study the question
which among the functions in n-valued propositional calculus might
plausibly be considered to be implication functions.

We begin with some obvious remarks concerning. conditions

9 — Ajatus XXII
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1)—12). Condition 5) implies both 3) and 4), 6) implies 6'), and
6) and 7) together imply conditions 1)—5) and 10). 6’) and 7) together
imply 1), 2) and 10), and also 3) and 4) in case 1 << d < n—1. Con-
dition 11) alone implies 1)—6) and 10). However, 11) is not con-
sistent with 7). There are, namely, !/, (n®—n) — d (n—d) pairs (i, j)
for which c (i, j) has a value £ d according to 11) but a value >d
according to 7).

After these preliminary remarks we denote certain sets of con-
ditions 1)—12) as follows: '

(C,) is the set consisting of 1), 2), 3) and 4).

(Cy) —)— 1), 2) and 5).
(Cyp) —p— 1), 2), 5) and 10).
(Cp —r— 6) and 7).

(Cp) —h— 6), 7), 8) and 9).
(O] —y— 11) alone.

Gy —)— 11), 8) and 9).

Definition 2.2.1. A two-place function ¢ (z, y) is an implication
function satisfying (C;) if c (z, y) satisfies each condition in the
set (C;) wherei =1,...,7.

It is easily verified that each of the sets (C;) is strong enough
to determine implication uniquely when n =2 and d = 1. (If we
want to study implications C for which pCp is not always assertable
we can replace 6) by 6") in (C,) and (Cg). Then the uniqueness in
the two-valued case is no more valid. However, theorem 2.2.1
remains valid.)

Furthermore, (G,) — (C5) form a sequence of sets of conditions
in which each set contains stronger conditions than the preceding
set, i.e. if a function satisfies (C;) then it satisfies also (C; _,) where
i =2, 3, 4, 5. The same holds true with respect to (C;), (Cp), (Cj),
(C¢) and (C,). The sets (C,) — (C;), thus, give a pretty good view
of conditions of various strengths which may be imposed upon
implication, as well as of the contradictoriness of conditions 7)
and 11). Any function satisfying (Cg) or (C,) satisfies ten of our
conditions 1)—12). We have entirely omitted condition 12) from
the sets (C;) because, although it is mentioned by some authors
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[cf. section 2.1], we do nol consider it plausible, at least not for
all values of n and d. However, one may add it to some or all of
the sets (C;). Theorem 2.2.1 remains valid also in this case, with
a couple of exceptions. [Cf. the end of the proof.]

Obviously, the sets (C,) are consistent, i.e. if you choose any one
of the sets (C;) there is a function satisfying all conditions in this
set. This is true for any n and d. The following functions ¢, (z, y)
and ¢, (%, y), for instance, suffice to show the consistency of the
sets (C,):

@y =1forxzy c;(@ y)=n for x<y.
Cy (¢, y) =n if both @ £ d and y >d, ¢, (v, y) =1 otherwise.

On the other hand, each of the sets (C;) consists of independent
conditions, i.e. no condition in a set (C;) can be deduced from the
other conditions in the same set. Here we have to distinguish between
two kinds of independence. Suppose that conditions A and B are
consistent, i.e. for any n and d there is a function which satisfies
both A and B. We say that A and B are sirongly independent if,
for any n and d where n = 3, there is a function which satisfies A
but does not satisfy B and a function which satisfies B but does
not satisfy A. (The requirement n 2 3 is made to omit some trivial
cases in the following proofs.) A and B are weakly independent if,
for some n and d, there is a function which satisfies A but does
not satisfy B and a function which satisfies B but does not satisfy A.

Theorem 2.2.1. Each of the sets (C;) — (C4) consists of strongly
independent conditions and the set (C;) of weakly independent
conditions.

Proof. To prove the theorem for the set (C,) it suffices to show
that, for any choice of n and d where n =z 3, there is a function
f (z, y) such that f (z, y) satisfies all conditions 1)—4) except i).
Here i) is successively 1), 2), 3) and 4). The following functions
have the required properties. We write in front of each function
the condition not satisfied by it.

1). f(x,y) =11if £ n or y 1 (inclusive »or), £(n, 1) = n.
2). f(z,y) =1forax=y, f(z,y) =nfor x5#y.
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3. f@y =1fory=11f(@y =nfory+#l

4). f (@, y) =1forx=n,f(xy) =nforz#n

For the proof of the theorem for (Cy), choose the first three
functions above. The proof for (Cj) is as follows:

1). f(@,y)=1for x=y (1,n) =1, f(z,y) =n otherwise.

2). f(z,y) =1 for v =y, f(x,y) =n for x#y.

5). f(x,y) =n if x#n or y7# 1 (inclusive vorn), f(n, 1) = 1.

10). Ifd=1 choose: f (1, y) =n fory#1,£(2, D=nfyg =1
otherwise.

Ifd > 1 choose: f (v, y) = nifbothx £ dandy >d,f(n, 2) =n,
f(z,y) =1 otherwise.

The proof for (C,) and (Cg) is obvious. For (C5) we have:

6). f (z,y) =n for all x and y.

7). f(z,y) =1 for all z and y.

8. d=1.f(x,y)=1forxzy Fora<y I(@y=n—11i
y=nand f(x,y) =n if y7#n.

d>1.f(y) =nfora<y Forzzy f(@y=2ify=2
and f(z,y) =11if y+#2.

9. d=1.f(@y =1forz 2y Fora<y f@yY=n—1
ifx=1and f(x,y) =nif v#1.

d>1.f@y=nforz<y £(1,1) =1, [ (2, y) =2 otherwise.

Consider, finally, the set (C,) and suppose d > 1. The following
functions show the independence of the conditions in (C):

11). f(x,y) = n for all x and y.

8). f(x,y) =nitbothz £dandy >d f(z, 1) =2 for any z,
f(z,y) =1 otherwise.

9). f(x,y) =nifbothz £ dandy >d,£(1,1) =1,1(xy) = 2
otherwise.

Obviously, if d =1 then 9) follows from 11). We, thus, have
only weak independence for the conditions in the set (Cy). The
proof of theorem 2.2.1 has been completed. With some slight changes
the proof is modified to remain valid if condition 12) is added to
the sets (C,). However, in this case one obtains only weak in-
dependence for (C;). Both 8) and 9) follow, namely, from the remain-
ing conditions in (C;) when n =3 and d = 1.
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No one of the sets (C;) determines a unique function when
n > 2, i.e. there are several implication functions satisfying (C;)
for i =1,...,7. We get a set of conditions which uniquely de-
termines a function if, instead of 8) and 9), we take the following
conditions:

8). For all i, jand h, if i >>j =z h then ¢ (h, i) >c (h, j).
9'). For all i, jand h, if h 2 i >jthen c(i, h) < c(j, h).

Conditions 8") and 9’) do not limit the choice of values for ¢ (z, y)
when 2 >y, i.e. below the main diagonal of the matrix of c (x, y).
But for x £ y, we have in 8") and 9') strict inequalities corresponding
to the inequalities in 8) and 9). Let (Cg} be the sel consisting of
8), 8") and 9'). Clearly, (Cy) determines a unique function when
n = 2. In the following theorem it is seen that this is always the case.

Theorem 2.2.2. (Cg) consists of strongly independent conditions
and determines a unique function cg (x, y). ¢g (%, y) satislies con-
ditions 1)—10) and 12) in case d = 1.

Proof. Independence is shown as follows:

8). f(x,y) =nlfor x>y, f@y)=y—2x+1forx=

8. f@,p)=1forx>y f@y)=n—a+1forx 2y

9). f@,y)=1for x>y f(x,y) =y forx =y

Consider any function c (z, y) satisfying (Cg). Because of 8'),
c(l,n) >c(l,n—1)>...>c(1,1). This is possible only if
¢(1,y) =y, for any y. Using 9") we conclude in a similar manner
that e¢(x,n) =n —x + 1, for any x. By an obvious inductive
argument we obtain the result

c(x,y)=y—z+1 for z = y.
This shows that ¢ (i, {) = 1, for any i, From this it follows by 8) that
c(r,y) =1 for x >y.
Hence (Cg) determines a unique function c (z, y) which we denote

by c¢g(z, y). Clearly, cg(z, y) is the Lukasiewicz implication. [Cf.
section 2.1.]
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It is readily checked that cg(w, y) satisfies conditions 1)—10)
and 12) if d = 1. 11) is never satisfied by cg (2, y). On the other
hand, if d > 1 then c, (2, y) satisfies none of the conditions 1), 7)
or 10). Thus, in this case, it cannot plausibly be considered as an
implication function.

We have already pointed out the contradictoriness of conditions
7) and 11). Consider the »strongest» sets (C;) which contain 7) and
11), namely, (C;) and (C,). No function satisfies both (C;) and (C,)
when n > 2. The question arises: are the tautologies of two-valued
propositional calculus valid when implication is replaced by a
generalized connective whose truth-function satisfies (Gg) or (C,)?
Consider, for instance, the following tautologies:

T pC:pCq.Cq
Ty, qC.pCq

T,. pCq.C:qCr.C.pCr
Ty qGr.C:pCq.C.pCr
Ts. pG.qCr:C:qC.pCr

(We use ordinary punctuation instead of the parenthesis-free notation
of Lukasiewicz.)

It is easily seen that any tautology involving only implication
is valid if C is a connective whose truth-function satisfies (C,).
In this case, namely, ordinary truth-table technique can be applied.
This is illustrated by the following proof of T where »des» stands
for a designated value and »und» for an undesignated value.

P q r ¢Cr  pC.qCr  pCr ¢C.pCr Ty
des des des des des des des des
des des und und und und und des
des und des des des des des des
des und und des des und des des
und des des des des des des des
und des und und des des des des
und und des des des des des des
und und und des des des des des
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The same does not hold true with respect to (Cg). As a matter
of fact, for any n and d where n > 2, there is an implication function
satisfying (C;z) such that T;—T; are not valid. If d =1 such a
function is:

cryy=1forz2y c@y)=n—2x+1forz<y.

If we now assign for both p and ¢ the truth-value n — 1, T, will
get the undesignated value 2. The assignments p =1, ¢ =2;
p=n—1 g=r=n p=q=n—1,r=n; and p=n—1,
g = 1, r = n give the undesignated value n — 1 for Ty, Ty T,
and Ty, respectively. If d >1 we choose the following function
satisfying (C;):

c(z,y)=1for x >y, c(xz,y) =d for =y, c(x,y) =n for
z<y.

The assignments p=1, q=mp=q=1;, p=n—1,q=n
— 22 r=m p=mnqg=n—1r=1;andp=n,qg=r=1, give
the undesignated value n for T, T,, T, T4 and Tj, respectively.

These have been preliminary remarks concerning the validity
of tautologies of two-valued propositional caleulus when the con-
nectives are replaced by the generalized ones. In section 2.10 we
obtain general results concerning this problem. It will be seen, -
for instance, that there are implication functions satisfying (Cg)
such that T, —Tj are valid. For Ty, Ty, T, and Tj it is always possible
to find such a function but for T, only when d = 1.

2.3. In the following three sections we shall discuss other con-
nectives: in 2,3 equivalence, in 2.4 negation, and in 2.5 conjunction
and disjunction.

Conditions for equivalence function e (z, y):

1). For every i, e (i, i) < d. (pEp is always assertable.)

2). For alli and j, e (i, j) = e (j, i). (Equivalence is symmetrical,
i.e. pEg has the same truth-value as qEp.)

3). If both e(h, i) = d and e (i, j) = d then also e(h, j) = d.
(Equivalence is transitive with respect to assertability.)
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4). e (i,j) < d if and only if both ¢ (i,j) = d and ¢ (j, i) < d.
(pEq is assertable if and only if both pCq and ¢Cp are assertable.
So here we assume that we have defined implication before defining
equivalence.)

5), If i2jzh then e(i,j) £ e(i,h) and e(j, h) £ e (i, h).
(This is a condition corresponding to conditions 8) and 9) in section
2.2. Le. if the truth-value of ¢ is »closer» than that of r to the truth-
value of p then pEq cannot have a smaller truth-value than- pEr.
And if the truth-value of ¢ is closer than that of p to the truth-
value of r then ¢Er cannot have a smaller truth-value than pEr.)

6). e (i,j) = d if and only if either i £ d and j = d, or i >d
and j > d. (A condition corresponding to 11) in section 2.2.)

N.e(l,)=e(mn)=1ande(1,n)=-e(n 1) = n. (A condition
corresponding to 12) in section 2.2.)

In order to study functions satisfying these conditions we have
to specify the implication function c (z, y) mentlioned in 4) above.
We assume that ¢ (2, y) is an implieation function satisfying (C,).
Let (E,) be the set consisting of conditions 2), 4) and 5) above.

Definition 2.3.1. A two-place function e (z, y) is an equivalence
function salisfying (E,) if e (x, y) satisfies each condition in the
set (E,).

Clearly, the conditions in the set (E,) are consistent, for any n
and d. The following function, for instance, satisfies all of them:

e(r,y) =1ifbothx Sdandy =d, e(r,y) =1if bothz >d
and y >d, e (z, y) = n otherwise,

Theorem 2.3.1. The set (I£,) consists of strongly independent con-
ditions. Furthermore, any function satisfying (E,) satisfies also
conditions 1), 3) and 6).

Proof. Independence is shown as follows:

2.d<n—1f@y=1ifz,y=sdorz y>d Otherwise,
fx,y) =n—1fory=d+1, f(x,y) =n for y£d + 1.

d=n—1.f(z,y) =nifx = nory = n (exclusive »or»). Other-
wise, f(z,y) =2 for y =2, (2, y) =1 for y=£2.

4), f(z,y) =1, for all z and y.

8).d<n—1f@y)=11if x,y=d or 2,y >d. f(n 1) =
f(1, n) = n — 1. Otherwise, f (z, ) = n.
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d=n—1. f(z,y) = nif £ = nor y = n (exclusive »om). (1, 1)
= 2. Otherwise, f (z,y) =1

Since ¢ (x, y) was supposed to satisfy (C;), ¢ (i, i) = d and, further-
more, ¢ (i, j) >d if and only if both i £ d and j > d. Therefore,
it is clear that 1) and 6) are satisfied by any function satisfying
4) and, hence, by any function satisfying (E,). Finally, suppose that
e (z, y) satisfies (E;) and that e (h,i) = d and e (i, ]) = d. Then
also, by 4), c(h,i)<d, c(i,h) £d, c(i,j) £d and ¢(j, i) = d.
From this it follows that ¢ (h, j) £ d and ¢ (j, h) £ d. Therefore,
e(h,j) £d and, thus, condition 3) is satisfied by any function
satisfying (E;). The proof of theorem 2.3.1 has been completed.

If we do not assume that c (z, y) satisfies (C;), theorem 2.3.1
does not, in general, hold. For instance, if we assume that c (x, y)
is an implication function satisfying (Cs) then conditions 4) and 6)
will always be contradictory and, furthermore, 2) will follow from
4) when d =n — 1.

The set (E,) does not determine a unique function (except when
n = 2). Uniqueness is obtained by strengthening condition 5) as
follows:

5). 1f i 2 j > h then e (i,]) <e(l,h).

5"). If i >j = h then e (j, h) <e (i, h).

Let (E,) be the set consisting of 2), 5') and 5”"). For the following
theorem, let ¢ (x, y) be an implication function satisfying (C;) where
i is some of the numbers 2, ..., 7.

Theorem 2.3.2. () consists of strongly independent conditions
and determines a unique function e, (2, y). ¢, (x, y) satisfies con-
ditions 1), 3), 4) and 7) if d =1.

Proof. Independence is shown as follows:

2). f(r,y)=1forz =y f(@y) =x—y+1forz>y

5). f (@ y)=1fora =y f(x,y) =xforz>y iy =y for
x << y.

5. f(x,y) = 1forz =y, f (2, y) =n—y+ liorz >y [ (2, 4)
=n—a-+ 1 for z<y.

Uniqueness is shown in the same way as in the proof of theorem
2.2.2. The function e, (x, y) will be:
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ey =lr—yl+1L

It is readily checked that this function satisfies 1), 3), 4) and 7)
when d = 1. This completes the proof.

6) is never satisfied by e, (v, y), and if d >> 1 neither 3) nor 4)
is satisfied by it. So e, (z, y) cannot plausibly be regarded as an
equivalence function when d > 1.

2.4. Conditions for negation:

1). For every i = d, ne (i) >d. (Always when p is assertable,
Np is not assertable. 1°) is a weaker formulation of 1).)

1'). For some i £ d, ne(i) >d.

2). For every i>d, ne(i) = d. (Always when p is not assertable,
Nﬁ is asgertable. 1) and 2) together express that negation converts
assertable statements into non-assertable, and vice versa. 2) is
a weaker formulation of 2).)

2. For some { >d, ne (i) = d.

3). For all i and j, if i > j then ne(i) = ne(j). (If p has a greater
truth-value than ¢ then Np cannot have a greater truth-value
than Ng.)

4). ne(1) = n and ne(n) = 1. (A condition corresponding to
12) in section 2.2 and 7) in section 2.3.)?

Let (N,) be the set consisting of 1), 2) and 3); (N,) the set con-
sisting of 1'), 2) and 3); and (Nj) the set consisting of 1), 2) and 3).
The conditions in each of the sets (N;) are, clearly, consistent.
Furthermore, each of the sets (N,) is »strong» enough to determine
negation uniquely in the two-valued case.

Definition 2.4.1. A one-place function ne (z) is a negalion function

1 'We do not.consider the following condition given by Hempel
[ef. Hempel, p. 28] as a characteristic of negation:

for some i, ne(x) £ d if *x =i and ne (x) > d if x5 1.

That it holds true in the two-valued case is due merely to the fact
that in this case it expresses the same thing as conditions 1) and 2)
above. [Cf. also Rosser-Turquette, p.26. Here negation is given
separately from the funclions satisfying Hempel's condition.]
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salisfying (N;) if ne(z) satisfies each condition in the set (N;) where
i=1,23

Theorem 2.4.1, Each of the sets (N;)—(N;) consists of weakly
independent conditions.

The proof is straightforward. That we obtain only weak in-
dependence is due to the fact that 3) follows from 1) when d=n—1,
and from 2) when d = 1.

A unique negation is obtained if we strengthen condition
3) as follows:

3"). For all i and j, if 7 >j then ne(i) < ne(j).

If we denote, in analogy with the preceding sections, the set
consisting of 3') alone by (N,) we get the obvious

Theorem 2.4.2. (N,) determines a unique function ne, (z) which

;5 i ; : n
satisfies conditions 1)—4) in case n is even and d = 5
ne, () is the negation of Lukasiewicz:

ne, () =n—zx +
It does not satisfy 1) if d >;, and does not satisfy 2) if d < ;
So ne4 (x) satisfies one of (N;) — (Ny), for any n and d.

2.5. Conditions for conjunction:

1). For all i and j, k (i, J) =k (], i). (Symmetry.)

2) For every i, k (i, i) = i. (pKp has the same truth-value as p.)

3) For all i, j and h, k (i, k (j, h)) =k (k (i, /), ). (Conjunction
is associative.) ,

4). For all i, jand h, if i >j then k (i, h) 2 k (j, h). (Conditions
1)—4) are common characteristics of both conjunction and dis-
junction. The following ones characterize conjunction alone.)

5). If i >j = h then k (i, h) >k (], h).

6). k(i,j) < d if and only if both i £ d and jsd

7. k (1,1)=1k(1,n) =k(n1)=k(nn=n (6) corresponds
to 11) in 2.2, 6) in 2.3 and 1)—2) in 2.4. 7) corresponds to 12) in 2.2,
7) in 2.3 and 4) in 2.4.)
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Let (IK,) be the set consisting of 1), 2) and 5).

Definition 2.5.1. A two-place function k (2, y) is a conjunclion
function satisfying (K,) if k (x, y) satisfies each condition in the
set (K,).

Theorem 2.5.1, (I{,) consists of strongly independent conditions
and determines a unique function ky (z, y). Furthermore, k, (z, y)
satisfies conditions 3), 4), 6) and 7).

Proof. Independence is shown as [ollows:

. f(x,y) =max(x,y) forx 2y, f(x,y) =1 for x<y.

2). f(x,y) =max(x,y) for x# y, f(x,y) =1 for z=y.

5). f(a,y) =1 for z#y, f(x,y) = for x=1y.

Uniqueness follows easily from the fact that condition 2) de-
termines all values of k, (z, y) where x = y, condition 5) determines
all values of k, (v, y) where x >y, and condition 1) determines
the remaining values of k, (x, y). It is seen that

k, (v, y) = max (z, ).

It is clear that k, (z, y) satisfies conditions 4), 6) and 7). The satis-
faction of condition 3) follows because, for any i, j and h,

max (i, max (j, h)) = max (max (i, j), h).

Hence the theorem.

Let us mark the conditions for disjunction with primes. Then
1')—4') will be the same as 1)—4) above, with k (z, y) replaced by
a (¢, y). The remaining conditions will be:

5). If hzi>j then a(i,h)>a(j,h).

6"). a(i,j) >d if and only if both i >d and j >d.

7). a(l,1)=a(l,n)=a(n1)=1 and a(n, n) =n.

8). For all i, j and h, k (i,a (j, h)) = a (k(i, }), k(i, h)) and
a(l,k(j, ) =%k (a (7)) a(i, k). (These are two distributive laws.
Here we suppose that we have defined conjunction before defining
disjunction.)

Let (A,) be the set consisting of 1’), 2') and 5).

Definition 2.5.2. A two-place function a (z, y) is a disjunclion
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function salisfying (A,) if a (v, y) satisfies each condition in the
set (Ay).

In the following theorem, we suppose that the function k (z, y)
mentioned in condition 8) is k, (z, y).

Theorem 2.6.2. (A;) consists of strongly independent conditions
and determines a unique function a, (¥, y) which satisfies conditions
3, 4, 6"), 7') and 8’).

The proof is similar to that of theorem 2.5.1. It is seen that

a, (x, y) = min (a, y).
a, (z, y) and k, (z, y) satisfy condition 8") because, for all i, j and h,

-max (I, min (J, h)) = min (max (i, j), max (i, h)) and
min ({, max (j, h)) = max (min (i, j), min (i, h)).

2.6. In this section we make a few remarks concerning the
question whether it is possible thal the truth-function corresponding
to a generalized connective is a Sheffer function. In this case, namely,
a functionally complete n-valued propositional logic can be based
upon a single primitive connective which has the properties of,
say, implication. It turns out that very few truth-functions cor-
responding to our generalized connectives are Sheffer functions.

Clearly, no negation function is a Sheffer function since no one-
place function is a Sheffer function. No conjunction or disjunction
function is a Sheffer function. This is obvious because any Sheffer
function f (z, y) has the property that f (i, i) s i, for any i. Consider,
then, any implication function c (, y) satisfying (Cg) or (C;). ¢ (2, y)
< d whenx < d and y £ d. Hence ¢ (z, y) is not a Sheffer function.
The same holds true with respect to any equivalence function
satisfying (E,).

It is not possible to find, for all n and d, an implication function
¢ (z, y) satisfying (Cg) such that c (z, y) is a Sheffer function. For
always when d = 1, ¢ (1, 1) = 1 and, hence, ¢ (z, y) is not a Sheffer
function. For some values of n and d, however, it is possible to find
such a ¢ (z, y). When n = 3 and d = 2, for instance, the [ollowing
two funclions satisfy (Cz) and are Sheffer functions:
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233 233
113 and 113
t 3 112

9.7. In sections 2.2—2.5 we have given a number of conditions
which certain functions have to satisfy. Now the question arises:
given a matrix which defines a function f (z) or f (z, y), how can
we decide as easily as possible whether the function in question
satisfies these conditions? It is fairly easy to see that a mechanical
decision procedure exists for each condition presented in sections
2.2—-2.5.

For most of the conditions, such as 1)—7), 11) and 12) in 2.2,
we have only to check that there is a given number or a number
within given limits in certain entries of the matrix. For some other
conditions, we have to find out whether the rows or columns in
the matrix form a monotonous sequence of numbers. Thus, condition
8) in 2.2 requires that each row in the matrix forms a monotonously
increasing sequence of numbers, whereas in condition 9) it is required
that each column forms a monotonously decreasing sequence of
numbers. According to condition 8’) in 2.2, that part of each row
which is above the main diagonal of the matrix forms a monotonously
increasing sequence with strict inequalities. (L.e. a number is always
greater than its predecessor.) A corresponding fact with respect to
columns is required in 9’) of 2.2.

Consider, then, conditions 10) in 2.2 and 3) in 2.3 which require
transitivity with respect to assertability. A procedure to decide
whether a matrix satisfies these conditions is the following: Find
all numbers = £ d in the matrix. Suppose such a number z is in
the (i, /) entry of the matrix. Find out whether in the i'* row
there is a number = d in every entry such that in the opposite
entry in the j'® row there is a number <d. If this is the case, and
the same thing happens for all £ d then the conditions considered
are satisfied, otherwise they are not.

A similar sstraightforward» decision method can be given for
conditions 3) and 3') in section 2.5. The criterion presented in the
following theorem is more useful. Theorem 2.7.1 gives a necessary
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condition for a function f (x, y) defined by a given matrix to be
associative. We say that the number k in the (i, )" entry of a given
matrix has the inclusion property if every number in the '™ row
appears in the i" row and every number in the A" column appears
in the j'* column, i.e. the set of numbers in the A'® row is included
in the set of numbers in the i row and the set of numbers in the
h'" column is included in the set of numbers in the j'* column.

Theorem £2.7.1. In a matrix which defines an associative function
every number has the inclusion property.

Proof. Let f (x, y) be an associative function defined by a given
matrix. Suppose the number h in the (i, /) entry has not the in-
clusion property. Then either there is a number u in the h'® row
which does not appear in the i*" row or there is a number v in the
It column which does not appear in the j** column. In the first

case, suppose u is in the (b, j)'" entry. Then

EE G ) =1 ) = .
But
F@GEG ) #u
since u does not appear in the i row. Thus f (z, y) is not associative,
contrary to the hypothesis. The argument is similar in the second
case, and this completes the proof.
The converse of theorem 2.7.1 does not hold in general, as seen
by the following counter-example:

B =
[
L e

In this matrix, namely, every number has the inclusion property
and the function defined by it is not associative. However, in the
two-valued case the converse of theorem 2.7.1 holds. This is shown
by checking through all the 16 matrices in question.

2.8, As we have pointed out, the sets of conditions discussed in
sections 2.2—2.5 do not determine a unique function except when
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n = 2. There are, for instance, several implication functions satis-
fying (Cp). It is of some interest to calculate the number of functions
satisfying some condition or some set of conditions. In general, if
two conditions A and B are strongly independent then, for any n
and d, the number of functions satisfying both A and B is less
than the number of functions satisfying A and also less than the
number of functions satisfying B. If A and B are weakly independent
this is true only for some n and d. Nothing general can be said
about how great the decrease will be.

We do not perform any calculations in detail but give only
the final figures. We have not been able to solve the problem for
all sets of conditions discussed in 2.2—2.5, in particular, when a
condition of transitivity is involved. In the second column of the
following table is given the number of [unclions which satisfy the
condition or conditions mentioned in the opposite place in the first
column.

1) in 2.2. pt-=dd. (n_ gynd-d*

6)and7)in22.  (d(n—d)et-m. g

(G,) in 2.2, dye*+n . (n— d)i m*-n
(C,) in 2.2. - -d . (p_ gynd-a®
(C,) in 2.2. d* - (n— dytn-@ . prt-n-(nd-d
" (e p = 5 ()t g
i=0

1
where u = 5 (n*—n—2 (nd—d*) and C.[)is a

binomial coefficient. (Eg. for n =3, d =1,
the no. of impl. functions sat. (Cy) is 244, and
forn =3, d =2 it is 608.)

1)and 2)in24. (n—d)*-d" ¢

1) and 2") in 2.4. (n—d)*- (n""~%— (n |

1)and2)in2.4. 4"~ (n?— d%)
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n

3) in 2.4. 2 ¢, (h) where the ¢'s are calculated recurs-
h=1

ively as follows: @, (h) = 1, for any h,

n
‘Pa+1(h)=‘£'{?’:(-’1)-
i=

n-d d
(N,) in 2.4. (hzi % (h)) : (hxi s (h)) where the ¢'s

are calculated as above. (Eg. for n = 3,
d=1, 2, the of no. neg. functions sat. (N ) is 2.)

2.9. There is a more general method which can be applied for
the solving of the problem discussed in the preceding section. In
some cases, namely, an arbitrary function can be represented as
a polynomial of its variables in the field of residue classes modulo n.
This is possible at least when n is a prime number. [Cf. Bernstein.]
Conditions imposed upon a function are expressed as equations for
the coefficients of this polynomial. Therefore, the whole problem
reduces to the solving of some equations,

We illustrate this method by the following example. We want
to determine all functions Xk (z, y) in three-valued propositional
calculus which satisfy the following conditions:

1) k(0,0) =0 and k(0,2) =k (2,0) =k(2,2) =2.

2). For any =z, k(z,2) =z

3). For any x and y, k(z,y) =k (y,2).

4), For any =z, y and z, k (k (x, y), 2) =k (z,k (y, 2)).

In this example we use numbers 0, 1 and 2 instead of 1, 2 and 3,
respectively, because of their arithmetical properties. All operations
are carried out modulo 3. It is seen that the functions k (z, y) defined
by the preceding conditions are more general conjunction functions
than k, (2, y) in theorem 2.5.1.

A general two-place function k (, y) in three values is expressed
as follows:

K (2,5) = a,2%® + a2’y + a2y® + a2® + agy® +agty +a;2 - agy -+
Using conditions 1)—3) we get the following equations if we put
a; =a and ag=I:

10 — Ajatus XXIT
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a, = a

a, =2+ 2h

ay = 2+ 2h
a,=2+nh
ag=2-4h
ag=2a+h+42
a, =h

ag =h

a, =0

From condition 4) we obtain by substituting and comparing coef-
ficients the following equations for the parameters a and h:

2ah® + h? 4 2ah + 2h 4+ 2a =0
ah® 4+ a®h + 22 +ah+a=0
2a¢h +a®+a-+2ah =0
BR+2dh+a®h+h+a=0

’Iﬁ—l—2ah+2h—|—a=0

These equations have four solutions:

it SR on it S A

Il

0
0

So there are four functions k (z, y) satisfying our conditions 1)—4).
They are defined by the subsequent matrices:

022 012 012 002
212 112 111 012
222 222 212 222

2.10. In this section we discuss the validity of certain wifs, which
are known to be tautologies in two-valued propositional calculus,
when all connectives are replaced by some generalized ones and the
calculus is considered to be n-valued. For this purpose, we have
chosen the following tautologies of two-valued propositional calculus.
The list includes all propositions considered as most important in
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divisions 2— 5 of Principia Mathematica plus a few others. [Cf. White-
head-Russell, pp. 99, 100, 104, 105, 110—12, 116, 120, 123, 124.]
We have changed the notation to suit our own but left the numbers
of the propositions unchanged.

2.02
2.03
2.15
2.16
2.17
2.04
2.056
2.06
2.08
2.21
3.2

3.26
3.27
3.3

3.31
3.35
3.43
4.73
5.1

5.32
5.6

2,01

qC. pCq

pC. Ng: C: qC. Np

Np. Cg: C: Ng. Cp

pCq. G: Nq. C. Np

Ng. C. Np: C. pGq
pC.qCr: G: ¢C. pCr

qCr. C: pCq. C. pCr
pCq. C: qCr. C. pGr
pGp

Np. C. pCq

pC: qC. pKgq

pKq.Cp

pKq. Cq

pKgq. Cr: G: pC. qCr

pC. gCr: C: pKgq. Cr
pK. pCq: Cq

pCq. K. pCr: G: pC. qKr
qC: pE. pKgq

pKq. C. pEq

pC. gEr: E: pKg. E. pKr
pK. Ng: Cr.: E: pC. gAr

pC. Np: C. Np

3.45
3.47
4.1

4,11
4.13
4.2

4.21
4.22
4.24
4.25
4.3

4.31
4.32
4.33
4.4

4.41
4.71
2.27
2.36
3.33
4.5

4,57
5.19

pCq. C: pKr. C. qKr
pGr. K. qCs: C: pKgq. C. rKs
pCq. E: Ng. C. Np
pEg. E: Np. E. Ng¢
pE: N.Np

PEp

PEq. E. qEp

pEq. K. ¢Er: C. pEr
PE. pKp

pE. pAp

pKq. E. ¢Kp

PAq. E.qAp

pKg. Kr: E: pK.qKr
pAq. Ar: E: pA. qAr

. pK. gAr: E: pKq. A, pKr

pA. ¢Kr: E: pAg. K. pAr
pCq. E: pE. pKq

pC: pCq. Cq

qCr. C: pAq. C.rAp

pCq. K. qCr: C. pGr

pKgq. E:. N: Np. A. Nq
N: Np. K. Ng.: E. pAg
N: pE.Np

In' the subsequent discussion we are concerned with those
generalized connectives whose truth-functions are implication func-
tions satisfying (C,), (Cg) or (C,); negation functions satisfying (Ny) or
(N,); conjunction functions satisfying (K,) and disjunction functions
satisfying (A,). So we shall consider both of the »strong» sets of
conditions for implication — (Cg) and (C;) — as well as one »weak»
set, namely, (C,). The unique negation, conjunction and disj unction
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presented in theorems 2.4.2, 2.5.1 and 2.5.2 will be discussed and,
furthermore, the strongest of the sets (N;) —(Ny) given in section 2.4,
Equivalence will always be defined as follows:

pEq = pCq. K. qCp*

So we investigate, in succession, subsequent systems of conditions:

[(Co), (Ng), (Ky), (AD] [(Co), (N, (K. (A9l [(Cg). (Ny). (Ky),
Apl [(Cg), Ny, Ky (AP, [(Cp)y (N3), (K, (Ay] and [(Cy),
My, (K, Al

We have, for instance, the following problem while considering
the third among these systems. If in wif 5.6 above G, N, K and A
are connectives whose truth-functions satisfy (G;), (Ny), (K;) and
(A,), respectively, and E is defined as above in terms of C and K,
what can we say aboul the assertability of 5.6? Will 5.6 be always
assertable, for any n and d, no matter how we choose G and N from
the sets in question? (K and A are unique after n and d have been
fixed.) Or will it never be assertable? Or will it, for some values
of n and d, be assertable independently of the choice of C and N,
and for some other values not assertable? And so on. In general,
suppose T (G, N, K, A,E) is a wif involving connectives C, N, K, A
and E (not necessarily all of them). Suppose S, ; (¢, ne, k, a, e)
is a system of conditions for the truth-functions of these connectives
which determines, for any n and d, a certain set of quintuples
(G, N, K, A, E). Let us denote this set by »Q (n, d)». Then the following
seven cases may occur. We denote the different cases by capital
letters as indicated.

V). Given any n and d, all members of Q (n, d) make T assertable.
Ie. in this case T is always a consequence of the conditions in S.
W). Given any n and d, all members of Q) (n, d) make T non-

* So equivalence function is always uniquely determined after the
choice of implication function. It satisfies conditions 1, 2) and 4) in
section 2.3 if the implication function satisfies (C,) and, in addition,
3) and 5) if the implication function satisfies (C;). Finally, it satisfies
conditions 1)—6) of 2.3 if the implication function satisfies (C;).
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assertable. This means that T is always contradictory to the con-
ditions in S.

U). Given any n and d, some members of Q (n, d) make T assert-
able and some members of () (n, d) make T non-assertable. I.e. T
is always independent of the conditions in S.

These are the three »pure» cases, i.e. independent of the choice
of n and d. We have the following four »mixed» cases.

VW). For some values of n and d, all members of Q (n, d) make T
assertable. For all other values of n and d, all members of Q (n, d)
make T non-assertable. In other words, T is both a consequence
of and contradictory to S, depending on the choice of n and d.

WU). For some values of n and d, all members of Q (n, d) make
T non-assertable. For all other values of n and d, there is a member
of Q(n, d) which makes T assertable and a member of Q (n, d)
which makes T non-assertable, I.e..T is both contradictory to and
independent of S, depending on the choice of n and d.

VU). For some values of n and d, all members of Q (n, d) make
T assertable. For all other values of n and d, there is a member of
Q (n, d) which makes T assertable and a member of Q (n, d) which
makes T non-assertable. I.e. T is both a consequence of and in-
dependent of S, depending on the choice of n and d.

VWU). For some n and d, all members of Q (n, d) make T assert-
able. For some n and d, all members of Q (n, d) make T non-assert-
able. For some n and d, there is a member of Q (n, d) which makes
T assertable and a member of Q (n, d) which makes T non-assertable.
So T is both a consequence of, contradictory to and independent
of the conditions in S, depending on the choice of n and d.

Obviously these seven cases are mutually exclusive. One im-
portant remark has to be added. The range of quantification for n
consists of values n = 3. When n = 2 each of the six systems of
conditions discussed determines a unique quintuple of connectives,
namely, the ordinary two-valued implication, negation, conjunction,
disjunction and equivalence. So if we would extend the range of
quantification to consist of values n = 2 we would exclude the
three cases W), U) and WU). And this we do not want to happen.

In the subsequent table of results it is seen which of the seven
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possibilities occurs when T is one of the wifs listed above and S
is one of the six systems of conditions. Thus, in the table we find U
opposite 5.6 and under [(Cy), (Ny), (Ky), (Ap]. That means: for
every n and d, there is a quintuple of connectives (C, N, K, A, E)
satisfying [(Cy), (Ng), (Ky), (Ap] such that it makes 5.6 assertable,
and a quintuple of connectives (C, N, K, A, E) satisfying [(C,), (Ny),
(K,), (A,)] such that it makes 5.6 non-assertable. The rest of the
table reads in the same manner. In the footnotes following the table
we give, furthermore, the corresponding values of n and d for all
ymixed» cases appearing in the table. The two last columns of the
table remain unaltered if we take (Cg) instead of (G,;). We hope to
return in another connection for a closer examination of the results.
(It is also of some interest to study the converse problem: given
a set of wifs, eg. a subset of those listed above, how is the choice of
the connectives limited if it is required that all of the wifs in this
set have to be assertable? Results similar to the one presented in
[Gbdel] are obtained.)

) = aa 3 e )

gs &< z3 g3 &3 zz

g & & € £ &
2.02 8] U wut wu! v v
2.03 U U U U v Vwe
2.15 8] U U U v Vw2
2,16 U 8) 10) U N VWw:e
2.17 U U WuU? U v Vw?e
2.04 U 19} U 8] v Ay
2.05 U U 2] U v v
2.06 U U 8] U v v
2.08 v v v N v v
2.21 8] WU+ wus wu1t Vwe v
3.2 u U WUt wu? Vv v
3.26 U U v v v v
3.27 u U v v A\ v

1 contradictory when d > 1, independent when d =1.

2 consequence when d =%n, contrad. when d s ¥n. (d =ln re-
quires, naturally, that n is even.)

3 contrad. d s Y%n, indep. d =%n.

i contrad. d >%n, indep. d S¥%n.

t conrad. d < n—1, indep. d =n—1.
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3.31
3.35
3.43
3.45
3.47
4.1

4.11
4.13
4.2

4.21
4,22
4,24
4,25
4.3

4.31
4.32
4.33
4.4

4.41
4.71
4,73
5.1

5,32
5.6

2.01
2,27
2.36
3.33
4.5

4.57
5.19

<acgccccac

cCccac<d<d<d<dd<d«<40<4<4CCccCCcCcacac
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U Wwuo? WUt AY
U U 8] b
U vuse Vit v
U v v v
U V= vu- y:
8) v AY v
19} Wwu? 8) v
u wu? U WV
v wus v v
v v 4 v
Ay v v v
U R AR yué v
v v v v
v v v v
¥ v v v
v v v A
v v v v
v v v v
v ' v N
v v v v
U vu’ YU’ v
U wut wut Vv
U WUt wu!? v
U wut wut v
wu e W w \'
wu?e U wu e v
8] U U Vv
[§) vur vur AY
U vue vue v
v wus v N
v wus v N
LA ACE VWu v

¢ conseq. d =n—1, indep. d < n—1.
7 conseq. d =1, indep, d > 1.

8 contrad. d # Y%n, indep. d =%n.

» contrad. when both n is odd and d <¥%n, indep. otherwise.
10 contrad. d <%n, indep. d =n.
1 contrad. d <¥%n, conseq. d=n.
2 conseq. d =%n, contrad. when both n is odd and d <¥n, indep.

otherwise.
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13 conseq. when both n is cven and d = %n, contrad. when both n
is odd and d <3¥n, indep. otherwise,

14 conseq. d =%n, contrad, d <¥%n, indep. d >¥%n.
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We omit the proofs of these results to save space. To illustrate
methods used in the proofs, we give a proof of the fact that the
ycommutative principles 2.04 is, for any n and d, independent of
(C5), i.e. that U appears opposite 2.04 in the third and fourth columns
of the table. (Since N does not occur in 2.04, the third and fourth
columns of the table must have the same letter opposite 2.04.)

Proof. Consider the following implication function ¢, (z, y) which
satisfies (Cjy), for any n and d:

ey (@ y)=11for x 2y, ¢y (x, y) =n for z < y.

If we let C in 2.04 be the connective corresponding to ¢ (z, y) and
assign for p, ¢ and r the values 1, 2 and 2, respectively, then 2.04
will get the undesignated value n. Hence, given any n and d, ¢, (2, y)
makes 2.04 non-assertable. So we know that we are dealing with
one of the cases W), U) or WU). (In the two-valued case, of course,
¢y (%, y) makes 2.04 assertable. But the convention has been made
that we consider only cases where n 2 3.)

Suppose d = 1. Then we claim that the Lukasiewicz implication,
i.e. the connective whose truth-function is c¢g(z, y) makes 2.04
assertable. (cq (z, y) satisfies (Cg), as was seen in section 2.2.) Let
us denote, for the moment, the truth-values of p, ¢ and r by 5, 7
and 7, respectively. Consider the following truth-table where in-
equalities refer to numerical values.

3 & &
S

o Y
PEF 1 1 1
p<F, §<F andgZ7—p+1 7—p +1 1 F—q+1 1 1
B<F, §<F and §<i—p+1 7 +1 F—h—G+2 F—G+1 F—F—p+2 1
P<F<T F—p+1 1 1 P4

Since the cases given on the left exhaust all of the possibilities for
P, ¢ and # we have shown that 2.04 gets always the truth-value 1.
Hence the Lukasiewicz implication makes 2.04 assertable when
d = 1, and we conclude that the case W) is excluded.

Now we know that we are dealing with the case U) or the case
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WU). It will be more difficult to prove that the first alternative
is the correct one. For this purpose, we assume d > 1 and consider
a function ¢ (z, y) defined as follows.

c(n, i) =c (i 1) =1, for any i,
c(l,i)y=n fori >1,
c(i,n)=n for i < n.

If both  and y differ from 1 and n then

¢ (z, y) = min (n, d -+ max (jz-d|, [y-d])) for z<p,
¢ (z, y) = max (2, d—max (ja-d|, |y-d])) for z = y.

Since the definition of c¢ (z, y) is somewhat complicated we give,
as an example, the matrix of ¢ (v, y) whenn =7 and d = 2, 3, 4, 5
and 6, successively.

17297 7% 1777777 15 757 7% 7
1234567 1244567 1266667
1224567 1234567 1235567
1222567 1222567 1234567
1222267 1222267 1233367
1222227 1222227 1222227
1111111 1111111 1111111
1777777 1777777
1277777 12777177
1237777 1237777
1234667 1234777
1234567 1234577
1234447 1234567
1111111 1481111

Clearly, ¢ (z, y) satisfies (C5). We want to show that the connective
corresponding to ¢ (z, y) makes 2.04 assertable. We do this in two
steps.

I. At least one of p, ¢ and r has the truth-value 1 or the truth-
value n. Consider the following truth-table where 1 <e <n.
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par pCr qC. pCr qCr pC. qCr .04

1 1 1 1

n n n n
n I n

1 1 1

n 1 1

1 1

1 1

-
=
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=

Ll T B R R T T -~ [ S =~ B = S N B e Y
-

R LI I - - - - - - T - - B o o o e o
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e e - T el e o O e |

= I = B~ B i R e - - e - B e - - T

=
e I e el T T o e e e e
b e e b ek ek i bk ek jed ek bl e ek ek el ek b ek ek ek ped ek ek 2

-
-

Actually, this is a system of truth-tables. ¢ is not to be considered
as a fixed number, It simply indicates that in its place any number
from the open interval (1, n) may occur. We see that in this case
2.04 gets always the designated value 1.

IL. p, ¢ and r have each a truth-value different from 1 and n,
In this case we proceed by induction. First, if p, ¢ and r have all
the truth-value d then also 2.04 gets the value d. We make the
subsequent inductive hypothesis: 2.04 gets a designated wvalue
always when the values of p, ¢ and r belong to the intersection of
the two closed intervals (d—i, d+i) and (2, n—1). T'o complete the
induction, we have to show that 2.04 gets a designated value always
when the values of p, ¢ and r belong to the intersection of the two
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o
(5]

closed intervals (d—i—1, d+i-+1) and (2, n—1). We separate four
subcases:

1), d—i—1>1 and d+i+1<n

2, d—i—1>1 and d+i-+1zn

3. d—i—1%21 and d+i+1<n

4, d—i—1=1 and d+i+12n

In subcase 1) the truth-table looks as follows:

p q r pCr qC. pCr qCr pC. aCr 2.4
d—i—1 d—i—1 d—i—1 d—i—1 d—i—1 d—i—1 d—i—1 d—i—1
d—i—1 d—i—1 e d+i+1 d+i+1 d+i+1 d+i+1 d—i—1
d—i—1 d—i—1 d+i+1 d4i+1 d+i+1 d+i+4+1 d+i41 d—i—1
d—i—1 e d—i—1 d—i—1 d—i—1 d—i—1 d—i—1 d—i—1
d—i—1 e e d4+i+1 d+i+1 e d+i+1 d—i—1
d—i—1 e d4+i4+1 d+i+1 d+i+1 d+i+1 d+i+1 d—i—1
d—i—1 d+i+1 d—i—1 d—i—1 d—i—1 d—i—1 d—i—1 d—i—1
d—i—1 d4-i+1 e d+i+1 d—i—1 d—i—1 d—i—1 d—i—1
d—i—1 d+i+1 d+i+1 d+i41 d—i—1 d—i—1 d—i—1 d—i—1

e d—i—1 d—i—1 d—i—1 d—i—1 d—i—1 d—i—1 d —1

d-—i—1 e e d+i+1 d+i+1 d+i+1 d—i—1
d—i—1 d+i+1 d+i+1 d4i+1 d+i+1 d+i+1 d—i—1
) d—i—1 d—i—1 d—i—1 d—i—1 d—i—1 d—i—1
e d+i+1 d+i+1 d+i41 d+i+1 d+i+1 d—i—1
d+i+1 d—i—1 d—i—1 d—i—1 d—i—1 d—i—1 d—i—1
d-i+1 [ 4 d—i—1 d—i—1 d—i—1 d—i—1

¢ d+i+1 d+i+1 d4i+1 d—i—1 d—i—1 d—i—1 d—i—1
d+i+1 d—i—1 d—i—1 d—i—1 d—i—1 d—i—1 d—i—1 d—i—1
d+4i+1 d—i—1 [ d—i—1 d—i—1 d+i+1 d—i—1 d—i—1
d+4i+1 d—i—1 d+i+1 d—i—1 d—i—1 d+i+1 d—i—1 d—i—1
d+i+1 e d—i—1 d—i—1 d—i—1 d—i—1 d—i—1 d—i—1
d+i+41 e ¢ d—i—1 d—i—1 e d—i—1 d—i—1
d-i+1 e d+i+1 d—i—1 d—i—1 d+i+1 d—i—1 d—i—1
d+i+l d+i+1 d—i—1 d—i—1 d—i—1 d—i—1 d—i—1 d—i—1
d+4i-+1 d+i+1 e d—i—1 d—i—1 d—i—1 d—i—1 d—i—1
d+i+1 d+i+1 d+i+1 d—i—1 d—i—1 d—i—1 d—i—1 d—i—1

™ Mmoo
]

where ¢ is in the closed interval (d — i, d + ).

In subcase 2) 2.04 gets, by the inductive hypothesis, a designated
value when the values of p, ¢ and r are in the closed interval
(d — i,n — 1). Hence we have to consider the following truth-table
where e is in the closed interval (d — i, n — 1)
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p q r pCr qC. pCr qCr pC. qCr 2,04
d—i—1 d—i—1 d—i—1 d—i—1 d—i—1 d—i—1 d—i—1 d—i—1
d—i—1 d—i—1 e n n n n 1
d—i—1 e d—i—1 d—i—1 d—i—1 d—i—1 d—i—1 d—i—1
d—i—1 e e n n e n 1

e d—i—1 d—i—1 d—i—1 d—i—1 d—i—1 d—i—1 d—i—1

e d—i—1 e e n n n 1

e e d—i—1 d—i—1 d—i—1 d—i—1 d—i—1 d—i—1

In subcase 3) 2.04 gets, by the inductive hypothesis, a designated
value when the values of p, g and r are in the closed interval (2, d 4-i).
In the following truth-table e is in this interval.

p q r pCr 4C. pCr qCr pC. gCr 2.04
e e d-+i+1 d+i+1 d+i++1 d+i41 d-+i1 2
e d+i+1 e e 2 2 2 2
e d4i-+1 d+i+1 d+i+1 2 2 2 2
d+4i+1 e e 2 2 e 2 2
d+i+41 e d-+i+1 2 2 d+i+1 2 2
d+i+1 d+i+1 e 2 2 2 2 2
d+i+1 d+i+1 d+i-+1 2 2 2 2 2

Since in these tables all values for 2.04 are designated — d was
assumed to be > 1 — we have completed the inductive step in sub-
cases 1)—3). In subcase 4) it follows directly from the inductive
hypothesis. Hence we conclude that 2.04 gets a designated truth-
value when p, g and r each have a truth-value different from 1 and n.

This shows that the connective corresponding to ¢ (2, y) makes
2.04 assertable. Since c¢ (z, y) was defined for any n and d > 1 we
draw the final conclusion that 2.04 is, for any n and d, independent
of (C;) and so U appears in the third and fourth columns of the
table, opposite 2.04.

In order to find functions required in the proofs, such as ¢ (z, y)
above, it is sometimes useful to develop decision methods similar
to those presented in section 2.7,

The last part of the proof shows how truth-table technique is
modified when we have to demonstrate the assertability of some wff
in n-valued propositional calculus, without specifying the number n.
Then we cannot simply list all combinations of values for the
variables as we can, for instance, in three-valued propositional
calculus. We have to consider some systems of truth-tables or use
inductive procedures.
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L. INTRODUCTION

1. Definitions. Consider functions

f(zh”')zﬂ)

whose variables &, ..., x, range over a fired finite set N and whose values
are elements of N, i.c. consider funetions whose domain is the Cartesian
produet N> ... ®¥N and whose range is included in N. The elements of
N are denoted by the natural numbers 1,2, ... n. Throughout this work,
n means the number of elements in the basic set N.

Obviously, there are n*" distinet funetions of m variables. Each funetion
can be defined by simply listing values for all possible assignments of values
for the variables. When we are dealing with 2-place funections f(x,y) this
is accomplished most conveniently by the use of square matrices. We make
the eonvention that the matrix

defines the funetion f(z,y) which assumes the value a;; when the value i
is assigned for x and the value j is assigned for y.

If composition is applied to functions of the kind considered, the
result is always a funetion of the same kind. For instance, starting
from a 2-place funetion f(r,y) we may form the following funetions:
fi(z) = f(z,2), f(x) = f(f(z,2),2), fs(x,y) = f(f(f(2,9),2),f(z¥)),
filz,y,2) = f(f(z,¥),2), ete. In general, if a funetion g(x,, ..., ) ean
be expressed as a finite composition of a funetion f(r,, ..., xy), we say
that f generates g.

To be more specifie, let us abandon the paventheses for the moment and
write “hz,...x;" instead of "h(xi,...,x;)". We say that [ generates g if
gy ... equals a finite sequence beginning with f and consisting of f,
&4, ..., Le., for any assignment of values for the variables ,...,z,
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s tu = S(f, @1y, 2)

where S is some fixed finite sequence beginning with [ and consisting of
f, @1y . .., ;. Similarly, we say that g is generated by the funetions f,,..., [,
if gz, ... equals a finite sequence beginning with some f; and consisting
of fiyeoosfrn@iyeen,ne

S is said to be a composition sequence of g in terms of f.' Thus,
fffxyxzfry is a composition sequence of f; in terms of f. (In what follows,
we shall in most cases use our original notation with parentheses.) Com-
position sequences are not, in general, unique. In fact, if f generates the
identity permutation and an arbitrary function g, then [ generates g in
infinitely many ways, i.e. ¢ has infinitely many composition sequences in
terms of f.

We now present the following fundamental

DermximioN. A function f(x,, ..., x,) which gencrates every function
is termed a Sheffer function.

We want to emphasize that when we speak of “funetions™ we always
mean funetions whose variables range over N and whose values are elements
of N.2 To omit trivial cases in the following proofs, we also assume that N
consists of more than one element, ie. n > 1.

We introduce some further terminology and eonventions. We use ordi-
nary set-theoretic symbols: A U B is the union of the sets 4 and B,
{a,...,a} is the set consisting of the elements a,...,a, and {z|(...)}

* The proof of the faet that every composition sequence determines at most one
funetion is omitted.

* HisTor1CAL REMARES. The study of the functions of the kind considered has begun
in connection with the study of two- and many-valued propositional logics. The interest of
Sheffer functions lies not only in the possibility of defining all funetions in terms
of one funetion but also in the fact that any propositional logic with only one primitive
connective whose truth-function is a Sheffer function is axiomatizable, as shown in [15].
Later on, however, the research has been earried on also independently of logieal inter-
pretations.

The well-known “stroke” funetion introduced by SHEFrer in [12] is the first function
presented in the literature which is, according to our definition, a Sheffer function.
However, the idea was known already earlier to Peirce (ef. [7], 4.264—263). Both
Sheffer and Peirce were concerned only with the case n = 2. The general approach to
the problem was introdueed by Post who proved in [10] a theorem essentially the sam.
as theorem 2.1 below. The first decision method for S8heffer funetions is due to ZvLINSKI,
[21]. He applied the method only for the case n =2 but it ean readily be generalized,
as will be seen in theorem 3.1. Stupkck: has proved in [14] a theorem which implies
theorem 5.1 below. However, theorem 11.1 gives a much stronger result. We mention,
finally, that certain particular functions, defined for any =, have been shown to be
Sheffer funetions by WesB, MARTIN, GOTLIND, EvANs and Harpy in [17]—[19], [4]—
(6], [2] and [1].
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¥

is the set consisting of all elements # which satisfy the condition formulated
in the parentheses. We use the symbol +’ to denote that addition is earried
out modulo n. Le. a+’b is that number in the set {1,2,...,n} which is
congruent to a+b modulo n. The symbol —' is used in the same way.
Finally, by the wvalue sequence of a funetion f(xy,...,7s) we mean
the sequence of values assumed by f, these values written in the order
/A ey 1 B P e 8 o el W e o 1 ettt R o e e b A

o L ] e g

2. Post’s theorem. In the definition in the preceding section, it is
required that a funetion f must generate every funetion in order to be
a4 Sheffer funetion. It is, therefore, necessary that f generates all of the
#"™ 2-place funetions. The following theorem® shows that this is also sui-
fieient.

Turorem 2.1, An i-place function f(xy, ..., i) which generates all j-place
funections is a Sheffer function, provided j = 2.

Proof. Obviously all k-place funetions ave obtained from the set of all
I-place funetions, k <, by identifying some of the variables. Therefore, it
suffices to prove the theorem for j = 2.

Assume f(x;,...,x;) generates all 2-place funetions g¢(x,y). Then it
generates also all 1-place funetions. Consider now the following family
of funetions (where b and ¢ run independently through the numbers
jIAb B A

t?(z) = ¢ when z = b, t? (z) =n when b,
and the following funetions:

filx,y) = min (z, y),
falz,y) = max(z,y).

By assumption, f(x,...,s;) generates all these funections. Tf we abandon
the parentheses it is more convenient to use the notation z,f,r.f,x,, instead
of fuxifraxs or fifiz@axs, for the funetion min(z,, 2., ), with a similar
convention regarding f..

For a fixed m, we define now the following family of functions (where
¢, by, ..., b, run independently through the numbers 1,2,...,n):

32”'“’b' (xu v s"rm} = 121[-51 }f-.' e fEtZ' (m).

! The theorem is due to Post who presented it in [10] in the form: every funetion
ean be expressed as a finite composition of the two funections f(z,y) = min (x,y) and
g(x) = x4'L i
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Tt is seen that so"""”" (x1,...,2n) assumes the value ¢ when =, = by,...,
T = b For all other combinations of values for the variables, the funetion
in question assumes the value n. Let g(xy,...,o,) be any m-place function.
Then we have

S P : Bpel B
g(ﬂ:;,...,.‘ﬂm) =89.{1,___,,1,1)(£1,..-,Im} f:sg,(l,_]__,,l)z)(xn---szm)fl--v
) D G Ity s
fls‘g’(l,...]ﬂ,n){xb-“vxm) flsg,(il,”,gjl)(x],---,.‘Bu)f|...
MyoosytyN
f18!;’{n,_’_ _,,ﬂ‘ “)“:n 2ty i )

So g(@1, ..., o) is generated by f(zy,...,x;). Since m was arbitrary and
g was an arbitrary m-place funetion, we conelude that f(z,...,x;) is a
Sheffer funetion.

From the proof above we see how any funetion may he represented as
a finite eomposition of 2-place funetions. In what follows we shall eonfine
our attention mainly to 2-place funetions. Then we are able to diseuss
typical algebraic properties, e.g. associativity.

1t is elear that if ¢ = 1 the hypothesis of theorem 2.1 cannot be satisfied,
i.e. a 1-place funetion is never a Sheffer funetion. This is due to the fact
that 1-place functions generate only 1-place funetions, whereas 2-place
functions may generate funetions of any number of variables. On the other
hand, as will he seen in seetion 5, the requirement j = 2 is not essential.

3. Preliminary criteria. We turn now to the diseussion of some eriteria
for deciding whether a given funetion is a Sheffer funetion. We prove first
the following general

TaEOREM 3. 1. Let f(2y,...,om) be a given function and let F'V be the
sets of functions defined by

Bi= fmausidal;

FO =FO U {z|2 = f(&,...,&n) where &,...,EueFUV},

for i=1,2,.... Then for some r=n", every h-place function gemerated
by f is in B!

Proof. Let F " denote the set of value sequences of the funetions in #¢9,
Since the number of all possible value sequences of h-place funetions is n™,
there exists a number r=n" such that every value sequence contained

in F{"is already contained in F,”"' . We shall now prove that the funetions

! The definitions of the sets F' and the general method of proof are based on
some ideas contained in [21], [3] and [11]. We present the proof in detail beeause there
is no explicit proof of this important theorem in the literature,
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Cin POV exhaust all h-place funetions which are generated by f(z,... %w),
i.e. that every value sequenee contained in any P, j=r, is contained
in f-r'”.

We write j = r+k and apply induction on k. The assertion holds for
k= 0, by the definition of ». Suppose it holds for some fixed value k. Con-
sider an arbitrary funetion

flr*+l, ‘wl, Lt LIS xﬁ)
which is in F*%1 hut not in F+¥_ It can be written in the form

[(fiy vy fm)

where fi,...,fu are functions in F*%. By the inductive hypothesis, there
are funetions f tyeroyfm in FOY which have the same value sequences as
fis ooy fms respeetively. Clearly f(f;,. «.yfw) has the same value sequence
as flrd) But f( £ saseurifh ) belongs to F) and, therefore, its value se-
quence belongs to F,”'. From this we infer, by the definition of r, that the
value sequence of f*%1 is in I, "', But this means that the assertion holds
for the value k+1 which completes the induetive step. Hence theorem 3. 1
follows.

Theorem 3.1 gives a method of deeiding whether the given funetion
f(&1y. .., @n) is a Sheffer function. Choose h = 2 and find the number r.
By theorem 2.1, f(ry,...,&,) is a Sheffer funetion if and only if the value
sequence of every 2-place funetion is in the set gl

Given a Sheffer funetion f, there is a method of finding a composition
sequence for any funetion g in terms of f. This follows direetly from the
proofs of theorems 2.1 and 3.1. The method presented above is of very
little practical value — hoth for this purpose and for deciding whether
a given funetion is a Sheffer funetion — sinee the number of functions
in the sets F grows enormously large. In seetions 5 and 11 we shall prove
theorems which give rise to essential simplifications of this method,

We conelude this seetion with two negative criteria, i.c. we show thal
certain properties are never possessed by a Sheffer funetion. The first one
is very simple and is stated in the form of a theorem for referential purposes
unly.

Tueorem 3.2. If f is a Sheffer function then there is no proper subset
N, of the set {1,2,...,n} such that any assignment of numbers in N, lo
the variables of [ gives a value of [ which belongs to N,.!

Proof. Tf there is such an N, then f cannot generate any funetion g whose
value does not belong to N,, for some assignment of numbers in N, to
the variables of g¢. Henece, [ is not a Sheffer funetion.

i Theorem 3.2 is mentioned both in [6] and in [16], Martin has introduced in [6]
also three other similar closure properties whieh we are not going to use.
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A consequence of theorem 3.2 is that if f(zy,...,,) is a Sheffer
funetion then f(1,...,1) 31, for any 1.

The proof of the following theorem is more complicated. We consider
2-place funetions and say that a function is associative if

(A) G, f(i, k) = f(f(i,j), k), for any 4, j and k.

THEOREM 3.3. No 2-place Sheffer function is associative.

Proof. We show that if (A) holds for some Sheffer funetion f(z,y)
then f(x,y) satisfies certain conditions which imply that f(x,y) is not a
Sheffer funetion and we, therefore, have a contradietion.

Suppose (A) holds for some Sheffer funetion f(r, y). Then the general
associative law is true for f(ur,y), i.e. in any eomposition sequence we ecan
associate the variables in the way we prefer. In partieular, the composition
sequence of any 1-place funetion can be written in the "normal form™

Tl e o, T (@2 ) e o))

This notion is expressed more exactly as follows. We say that the com-
position sequence of a l-place funetion is in the normal form if it is
f(z,z) or f(z,f(x)) where f(z) is in the normal form.

Sinee f(x, ) is a Sheffer funetion it generates the following functions:

gi(x) =x+ 4 fori=1,2,...,n
We write the composition sequences of these funetions in the normal form:

gi(z) = f(=, [i(2) ),
ga(x) = f(x, f2(x) ),

9‘--(-’6) = f(-r-'n fn(-b) )

Consider the matrix of f(x, y). From the first of the preceding equations
we see that there must be the number ¢+ 1 at some place in the i row.
This is true for any i, 1=i=mn. And generally, from the j" equation
we see that there must be the number i+'j in the i'" row. When we let j
range over the numbers 1,2, ... 2 we get the following

Lemma 3. 4. In the matriz of f(x,y) each row represents a permutation
of the numbers 1,2,...,n.

Denote by F the set of all 1-place functions generated by f(z,y).
Write the composition sequences of all funetions belonging to F in the
normal form. We are going to show that there are at most n! funections
in M. Since the total number of 1-place funetions is n*, we conelude that
flax,y) is not a Sheffer function, contrary to the hypothesis.
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We introduee some notations:

i(=z) = f(x,2),
A8 (z)= [z, f(z))-

By the associative property, every funetion in ¥ has the form f*(x), for
some k. We have to show that at most n! of these functions are different.
It suffices to show that for some t =ul, f** = f.

For some fixed 4, consider the sequence f*(i), f2(4),.... (Here obviously
i has the range 1 =1i=n. We do not speecify the range of a variable if it
is elear from the econtext.) Because of lemma 3.4 and the definition of f/(x),
if f*(i) = f*(i) for some integers a, b (> 1), then also f**'(i) = f>'(i). This
implies that there is a number n; (1 < n; =n-+1) such that " (i) = f(i).
Consequently f*+/-*(i) = f/(i) for all j, and thus the numbers (1), f*(i),...
form a periodie sequence with period of length = n.

Let the least common multiple of the numbers n;—1 (1=i=mn) be {.
Then obviously [**'(i) = f'(1), for any i. Also { = n! because it is the least
common multiple of # numbers, cach of which is = n. Hence theorem 3.3
follows.

4. The use of 1-place functions as generators. As we have already
pointed out, any composition of 1-place functions is a 1-place function and,
therefore, 1-place funetions can never be Sheffer funetions. In this seetion
we are concerned with the following problem whieh is important for our
subsequent investigations: MHow many l-place functions arve needed to
generate all 1-place funetions and, in particular, which 1-place funetions
are such genevators? If s« = 2 then two funetions suffice for this purpose,
namely, the transposition (12) and one of the two funetions which are not
permutations. No less than two funetions ave sufficient. The solution of
this problem, for a =3, is presented in the following theorem. We use the
term "a basis of the symmetric group 8,” to mean any two permutations
which generate S,.

TueoreMm 4.1. Assume that n = 3. Then three 1-place functions generate
all 1-place functions if and only if two of them form a basis of the sym-
metric group S, and the third assumes exactly n—1 values. No less than
three 1-place functions generate all 1-place functions.

! The theorem is, essentially, due to Prccarp. She has shown in [8] that the follow-
ing three functions f,(x), f.(x) and f.(x) generate all 1-place functions: f,(z) ==z+41;
fi(@) ==z for 1=2=n—2, filn—1)=mn, fi(n) =n—1; fi(z) =z for =r=mn,
f:(1) =2, It had been shown earlier by EiLexeere that no two functions suffice for
this purpose in the general ease (cf. [13], p. 212). The idea to replace f, by any
funetion assuming exaetly n—1 values is due to Martin, [6].
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Proof. Let a(z) and (x) form a basis of 8, and y(x) be a funetion
assuming exaetly n—1 values. To prove the first part of the theorem, we
have to show that every l-place funetion equals a finite composition of
w, B and y. We proeeed induetively. Let #; where 1=1i=n be the set of
all sueh 1-place funetions which assume exaetly i values. Then every funetion
in the set F, is generated by a, f and y (as a matter of fact, by a and B
alone). We make the following induetive hypothesis: every funetion in the
set F'; (1 <i=n) is gencrated by o, B and y.

Let f(z) be an arbitrary funetion in Fi.. Then there are two numbers
p and ¢ where p=q such that f(p) = f(q). There is also a number r
(1=r=n) such that f(z) = r, for any r. Let g(r) he the funetion defined
as follows:

g(x) = f(z) for = p, glp) = 1.

By the induetive hypothesis, ¢ is generated by «, B and y.

Consider the funetion y(z). Sinee it assumes exactly n—I1 values, there
are two distinet numbers k and [ such that y(k) = y() and, in addition,
the numbers y(r) where z 31 are all different. Furthermore, there is a
number w (1= w=n) such that y(x) = u, for any r.

Let s,(x) be the funetion which maps the number y(k) = y(l) to k, u
to I, and y(x) to @ when xF kL s:(x) isa permutation and, therefore, the
funetion

yi(z) = siy(x)

is wenerated by «, B and y. It is secen that yi(I) = k, whereas y,(x) =
for z==1.

Let s.(x) be any permutation such that s.(r) =1/ and s.(f(p) ) = k. Then
it is easily verified that

flx) = 3=!Y|329'(x)
where s is the inverse of s.. This means that an arbitrary funetion in
Fi, is generated by a, # and 3. So the induetion has been completed, and
we have shown that a, g and y generate all 1-place funetions.

The proof of the remaining part of the theorem depends, mainly, on the
following simple faet. If in a composition of 1-place funetions a funetion
assuming exactly i values oceurs, then the whole composition assumes at
most 1 values.

If n > 2 then two permutations are needed to generate all permutations,
sinee the symmetrie group S, is not eyelic.! One additional funetion §(x!

1 It is @ well-known fact that two permutations suffice for this purpose, As au
ecxample, we mention the permutations f,(x) and fi(z) in the previous footnote. The
question of which permutations form a Lasis of 8, has been studied by Piceard. (Cf. [9]
which is an exposition of some of her main results, )
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is needed in order to get other functions than permutations. Henee at least
three functions are needed to generate all 1-place functions. Furthermore,
8(x) has to assume exactly n—1 values since, otherwise, no funetion as-
suming exactly n—1 values could be generated. This completes the proof of
theorem 4.1.

As we shall see in section 7, it is easy to find 2-place funetions f(z, y)
which generate three 1-place functions having the properties of a(r), g(x)
and y(x). Such an f(x,y) generates all funetions which ean be expressed
as a composition of «, § and y and, hence, it generates all 1-place functions.
This is true because if f(r,y) generates g,(x) and g.(x) then it obviously
generates also ghg.(x).

On the other hand, suppose gi(x) is a funetion which cannot he ex-
pressed as a eomposition of ¢,(x) and g.(x). Even then it might be the
case that any funetion h(z,y) whieh generates g, and g. generates also g,.
Thus, we shall see in seetion 11 that any h(x,y) which generates a basis
of 8, (n > 2) generates all 1-place funetions.
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II. SHEFFER FUNCTIONS AS GENERATORS OF ALL
1-PLACE FUNCTIONS. CONJUGATION

5. Functions which generate all 1-place functions. In the following
two chapters we are concerned with the theory of Sheffer functions. As
was seen in theorem 2.1, Sheffer funetions are exactly those funetions which
generate all 2-place funetions. In this chapter we simplify this condition
and present various applications, as well as a theory of the so-called eonju-
gate funetions,

We begin with the following

TaEOREM 5.1. A function f[(r,y) which generates all 1-place functions
is @ Sheffer function.

Proof. The theorem is easily established in case n = 2, in which the only
Sheffer funetions are defined by

21 | 2 2
1.1 and 9 1%

In the following proof we assume n > 2.

Let f(x,y) be a funetion which generates all 1-place funetions. Then
every number 1,2, ..., n must occur in the value sequence of f(x,y) and
f(z,y) has to be non-degenerately binary. From these faets it follows that
there are numbers 4, j, k and [ such that f(i, k) F=f(3, 1), f(i,k) F [, k)
and f(j, k) % f(i,1).

By theorem 2.1, it suffices to show that f(x,y) generates all 2-place
funetions. Suppose there is a funetion f,(x,y) which is not generated by
f(z,y). Consider the set of all 2-place functions generated by f(z,y).
Compare the value sequence of each funetion belonging to this set with the
value sequence of f,(x, y). We express by the equation

D(g) = m

! Theorem 5.1 ean be established, in a different way, by using the following theorem
in [14]: Let F be a set of functions comsisting of all 1-place funetions and of a 2-place
funetion f(x,y) which is non-degenerately binary and assumes all of the numbers
1.2,...,n as values. Then every 2-place function is generated by the functions in F.
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the faet that the value sequence of a funetion g(z,y) differs from the value
sequence of f,(x,y) in m places. Let f:(x,y) be a funetion generated by
f(x,y) such that D(f.) is least. By the supposition, there are numbers u
and v such that fi(u, v) = fi(w, v). Denote f,(u,v) = p and f.(u,v) = q.
We need the following two lemmas.

LEMMA 5.2, f(x,y) generates a function c(x,y) which has the following
properties: e(q,y) = y for any y, and ¢(p,q) = p.

Proof. We define the following 1-place funetions:

a,(x): any permutation such that a,(g) =1 and a,(g+'1) = j.

a(x): any permutation such that a.(q) = k and a.(g+'1) = L

ay(x): any permutation such that a;(f(i,k)) = q, as(f(,1)) = g+'1 and
as(f(4, k) = q+'2

au(x): ay(z) = g+'1 for 3 ¢q, ai(q) = q.

Permutations a,(x), a.(x) and as(x) eertainly exist, because of the de-
finition of 1, j, k and [. Since f(x,y) generates these functions, it generates
also the following

b(x,y) = as(flaa(x), ax(y) ).

Obviously, b(q,q) = ¢, b(q,q+'1) =g+'1 and b(g+'1,q) = g+ 2.

dvery number 1,2,...,n oeeurs in the value sequence of b(x, y). This
is seen from the definition of b(x,y) and from the fact that every number
1,2,...,n oceurs in the value sequence of f(x,y). Thus, for any i
(1={=mn), there are numbers a, and £; such that

b(ar, Be) = t.

We proeeed induetively, denoting by ¢u(x, y) a funetion which has the
following properties: ca(q, ¢+ 'y) = em(q -+ "y,q) = q+ 'y, for any y where
0=y < m. If we can show that f(x,y) generates such functions ¢, (x,y),
then clearly taking c(x,y) = ca(x,y) will satisfy our lemma. We define
c.(x,y) in terms of f(x,y) as follows:

ca(@, y) = a(b(x,y)).

In order to prove lemma 5.2, we have to show that if f(x, y) generates a
funetion ¢, (x,y), where 2=m < n, then it generates also a function
Cuaa (2, ).

Suppose f(x,y) generates a funetion e, (x,y) where 2=m < n. Define
the following 1-place functions:

ex(z): e(q) = q, ex(z) = 2—"1 for z¥q.
es(x): ex(q) = q, e2(g+'1) = g+'1, e:(g+'2) = g, e:(x) = x—'1 for
z¥q,q+ 1,g+ 2.
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es(2): ex(q) = q, es(g+'1) = q+'1, es(z) = ann for s q,q+'1.
e(z): e(q) = q, ea(q+'1) = q+'1, eg(x) = Brirs for 23 q,q+'1.

Thus, f(x,y) ge!ierates the following two funections:

es(z,y) = eslem(en(z), e(y)))
and

es(z,y) = es(em(e(), e2(y)) ).

As the reader may easily verify, a funetion ¢,..(z,y) can now be defined
in terms of f(x,y) as follows:

ema (2, y) = bles(,y), eal,y) ).
This proves lemma 5.2.
LemMa 5.3, f(x,y) generates the function r(x,y) defined as follows:

r(w,v) = p, and r(z,y) = q whenever (z,y) F (w,v).
Proof. Define the following 1-place functions:

gi(x): gi(q) = q+'1, gu(z) = q for zq.
ge(x): g:(q+'2) = q, go(z) = q+'1 for zkq+ 2

Consider the funetion b(x,y) in the proof of lemma 5.2. f(x,y) gener-
~ates a funetion b’ (z,y) defined as follows:
(i) If b(g+'1,q+"1) = ¢ then b'(z,y) = g=(b(g:(2),¥) ).
(ii) If b(g+'1,q+ 1) Fq then b’ (z,y) = ay(b(x,y)) where a, is as in
the proof of lemma 5.2.

Obviously, b'(x,y) has the following properties: b'(gq,q) = q, b’ (q,q+ 1)
=b'(g+'1,q) =b(g+1,qg+'1) =q+'1
Define, in addition, the following 1-place funetions:
gs(z): gi(u) = q, gs(x) = q+"1 for zFu.
gi(x): gu(v) = q, gu(x) = q+'1 for v
¢s(x): any funetion such that g;(q) = p and g:(q+'1) = q.

The funetion r(x,y) is now defined in terms of f(z,y) as follows:
riz,¥) = gs(b'(gs(x), 9:(¥) ).

This eompletes the proof of lemma 5.3.
We now return to the proof of theorem 5.1. By lemmas 5.2 and 5.3,
flz,y) generates the following funection:

fol,y) = clr(z,y), f2(x,y))-

We see that f (x,y) = fa(x,y) except when both x = u and y = v. In this
case we get
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fa2(u,v) =p=fi(u,v).

Therefore, D(f.) < D(fs). But this contradiets the definition of fu(z,v).
Hence, f(x,y) generates all 2-place functions. By theorem 2.1, f(z,y) is
a Sheffer funetion. The proof of theorem 5.1 has been completed.

Because of theorem 4.1, f(x,y) is a Sheffer function if it generates three
l-place funetions, two of which form a basis of the symmetric group S,
and the third of which assumes exaetly n—1 values.

" Theorem 5.1 ean be generalized to the case where the hypothesis is that
an m-place funetion f(x,,...,x,) generates all 1-place functions. This will
be shown in the following

ToeorEM 54. A function f(x,,...,2s) which generates all 1-place
functions 1is a Sheffer function.

Proof. We prove first that f(z,,...,x,) generates a 2-place funetion
glx,y) satisfying the following two conditions:

{a) g(x,y) is non-degenerately binary.
(b) g(x,y) assumes all of the numbers 1,2,...,n as values.

Obviously, m = 2. We use the following notations: /(x) is the identity
permutation and g;(x) is the funetion assuming always the value j, for
=12 000

According to the hypothesis, I(x) is generated by f. Consider a com-
position sequence of I(x)

I(z) = f(fs,- .-, fm)

where each f, is the variable # or a funetion generated by f. Let the
variable x occur in this eomposition sequence k times. Clearly, k= m. We
replace the v'" oeeurrence of x by &, for v = 1,2, ...,k We, thus, obtain
a funetion

h(.’n‘?., P Ik)

generated by f. Obviously,
(1) (g - 3) =3

for any j. Furthermore, h depends on at least two of its variables. For
suppose h would depend on its " variable x, only. Let the v oceurrence
of & in the composition sequence of I(x) be in fu. Then f would deperid on
its p'" variable only. This follows because an arbitrary ecombination of values
can be obtained for f,,...,f, after the z’s have been replaced by the r.'s.
This is due to the fact that f assumes all of the numbers 1,2, ..., n as
values. But obviously f depends on at least two of its variables. This is
a contradietion, and we conelude that h depends on at least fwo of its
variables.
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We are going to show that a function g(z,y) satisfying conditions (a)
and (b) is generated by h and the funetions g;(z). Sinee h and the funetions
gi(xz) are generated by f, this implies that g(z,y) is generated by f. We
need the following

Lemya 5.5, Let ¢(xy,...,x;) be a function satisfying the following two
conditions:

(A) ¢Gy-..,d) =i, for any j.

(B) ¢ and the functions g;(x) do not generate any function g(x,y) satis-
fying conditions (a) and (b).

Then, for some v where 1 =v =1,

(C) e(miy...,%) = zv.

Proof. We apply induetion on 4. For i = 1, the assertion follows from
the hypothesis (A). The lemma holds true also for 1 = 2. In this case, the
funetion ¢(z,, x.) itself satisfies the condition (b). This implies that ¢ does
not satisfy (a) because, otherwise, it would not satisfy (B). But this means
that (C) is satisfied.

We make the following hypothesis of induetion: the lemma is true for
some fixed value 2, 1= 2. Let

P L1y T2y 0 oo 5 Tty Tiier)

be an arbitrary funection satisfying conditions (A) and (B). To prove the
lemma, it suffices to show that ¢ satisfies the corresponding condition (C).
Consider the funetion

1 (21, oy o o5 Zi) = (21, Tay o v o Bieay Tis Ti),

i.e. the funetion obtained from ¢ by identifying the two last variables.
Obviously, #», satisfies conditions (A) and (B) because ¢ satisfies these
conditions. Henee, our hypothesis of induetion implies

(2) P (@1 Tay o oo, Bi) = (23, Ty . o -, T, Ty By) = Ly,

for some v with 1=v=1. We separate two cases.
('ase 1. v 5= 1. Consider funections

P, u(T1y Tay o ooy &i) = P(T1; oy - - T, Pue(3) ), w=1,2,...,m,

i.e. funetions obtained from v by replacing the last variable, in suecession,
by each of the functions g,(x,). In addition, consider funections

Vs, u( Ty, Ti) = Po,u(Z1, Ty . o ., Ty, Zi)
= w(zl,ﬂ'-:.---:xhxisgu(?«'l) Vo= 2, 00 um;

i.e. funetions obtained from the funetions ¢., by identifying i—1 first
variables.
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According to (2), each of the funections %, , satisfies the condition
Py,ul(dy, u) = @),

Thus, each ¢, , satisfies condition (b). This implies that no one of the
functions v, , satisfies condition (a) sinee, otherwise, ¢ would not satisfy
condition (B). Henece, we infer that always

W.\_u(x:. ri) = &y

Consequently, each of the funections ., satisfies condition (A). Since ¢
satisfies (B) so does each 9. ,.
Using our hypothesis of induetion, we obtain, for each #. ..

Pa,u(Try Tay ooy Tj) = Tpan

where p(u) indicates that different zu’s may be obtained for different
values of w. However,

P2, (21, Doy o ooy Ticyy, W) = Ly,

This implies that always
Po,ul Ly, Loy o ooy Bioy, Tj) = T

According to the definition of the funetions ¢, ,, this means that
P(L1y Loy o o oy Tiy Tin) = v,

ie (C) is satisfied.
Case 2. v = 1. In this case,

(3) 21 (Z1, Loy v .o s .'.Fi) = @(J’., Lay .. .y ilj-yy Ty, ;) = I
Consider the funetion
(&1, Ty eo 05 T3) = B(24, By .y Ty 21),

i.e. the funetion obtained from ¢ by identifving the first and the last
variable. As before, it is shown that

(@1, Tay . 20 Ti) = Ty,

and, furthermore, that (C) is satisfied if p == 1. Therefore, it suffices to
consider the case p =1, ie

(4) iy, T35 0oy T8) =080 25 %65 T = s
(Clonsider funetions

Ws,u(-’f'."fs.---‘fi..ﬁiu] = @(gu(®2), Tuy ooy Tiy Tina), U =1, AL T
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By (3), each of the funetions ¢, satisfies condition (A). Since they
obviously satisfy also condition (B), we may use our hypothesis of in-
duetion. We obtain first

wn,n[zkv Ly o ooy By x|+l) = Tpiu-
However, (4) implies that always

Ps,ulTay Tay o oy Tiy U) = U
Henee,
95, u(Tas Tay « - » 5 Biy Tisn) = Tisae

But this means that
W(I;,«F:, P -r'i&-l) = Tia.

This proves lemma 5.5.

We now return to the proof of theorem 5.4. Suppose no function g(x, y)
satisfying econditions (a) and (b) is generated by h and the funetions
gi(x). By equation (1) and lemma 5.5, this implies that

h(n"}l,.. .,J"k) = Ty,

for some p where 1= u=Fk. But this is a contradiction, since we have
shown that h depends on at least two of its variables. Consequently, h and
the funetions g;(x) generate a funetion g(x, y) satisfying conditions (a) and
(b). Therefore, f generates a funetion g(x,y) satisfying conditions (a)
and (b).

Suppose now n=3. Using the method presented in the proof of
theorem 5.1, we ean show that all 2-place funections are generated by g(x, y)
and all 1-place functions. Henece, all 2-place funetions are generated by f.
By theorem 2.1, f is a Sheffer funetion. This proves theorem 5.4 for n =3.

Suppose n = 2. Since f(r,...,x,) generates all 1-place funetions,
f(1,...,1) =2 and f(2,...,2) = 1. We are going to show that f generates
one of the following two funetions:

(5) 22_2]_
2 1 KT

Sinee both of these funetions arve Sheffer functions, this implies that f is
a Sheffer funetion.

Assume neither one of the funetions (5) is generated by f. Let P be
the transposition (12). Then we claim that

(6) i e e X o e 1 22 0 sl o W 1

Suppose this equation does not hold, for some assignment of values
Wy o ooy Uy for the variables x,,...,r, Henece,
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f('l‘lr---:“m) =F(Pta)y . . . o Platy)).

Let ,, =...=w%, =1 and g = eoe = Uy = 2. Clearly, 1=r<m. We
identify the variables of f in the following way: @, =...=z, =2z and
Ty =...=x, =4y In this manner, we obtain a funetion Tz, y)

generated by f. But clearly, f(z,y) is one of the funetions (5). This is
a contradiction, and we conclude that (6) holds true.

Formula (6) implies that f does not generate the funetion g,(x) assuming
always the value 1, which is contrary to the hypothesis. For let

(@) = f(fr,. .., fm)

be a eomposition sequence of g,(x). By repeated application of (6), we
obtain

9:(2) = P(f{f1s.sfm))

where each f, is obtained from f, by replacing @ by P(x). But this is
impossible, sinee g,(P(z)) = g,(z). This proves theorem 54 for n = 2.
Henee, we have completed the proof in all cases.

Theorems 2.1 and 54 imply the following general

TureoreEM 5.6. An i-place function which gemerates all j-place fumctions
is a Sheffer function.

It is eclear that the hypothesis of theorem 5.6 is never satisfied for
i= 1. In seetions 6 and 7, we are going to present some 2-place functions
which generate all 1-place funetions and, hence, are Sheffer funetions.

Theorem 5.4 suggests the following improvement of the eriterion result-
ing from theorem 3.1. Choose h = 1 and find the number r (r =n"). The
funetion f(x,,...,x,) is a Sheffer function if and only if all a* I-place
funetions belong to F(~1,

This method is also of praectical value, at least if n is small. We illustrate
it by the following example. Consider the case n = 4, and let a 2-place
funetion f(z, y) be defined by the following matrix (ef. the eonvention made
in seetion 1):

2 3.2 .4
ls S22
4 2 4 4
TR g R

Then the value sequences in the sets F'{'" will be as follows (we write every
sequence only once).
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P 11284,

FV: 2341

P 3412, 3241,

FY: 4123, 4312, 4441, 4213, 2413, 2212, 2244, 4422, 4334,
P Ngonon 18

We need not go further. The value sequences 2341 and 3241 represent
permutations which form a basis of S,. The value sequenee 4212 represents
a funetion which assumes exaetly 3 (= n—1) values. Hence, f(x,y) is a
Sheffer funetion.

6. Some particular Sheffer functions. We now apply theorem 5.1
to show that certain funetions are Sheffer funetions. These funetions are
of interest also from the point of view of the many-valued propositional
calenlus. Some results in this direetion will be published in another paper.

Consider the funetion 8(x,y) defined as follows:

8(z,y) = n for z=n—1, 8(n,y) =y+'1.

Turorem 6.1. 8(x,y) is a Sheffer function.

Proof. The proof is based on the following

Lemma 6.2, 8(x,y) generates the functions bi(x), i = 1,2,...,n, salis-
fying bi(z) =1 for s=n—i and bi(z) =n for & > n—i.

Proof. We see that

b (x) = 8(8(x, x),8(x, x)).
The following auxiliary funetions arve generated by 8(x,y):

di(x) = 8(ci(x), ci(x)) for 1=i1=n—1
where

e(z) = 8(8(w, z), @),

cja(x) = 8(d;j(x), c;(x)) for 1=j<n—1.
We see that always

bialx) = 8(dj(z),d;i(z)) for 1=j=n—1.

Therefore, lemma 6.2 follows.

It is now seen by an induetive argument that 8(r,y) generates all
1-place functions. By lemma 6.2, §(x, y) generates the funetion b, (x) which
assumes the value n for all argument values. We make the following hypo-
thesis of induetion: 8(x,y) generates all 1-place funetions which assume
the value n for all argument values =n—i where 0 =1 < n. (Le. 8(x,y)
generates an arbitrary 1-place function whose value sequence begins with
n—1i n'’s.) Let g(x) be an arbitrary funetion assuming the value n for all
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argument values =n—i—1. Denote g(n—i) = u, and define a funetion
gi(x) as follows:

gi(z) =n for a=n—1, g1(x) = g(z)—"u for £ > n—i.

By the hypothesis of induction, g,(x) is generated by §(x,y). Define now,
in sueceession:

#(0) = 8(bin(2), 04(2)),
2jn(z) = 8(bin(z), 2j(x)) for j=1,...,u—1.

By lemma 6.2, the p-funections are generated by 8(z,y). Clearly,
vu(x) = glx).

We, thus, have the following vesult: §(x,y) generates an arbitrary 1-place
function assuming the value n for all argument values =mn—i—1. The
induction has bheen completed, and we conclude that 8(x,y) generates all
I-place funetions. By theorem 5.1, 8(r, y) is a Sheffer funetion.

For a generalization of theorem 6.1, consider funetions 8 (x,y) such
that in their matrices all rows, except the i row, consist of the same
number a. By theorem 3.2, such a funetion is not a Sheffer funetion if
a=F 1. Suppose a = i and denote 8'(1, ) = a(y). Then the matrix of 8 (x, y)
is as follows:

a(l) a(2) ... a(n)

i gy pld

where the o's are in the i row. We have the following

Turorem 6.3. 8 (x,y) is a Sheffer function if and only if a(y) is a
circular permutation of the numbers 1,2,..., n.

Proof. The "if"-part of the theorem is shown to be true in the same way
as theorem 6.1. For the "only if"-part, let a(y) first be a permutation which
is not cireular. Then there is a number k such that, in the eyelic ve-
presentation of a(y), & does not oceur in the same eyele as i. It is easy
to see that the 1-place funetion which assumes always the value & eannot be
generated by 8'(xz, y).

Let a(y) be a l-place funetion which is not a permutation. If «(y)
assumes 1 as a value then one of the numbers 1,2, ..., n does not oceur in
the matrix of 8'(z,y). By theorem 3.2, 8§ (x,y) is not a Sheffer funetion.
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If a(y) does not assume i as a value then the 1-place funetion which assumes
always the value i eannot be generated by 8 (x,y). This completes the proof.

When we let ¢ range over the numbers 1,2,...,n and, for each i, let
a(y) range over the (n—1)! eireular permutations we get n! funetions
8 (x,y), each of which is a Sheffer function by theorem 6.3. If we consider
columns instead of rows then a similar argument gives another n! Sheffer
functions. The latter ones are all different from the former ones, provided
n>2,

In the following theorem we assume n > 2.

TheoreM 6.4. Let h(x,y) be the function defined as follows:

R(1,1) = 2, otherwise h(x,y) =1 for x=y;
h(1,n) = n, otherwise h(z,y) = y—ax+2 for x <y.

Then h(z,y) is a Sheffer function.
Proof. Denote

a(z) = h(h(z, ), x),
a:(z) = h(h(z,z), h(z,z)),
as(x) = h(a:(zx), z),
a,(z) = h(h(z, ), a:(x))

and
az(x) = hiz, a(x) ).

Clearly, a,(x) is a function assuming exactly n—1 values. ay(x) is the
transposition (12). Furthermore, if n = 3 then a;(x) is the civenlar per-
mutation (123). If n > 3 denote

bi(z) = hias(z), as(x) ),

bin(z) = h(as(z), bi(z)) for I=Si=n—4
Define, finally,

as(z) = hbu-a(x), z).

Then ay(x) is the eireular permutation (12...n). It forms together with
the transposition (12) a basis of the symmetrie group S,. Henee, hix,y)
venerates a basis of S, and a funetion assuming exaetly n—1 values. By
theorems 4.1 and 5.1, h(x,y) is a Sheffer funetion.

7. Sets of Sheffer functions. Theorems 4.1 and 5.1 give us a method
for the direct eonstruction of sets of Sheffer funetions. For instance, we
may define a funetion f(2,y) in such a manner that f(x, ) and f(z, f(z.x))
form a basis of the symmetrie group S, and f(f(x, ), x) assumes exaetly
n—1 values. This is always possible when n > 2. Sueh a definition gives
us at least n"**" Sheffer funetions. We illustrate this method by the follow-
ing example where we assume n > 2.

118




On the composition of functions of several variables... 29

Let f(x,y) be any function which satisfies the following conditions:
flz,z) = 24°1 for any z;
1(1,2) =2, 1(2,38) =1, f(z,2+"1) =2 for z=1,2;
f(2,1) =2, f(z+'1,z) = x for z=E1.

Thus the matrix of f(x,y) is, in case n = 3,

AL

2.3 1

I8 =]

and, in case n > 3,

29 n
2.3 1

2

n n—1

n n—1 1

By theorems 4.1 and 5.1, such an f(x,y) is always a Sheffer function, no
matter how we choose numbers for the undefined entries. Since there are
n*—3n undefined entries, we get 2"**" Sheffer funetions.

In this section we prove three theorems, each of which gives us n" ="
Sheffer funetions. In theorems 7.1 and 7.4 we assume n > 2, in theorem 7.2
we assume n > 3.

TreorEM T.1. Any function f(x,y) such that

flaz,z) = x+'1 for any x
and

I

f(1,2) =2 f(z,z+'1) =2 for z3F1
1s a Sheffer function.

Proof. 1t is seen that f(z,x) is the ecireular permutation (12...n),
whereas f(z, f(x,z)) is a funetion assuming exaetly n—1 values. It suffices
to show that f(x, y) generates the (n—1)-eyele (23...n). The latter forms
together with (12...n) a basis of the symmetrie group S,.

To show that the (n—1)-cyele (23...m) is generated, we proceed as
follows. We define first the following auxiliary functions:

ay(x) = z,
a;(x) = f(x, f(z,z) ),

ai(z) = flaia(2), flaia(z), aia(x))) for 2=i=n—2,
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Clearly, a;(1) =i+1 and ai(x) = = for x3 1. Let now

bi(x) = f(f(ans(x), @us(x)), f(@n-s(T), Gn-s(2))) -
and
ba(x) = flan2(x), an2(x) ).
Then f(b:(x),bi(x)) is the (n—1)-cyele (23...n). Hence theorem 7.1
follows.
Turorem 7.2. Let f(x,y) be any function which has the following pro-
perties:
f(zix) =1 for m=E1,
f(1,2) =3

and

f(2,1) =4, f(3,1) =2, f(x,1) =z+"1 for 52,3.

]

Then f(x,y) is a Sheffer function.
Proof. Define

w(x) = f(=z, f(z, %)),
ay(z) = f(f(z, 2), f(f(zx, x), f(z,2)) ),
ay(x) = flax(x), ax(x)) !
and
a,(x) = f(x,a5(x) ).

Then a,(x) is the eiveular permutation (1324...n) and a,(x) is a funetion
assuming exactly n—1 values. The proof is completed if we can show that
f(x,y) generates the transposition (23). This transposition together with
the generated cireular permutation forms a basis of the symmetrie group S,.

We use the term “the f-square of a funetion g(z)” to mean the function
flg(x),g(x)). By the notation g*(x) we mean the funection gg(r). Other
powers of g(x) are used analogously. We need the following

LemMa 7.3. f(x,y) generates any 1-place function which assumes only
the numbers 1 and 2 as values.

Proof. The funetion ay(x) above assumes always the value 1. By f-squar-
ing it, we obtain the funetion which assumes always the value 2. Further-
more, by f-squaring the funetions a'(x) where v = 1,2,....n, we obtain
all (1-place) funetions which assume the value 2 onece and the value 1
n—1 times. By f-squaring all these funetions, we obtain all functions which
assume the value 1 once and the value 2 n—1 times.

We now make the following induective hypothesis: f(x, y) generates all
funetions which assume the value 2 i times and the value 1 n—1 times,
where 1 =1 < n—1. Let h(x) be an arbitrary funetion which assumes the
value 2 i+1 times and the value 1 n—(i+1) times. Choose a number k
such that h(k) = 2. Let h,(x) be the function defined as follows:
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hy(k) = 1, hy(z) = h(z) for z=Ek.

By the induective hypothesis, h,(x) is generated by f(z,¥). Let ha(z) be
the f-square of h,(x). f(x,y) generates also the following function hy(x):

hs(k) =1, hs(z) = 2 for zFk.

Consider the funetion f(ha(x),hs(x)). Obviously, if we f-square this
function twice we obtain the funetion h(x). Sinee h(x) was an arbitrary
funetion assuming the value 2 i+1 times and the value 1 n—(i+1) times,
we conelude that f(x,y) generates all funetions of this kind. This completes
the induetion, and we obtain the lemma.

To show that f(x,y) generates the transposition (23), we now proceed
as follows. Consider the following two funetions b,(x) and b.(z):

bi(1) = b:(2) =2, by(z) =1 for xF1,2;
and
ba(1) = ba(4) = 2, be(3) =1, ba(z) = 2—1 for z51,8, 4.

Clearly, the transposition (23) can be expressed as f(b.(x), b,(x) ). Aceord-
ing to lemma 7.3, f(x,y) generates the funetion b,(x). To complete the
proof, we have to show that f(x, y) generates b.(x).

Suppose first that n is even. We use the following auxiliary funetions:

ri(x): ri(l) =2, 1(2) = 1; otherwise r,(x) =1 if z is odd and
ri(x) =2 if z is even.
rin(z) for 1=4<n—3: riq(z) = f(ri(z), si(x))

where s;(x) is defined as follows:
s$i(x) = ri(x) for 2 =n—4, 8i(z2) =1 for z > n—i.

By lemma 7.3, the function r,(x) as well as all of the functions s;(x) are
generated by f(x,y). Therefore, all of the funetions ri(x) are generated hy
f(x,y). But elearly,

ba(x) = ru-s(z).

This completes the proof in ease n is even. In ease n is odd the proof will
remain exactly the same, except that instead of r;(x) we have to take the
f-square of r,(z). Henee theorem 7.2 follows.

TueoreMm T4, Any function f(x,y) such that

fle,x) = z+'1 for any =
and
f(1,2) =2, f(2,3) =1, f(z,z+'1) =z for 51,2

is @ Sheffer function.
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Proof. We see that f(z,a) and f(z,f(z,z)) produce the circular per-
mutation (12...n) and the transposition (12). These two permutations
form a basis of the symmetric group S, Using this fact, we are going to
show that f(x,y) generates a (l-place) function assuming exactly n—1
values. We separate two cases.

Case 1. f(2,1) = 3. Let p,(x) be the transposition (12). Then f(x, p,(x))
gives us a function which assumes exaetly n—1 values.

Case 2. {(2,1) = 3. In this case, we have three subecases.

Subcase 2a. f(1,3) = 1 or f(1,3) = 2. Consider the (n—1)-cyele p.(x)
= (nn—1...431). (In case n =3 we take p,(x) to be the transposition
(31).) Then f(pa(x),x) defines a function assuming exactly n—1 values.

Subcase 2b, f(1,3) = 3. Let ps(x) be the (n—1)-eycle (134...mn), ie.
ps is the inverse of p.. Define

qi(z) = f(z, ps(z) ).

Then ¢,(1) = q:(2) =3 and qi(z) =« for x=1,2. Let pi(z) he the
(n—2)-eyele (n n—1 ... 43). Define

q:(x) = f(pa(z), p2qi(x)).

Then ¢.(1) = 2, ¢2(2) =3, ¢2(3) = n and gs(z) = « for £ 1,2, 3. Hence,
q:(x) is a function assuming exactly n—1 values.
Subcase 2¢. f(1,3) = u=1,2, 3. Define

qs(z) = f(x, ps(x) ).

Then ¢:(1) =u, ¢5(2) =3 and ¢s(x) =« for 21,2, Let ps(x) be the
permutation (4u) and p,(x) the produet (13)(4u). Define

qi(x) = pagaps(x).

It is seen that q,(1) =4, ¢.(2) = ¢.(3) = 1 and qu(x) = « for x31,2,3.
If we, finally, let p.(x) be the 3-eyele (143), it is easily verified that the
funetion

qs(®) = f(pr(x), qalz) )

assumes exactly a—1 values. This eompletes the proof of theorem 7.4

Theovem 7.4 is a special case of the general theorem 11.1. It is to be
noted that in the proofs of theorems 7.1 and 7.2 the generation of the three
desired 1-place functions took place entirely “through™ the given 2n entries
of the matrix of the funetion considered. No assumptions at all were needed
about other entries of the matrix. This was not the case with the proof of
theorem 7.4 where we had to consider, in addition to the given 2n entries,
also two other entries. In faet, if this had not been done we would not
have obtained any 1-place funetions other than permutations.
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Hach of the theorems proved in this seetion gives us a method of filling
2n of the n® entries of the matrix of a 2-place funetion in such a way as
to always vield a Sheffer funetion, regardless of how the remaining n*—2n
entries are filled. Since in this manner a large variety of Sheffer funetions
is obtained, these theorems can be used to prove the non-existenee of eertain
negative eriteria for Sheffer funetions. An example of this will be given in
seetion 10,

8. Conjugate functions. Let P be an arbitrary permutation belonging
to the symmetrie group §,. We apply P to the elements of onr basic set
{1,2,...,n}. Then a given function f(r, y) is changed into another funetion
which we denote by fe(x, ). In faet,

(1) fe(z,y) = P(f(P(z),P'(y)))

where P! is the inverse of P. We say that fu(r, y) is conjugate to f(ry).!
In partienlar, if

fe(e,y) = flx,y)

we say that f(r,y) is self-conjugate under P. 1f P is different from the
identity permutation we also say, shortly, that f(x, y) is self-conjugate. It
is easy to see that if ¢ is the number of permutations under which f(x, y)
is self-conjugate then the number of distinet conjugates of f(r, y) equals
’:T!. We confine our attention to 2-place funetions. However, the consider-

ations presented in this seetion remain valid for functions of more than
two variables.

The relation "eonjugate to” is reflexive, symmetrie and transitive. Thus
we have a partition of all funetions into equivalence elasses. We are going
to see that the property of being a Sheffer funetion is preserved in this
partition and that any Sheffer funetion has the largest possible number
of distinet conjugates. We need the following simple

Lemma 8.1, If g, [, v and s are functions satisfying

glx,y) = f(rie, y)s(r,y)),
then
gelz, y) = fe(rele,y), sp(e,y))

for any permutation P.

' Conjugate functions correspond to the well-known "dual” funetions in the ease
# =2, The more general notion introduced above is due to Swirr, [16]. Swift’s paper
contains an error: It is claimed (p. 613) that a subgroup of the symmetrie group which
leaves a funetion invariant leaves also all conjugates of this funetion invariant. This
is the case only when the subgroup in question is a normal divisor,
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The proof of this lemma is obvious from equation (1). It might be
added that it is not neeessary that r and s actually depend on both variables,
and either one of them may reduce to a single variable. It is easy to see
that lemma 8.1 implies the following

TusorEM 8.2. Let f(z,y) be a function self-conjugate under a permutation
P. Then every function generated by f(x,y) is also self-conjugate under P.

For any permutation P different from identity, there are funetions
which are not self-conjugate under P. Therefore, theorem 8.2 implies that
1o Sheffer funetion s self-conjugate. This® means that every Sheffer
function possesses n! conjugates. On the other hand, all eonjugates fp(z,y)
of a Sheffer funection f(z,y) are Sheffer funetions. Namely, given any
g(x,y), we first form a eomposition sequence of gpa(x,y) in terms of
f(x,y). From this we obtain, using lemma 8.1, a composition sequence of
g(xz,y) in terms of fp(x,¥). Thus we have proved the following

Turorem 8.3. The number of (2-place) Sheffer functions is divisible
by nl

The determination of this number, for an arbitrary n, is a dif fieult task.'
1t seems to be closely linked with the unsolved problem of determining the
number of all bases of the symmetrie group S, Lower bounds for the
number of all Sheffer functions ean be obtained by using theorems presented
in section 7 or, better, theorem 12.1.

The theory of conjugate funetions can be used to obtain new Sheffer
functions from known ones. As a matter of fact, the n! Sheffer funetions
§ (x,y) given in theorem 6.3 ave exactly the conjugates of the funection
8(x,y) in theorem 6.1. Similarly, new sets of Sheffer funetions are obtained
if econjugation is applied to the funetions given in the theorems of section 7.
The method ean be used also to simplify some proofs in the literature.’

9. Transposes as conjugates. By the transpose of a function flx,y)
we mean the funetion fi(x,y) such that

fer(i, §) = f(4,%) for any i and j.

Le. the matrix of fi(r,y) is the transpose of the matrix of f(x,y).
There arve functions f(z,y) sueh that the transpose of f is different
from all eonjugates of f. For instance, any non-symmetrie funetion f(x, y)
with f(z,z) = x+1 for z=Fn, f(n,n) = n, has this property. On the other
hand, it is easy to find funections f(x,y) such that the transposes of these

1 In the eases n =2 and n= 3 the number is known to be 2 and 3774, respectively.
The former result is to be found in [21], the latter in [6].

: For instance, it is easy to seesthat some of the Sheffer fumetions presented in [4]
are conjugate to one another. J
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funetions are also conjugates. In other words, for some permutation P,
the equation
fee(@, y) = folz, )

is true. In this seetion we disenss the problem of whether it is possible to
find such funetions satisfying this eondition which, in addition, are Sheffer
funetions.

If a Sheffer funetion f(z,y) is symmetrie, ie. f(x,y) = fi, (x,y), then
we obtain a trivial solution to this problem by choosing P to be the identity
permutation. No other permutation could be unsed here sinece no Sheffer
funetion is self-conjugate. Using theorems 7.1 and 7.4 it is easy to construet
symmetric Sheffer funetions.

To obtain a non-trivial solution, we have to consider non-symmetrie
Sheffer functions. The solution is presented in the following

Turoresm 9.1. For all values of n =4, there is a non-symmetric Sheffer
function f(x,y) whose transpose is one of its conjugates. If n <4 there is
no such Sheffer function.

‘Proof. To prove the first part of the theorem, we assume n=4 and
define a funetion #(x,y) as follows: \

£(2,1) =4, £(3,1) =2, t(z;1) =iz+"1 for zF2,3;
t(1,3) = t(4,1), t(1,4) =2, {(1,z) = xz+'1 for x3,4;
t(z,y) =1 if z31 and yF1.

t(x,y) satisfies the hypothesis of theorem 7.2 and, hence, is a Sheffer
funetion. Let P, be the transposition (34). Then it is readily seen that

tp, (x,y) = te(x,9).

This proves the first part of the theorem.

The seeond part is elear in the ease n = 2 sinee in this case there is
no non-symmetric Sheffer funetion.

Assume, finally, n = 3. Let f(z,y) be a non-symmetric Sheffer function
and P a permutation such that !

feelm, y) = fol(z,¥).

P has to be different from the identity permutation because f(a, y) is non-
symmetrie. The funetion g(z) = f(z, z) is self-conjugate under P. Further-
more, g(x) =z for any z, by theorem 3.2. These conditions can be satisfied
only if the value sequence of g(x) equals

231 or 312

and -P is one of the 3-eyeles : .
(123) or (132),.
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Suppose P = (123). Then we get, using the formula (1) in section 8, the
following equations:

f(2,1) = P(f(3,1)),

f(3,1) = P(f(3,2)),

f(3,2) = P(f(1,2)),

1(1,2) = P(f(1,3)),

f(1,3) = P(f(2,3)),

f(2,3) = P(f(2,1)).

Sinee P?* is the identity, these equations imply that f(z, y) is symmetrie,
contrary to our assumption. The proof is similar in case P = (132).

10. Non-existence of a sum criterion. In the case n = 2 it ean he
shown that if the sum

f(1, 1)+ f(1,2) + f(2,1) + f(2,2)

of all numbers in the matrix of a funetion f(z,y) is even then f(x,y) is
not a Sheffer function. The result is established by showing the closure of
the property in question under the forming of new funetions as a finite
composition of f(z,y) (ef. [20]). This gives rise to a plausible conjecture
for the general case: There is some property of the sum V(f) of all numbers
in the matrix of a 2-place funection f(x,y) which guarantees that f(x,y)
is a Sheffer funetion, or there is some property of V(f) which guarantees
that f(xz,y) is not a Sheffer funetion. However, the following consider-
ations show that this is futile.
Obviously for any funetion f(x,y),

W=V (f) =2

Consider any number b such that #n* = b =a* There is a function f(ax, y)
which is not a Sheffer function and for which V(f) = b. This is true
because, given any b where #* = b = n*, we can construet a funetion f(z, y)
sueh that either f(1,1) =1 or f(n,n) = n. And a funetion having either
one of these properties is not a Sheffer function, by theorem 3.2. Therefore,
there is no property of the sum V(f) which would gnarantee that f(x, y)
is a Sheffer funetion.

On the other hand, there is a trivial property of V(f) whieh guarantees
that f(z, y) is not a Sheffer funetion, namely,

Vif) <a*+d(n—1)n or V(f) > n*—3(n—1)n.

This is true because in these cases all of the mumbers 1,2,...,n do not
oceur in the matrix of f(x, y). However, exeept this trivial property there
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is no other property of V(f) whiech would guarantee that f(z,y) is not a
Sheffer funetion, provided n > 2. This result is a consequence of the follow-

ing
Turorem 10.1. Assume that n > 2 and a is any number such that

wHin—l)n=a=n*—i(n—1)n.

Then there is a Sheffer function f(x,y) such that the sum V(f) of all
numbers in the matriz of f(z,y) equals a.

Proof. The theorem is true in the case n = 3.' In the following proof
we assume n = 4.

Using theorem 7.2 we obtain Sheffer funetions f(x,y) satisfying the
condition V(f) = a, provided

+in—ln+1=e¢=(n"—2n)n+in(n+1)+n+1

Consider the set of Sheffer funetions resulting as conjugate functions
from the set presented in theorem 7.2 using the permutation

P=(1n)(2n—1).
(Given any a with

(n*-=2n) + (n*—1) +in(nt+1) = a=n*—}(n—1)n—1,

we ean choose a Sheffer funetion f(z,y) with V(f) = a from this set.
('learly these two intervals overlap. Thus given any a with

w4+ in—1)n < a < w°—4(n—1)n,

we obtain a Sheffer funetion f(z,y) with V(f) = a.

In addition, we have to show that the theorem holds true also for the
endpoints of this interval. The funetion 8(z,y) in theorem 6.1 is a Sheffer
funetion for which

V(8) = n*—§(n—1)n.

Let P’ be the transposition (1n). Then the function 8 (xr,y) is a Sheffer
funetion with
V(dp) =n*+4(n—1)n.

This completes the proof.

! This is seen immediately by considering Sheffer functions presented in the literature
for this special case (ef. [6] and [16]). A list of the required funetions is, beginning
with a function f(x,y) for which V(f) = 12:

(150 i U v NN T e e e 1
where we have made use of the notation in [16], p. 618,

This special case can also be taken care of by proving a theorem analogous to
theorem 7.2 and then proceeding as in the proof above. For this, ef. the proof of theorem
12.1.
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III. SHEFFER FUNCTIONS AS GENERATORS
OF THE SYMMETRIC GROUP

11. Functions which generate all permutations. In theorem 5.1 it
was shown that if a funetion f(z,y) generates all 1-place functions then it
is a Sheffer funetion. We are now going to take one step further. We
consider funetions f(z,y) which generate all permutations of the numbers
1,2,...,n, i.e. which generate the symmetrie group §,. Our aim is to prove
that such a funetion is a Sheffer funetion. We have to assume n > 2. The
symmetrie group S, is eyelie and, henee, is generated by a 1-place function.
And we know that a 1-place funetion ean never be a Sheffer funection.

Tueorem 11.1. A function f(x,y) which generates the symmetric group
S, is a Sheffer function, provided n=3."

Proof. Let f(z,y) be an arbitrary but fixed funetion which generates
all permutations of the numbers 1,2,...,n. To prove theorem 11.1, we have
to show that f(x, y) generates a (1-place) function assuming exactly n—1
values. Then f(x,y) is a Sheffer funetion, by theorems 5.1 and 4.1.

It is convenient for our purposes to introduce a classification of all
1-place funetions. A funetion g(x) is said to be of genus y (1=y=n) if it
assumes exaetly y (distinet) values. A funetion g(z) of genus y is said fo
he of type

{ay, @, - o5 05)

where the a’s are natural numbers satisfying a, +a. +...+ay = n if, for
each v where 1=v =1y, there is a number b, such that g(z) assumes by
as a value exaetly a, times. This implies that all of the numbers b, are
distinet. Obviously we do not change the type if we change the order of
the numbers ay. The type of a funetion g(x) tells us how many values g(x)
assumes and how many times it assumes each value. It does not tell us
what these values are or in what order they are assumed.

* We remind the reader of the convention made in section 1, namely, that = is the
number of elements in our basic set N. Theorem 11.1 is obviously false if the variables
of f(x,y) range over a set having more than n elements.
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Our aim is to show that f(xz,y) generates a funetion of genus n—1.
Clearly, every funection of genus n—1 is of type

(& dilis

n-2 terms

We prove first several lemmas, beginning with

Lemma 11.2. If f(z,y) generates ome function of a certain type then
it generates every function of this type.

Proof. Let g(x) be a funection generated by f(x,y). A funetion g(x)
which assumes exactly the values of g(x) in an arbitrarily chosen order
can be expressed as follows:

g(x) = gsv(x)

where s,(z) is a suitable permutation. On the other hand, for any funetion
¢(x) which is of the same type as g(x), we have

9(x) = sug(z)

where su(x) is a permutation and g(x) assumes exaetly the values of g(x)
in some order. Henee,

9(x) = spgsv(x)

where su(x) and so(x) arve suitably chosen permutations. Since flz,v)
generates all permutations, it generates E(.r.} and we obtain lemma 11.2.

Lemya 11.3. f(x,y) generates a function of genus smaller than n. If
n=4, f(x,y) gencrates a function whose genus y satisfies 1 <y <n.

Proof. Sinee f(x,y) generates the symmetric group S, it has to depend
on both of its variables, ie. it has to be non-degenerately binary. This
implies that there are four numbers w,, ., u; and wu, where u, & u, and
us &= u, such that

Fug, we) = flag, w).

Let now s,(x) be any permutation mapping 1 to u, and 2 to u,. Let s.(x)
be any permutation mapping 1 to w. and 2 to u,. Such permutations certainly
exist beeause u, == 1y and w. & w,. By the hypothesis, the funetion

f(si(z), s:(z) )

is generated by f(z,y). This function is of genus smaller than n. This
completes the proof of the first part of the lemma.

Assume that n=4. If f(s,(x),s:(x)) is of genus greater than 1, then
the proof of our lemma has been completed. Assume it is of genus 1. Since
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all funetions of genus 1 are of the same type, we conelude by lemma 11.2
that all funetions of genus 1 are generated by f(z, ).

In the same way as in the proof of theorem 5.1 we see that there are
four numbers 1, j, & and ! sueh that f(i, k) ==7(4, k), f(1,k) =Ff(1,1) and
f(i, k) Ff(i,1). Obviously f(x,y) satisfies the two requirements needed
for this.

Suppose f(1, z) = f(j, k), for any z. Let g;(x) be the funetion assuming
always the value i. Then

flgi(z), x)

is a funetion generated by f(z, y). Clearly, it is of a genus y where
1<y<nm

Suppose then that f(i,xz) = f(j, k), for some value of x, say r = v,
Necessarily, v, =k and v, F= 1. Choose from the set {1,2,...,n} a number
v.F k, I, v, and a number v, 51, j. This is possible because n = 4. Let s,(z)
be any permutation mapping 1 to v, 2 to j and 3 to 1. Let s,(x) he any
permutation mapping 1 to vs, 2 to &k and 3 to v, or to I, depending whether
flus, va) FF(4, k) or flvs,va) = f(j, k). Such permutations always exist.
By the hypothesis, f(r, y) generates the funetion

f(sa(®), 8.(2x) ).

But the genus y of this funetion satisfies the condition 1 < y < n. Therefore,
we have proved lemma 11.3 in all cases,

Lemma 114, If f(z,y) generates a function of type [ay, a., ..., a4
where 1 < t < n, then it generates a function of type [a,+ o as, ..., 4],

Proof.. Let f(x,y) generate a function h(x) of type [a,, a4 ..., 4]
where 1 <t<n By lemma 11.2, f(x,y) generates all funections of this
tvpe. The inequality # < n implies that there are two distinet numbers p,
and p. such that h(p,) = h(p.). In addition, there are {—2 numbers p,,
Dy oo . pr such that the following two conditions are satisfied:

(i) pu=F pr whenever p = v.
(i) h(pp) F h(py) whenever p=v and p,v=2.

We now define a funetion il‘(.r) as follows: If 1 =2 = a, then hi{x) = P
Hat...tev<z=a,+ ... +aytaw, where 1=v < then h(z) = py.
Obviously, i(x) is of type [ay, s, ...,a;] and, henee, h(x) is generated
by f(x,y). This implies that also the funetion hk(x) is generated hy f(x, y).
Furthermore, hh(+) is of type

laitas, @5 . .- 0]

This proves the lemma.
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By lemma 11.3 and, if necessary, repeated application of lemma 114
we obtain the following

Levyma 11.5. f(x,y) generates a function of genus 2, provided n = 4.

We need two more lemmas in order to show that f(z,y) generates a
funetion of genus n—1.

Lemma 116, If f(x,y) generates a function of type [n—1,1] then it
generates a function of genus n—1.

Proof. Let f(x,y) generate a function of type [n—1,1]. The proof of
lemma 11.6 is by induetion. We make the following induetive hypothesis:
f(x,y) generates a funetion of type

E“'_mv 1! Sy 1]

—
" terms

where 1=m <n—1. We are going to show that this implies that a
funetion of type
[A—m—1, 1, ..., 1]

—_—
m+l terms

is generated by f(x,y). This proves lemma 11.6 because it shows that a
funetion of type
o o9

et
n-2 Lerms

is generated by f(r, y), i.e. a function of genus n—1 is generated by f(z, y).
By the induetive hypothesis and lemma 11.2, all funetions of type

[m—m, 1, ..., 1]
———m———

" terms

are generated by f(r, y). Furthermore, by repeated application of lemma 11.4
and by lemma 11.2 we see that f(x,y) generates any (l-place) funetion
which assumes some value at least n—m times.

Let 4, j, k and | be the same numbers as in the proof of lemma 11.3.
Denote f(i, k) = qi, f(i,1) = q. and f(j, k) = qz. We know that these three
numbers arve all distinet. If m > 1, choose m—1 pairs (xy, yo) where
1=v=m—1 in such a manner that the following condition is satisfied:
The numbers qi, gy ..., Gu.e, Where we denote qu.y = f(aw, yo), for 1=y
=m—1, are all distinet. Such a choice is possible because f(r, y) assumes
all of the numbers 1,2,..., n as values and m =n—2.

Define now two funetions h, () and h.(x) as follows:

hiz) =ifor 1=r=n—m—1and r=n—m+1,
k() =3 for'z'=n—m,
hi(z) = xy for 2 =n—m+1+v (where 1 =v=m—1):
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and
ha(x) =k for 1=x=n—m,
hi(zx) =1 for & = n—m+1,
hae(z) = Yo for o = n—m+1+v (where 1=r=m—1).

iy (2) assumes the value i at least n—m times and h.(x) assumes the value
k at least m—m times. Hence, they are both generated by f(z,y). Conse-
quently, the funetion

f(hi(x), hal() )

is wenerated by f(x,y). This funetion is of type

GO == P Doy 51 17 19

——
M+l terms

This completes the induetive step, and we obtain lemma 11.6.

Lemya 11.7. If f(x,y) generates a function of type [n—a,a] where
1< a<n—1 then it generates a function of type [n—1,1], provided that
not both n =4 and a = 2.

Proof. We may assume n =4 because the lemma is vacuously true in
the ease n = 3. By the hypothesis and lemma 11.2, f(x,y) generates all
funetions of type [n—a, a] where 1 < a < n—1. Let 4, j, k, I, 1, q= and qy
be the same numbers as in the proof of the previous lemma.

Define two funetions e, (x) and e.(x) as follows:

e(z) =1 for l=c=n—a,
alx) =4 for n—atl=z=m;
and
e(x) =k for 1=r=n—a—1 and 2z = n—a+1,
es(z) =1 for r = n—a and n—at+tl < r=n.

Both ¢,(x) and e.(x) are of type [n—a,a] and, hence, are generated by
f(x,y). Consider the funection

fle(x), ex(ix) ).

It is generated by f(x,y). Its type depends on the value f(j, () in the
following way :

(i) If f(j,1) = q. then the type is [n—2,1,1].
(ii) If f(j,1) = q: or f(j,1) = gs then the type is [n—a—1,a,1].
(iii) If F(j, 1) = qu, g2, g then the type is [n—a—1,a—1,1,1].

I
3

Il

If we arve dealing with the case (i) or the case (ii) then we may conelude,
by lemma 11.4, that f(x,y) generates a function of type [n—1,1]. The
same conclusion holds also in the ease (iii), provided that not both
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n—a—1 =1 and a—1 = 1, i.e. provided that not both n = 4 and a = 2.
Sinee we have excluded this ease in the statement of lemma 11.7, we have
completed the proof.

We are now in the position to establish our theorem 11.1, except for
two special cases, namely, n =3 and n = 4. Suppose n=5. Then, by
lemma 11.5, f(z,y) generates a funetion of genus 2, i.e. a funetion of type
[n—a,a] where 1=a=mn—1. This implies, by lemma 117, that f(z,y)
generates a funetion of type [n—1,1]. Henece, by lemma 11.6, f(z,y)
generates a funetion of genus n—1. This completes the proof of theorem 11.1,
provided n = 5.

The two gaps in the proof above, n = 3 and n = 4, remain to be filled.

Assume n = 4. By lemma 11.3, f(x,y) generates a function of genus 2
or a funetion of genus 3. If it generates a funetion of genus 3 the proof
has been completed. Every function of genus 2 is of type [3,1] or of type
|2, 2]. If a funetion of type [3,1] is generated then we may use lemma 11.6
to obtain a funetion of genus 3.

Suppose f(x,y) generates no funetion of genus 3 and no funetion of
type [3,1]. Henece, it generates a funetion of type [2,2]. By lemmas 11.2
and 11.4, all funetions of types [2,2] and [4] are generated by f(x, y).

Consider the main diagonal of the matrix of f(z,y), i.e. the funetion
f(x, x). Obviously, f(x, ») 5=z, for any x. This implies, by our supposition,
that f(x,z) is a 4-eycle, a produet of two transpositions or a funetion of
type [2,2]. Furthermore, f(x, x) is self-conjugate under one of the follow-
ing permutations: (12)(34), (13)(24), (14)(23). For if f(x, z) is a 4-eyele,
it is self-conjugate under the square of the same 4-cyele, this being one of
the three permutations. If f(x,x) is a produet of two transpositions, it is
self-conjugate under the same product. Finally, if f(x, x) is of type [2.2],
there are two distinet numbers b, and b. such that f(b,, b,) = b. and
f(bsy bs) = by, The transposition (b;b.) oceurs in one of the three per-
mutations considered and f(z,x) is self-conjugate under this permutation.

Let f(x,x) be self-conjugate under P = (ab)(ed). Clearly, P* = P. We
claim that also f(x,y) is self-conjugate under P. If this were not the
case, then there were numbers », and y,, », Fy,, such that f(z,, y,)
F P(f(P(x,), P(y,))). Consider the funetions ¢,(x) and ec.(x) defined as
follows:

(1) = 6(2) = &, 6.(3) = ¢ (4) = Plz,);
and
c=(1) = o, ¢:(2) =1, €a(8) = P(x:), ¢a(4) = P(w).

ei(x) is of type [2,2]. ex(x) is of type [2,2] or [1,1,1,1], depending
whether P(xy) =y, or P(x) Fy,. Henee, f(z,y) generates both ¢, (x)
and ¢.(x). This implies that f(x,¥) generates the funetion
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es(x) = fled(z), calx) ).

Because f(x,x) is self-conjugate under P, ¢s(1) = Plcs(3)). Henee, by our
supposition, also ¢s(2) = P(c;(4) ). But beeause of the choice of x; and y.,
e3(2) F P(ca(4)).

This is a contradietion, and we conclude that f(x,y) is self-conjugate
under P. But this implies, by theorem 8.2, that f(r,y) does not generate
all permutations. Consequently, theorem 11.1 holds in the case n = 4.

Finally, assume n = 3. By lemma 113, f(z,y) generates a funetion of
a genus smaller than 3. If f(x, y) generates a funetion of genus 2, then the
proof has been completed.

Suppose f(z,y) generates no function of genus 2. Hence, it generates
a function of genus 1 (which is of type [3]). By lemma 11.2, all funetions
of wenus 1 are generated by f(x,y). This means that f(z,y) has the follow-
ing property @: Whenever f,(x) and f.(x) are funetions of types [1,1,1]
or [3] then also f(f,(x),f:(2)) is a funetion of one of these types.

Consider the function f(x, z). Property @ and the inequality f(z,z) = x
which is true for any z imply that f(r,x) is a eircular permutation, i.e.
the value sequenee of f(z,) is either 231 or 312, On the other hand, given
the values of f(z,z) and one additional value of f(z,y), say f(1,2), the
vemaining values of f(z,y) are determined by property @. There are two
possibilities for the value sequence of f(x,z) and three possibilities for the
value f(1,2). Henee, f(x,y) is defined by one of the following six matrices:

213 |222|231|312]321]333
prilgtigl hart gt PaliaINe A ity Aol 1D ST Y T
g1 Nl a3 Yl kg gy giprong idiekertarrg

But all of these six functions are self-conjugate under the permutation
P = (123). By theorem 8.2, no one of them generates all permutations. This
contradiets our hypothesis about f(x,y). The proof for the ease n = 3 has
heen completed. Thus, we have established our theorem 11.1 in all eases.

12. Applications of theorem 11.1. Outlines for further work. An
immediate consequence of theorem 11.1 (in case n=3) is the following
eviterion C: f(x,y) is a Sheffer function if and only if it generates two
permutations s,(x) and ss(x) which form a basis of the symmetrie group S,.
For instance, we can choose s;(x) to be the n-cyele (12...n) and s:(x)
to be the transposition (12). This eriterion gives an improvement of the
method presented in seetion 5 of determining whether a given funetion
f(x,y) is a Sheffer funetion. Thus, in the example at the end of section 5,
we need not form the sets &' and F)'' because we are able to see already
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from the sets F)'' and F* that the funetion in question is a Sheffer
funetion.

The eriterion € is opfimal in the following sense. Let €, be a eriterion
of the form: f(x,y) is a Sheffer funetion if and only if it generates every
funetion belonging to the set §. We assume that the funetions in S8 do not
themselves generate all funetions because, otherwise, (7, is a trivial eriterion.
(', is said to be optimal if in it we eannot replace § by any proper subset
of 8. Le. (', is optimal if, for every proper subset S, of S, there is a
funetion f(x,y) which is not a Sheffer funetion and whieh generates all
funetions in §,. Our eriterion ' is eclearly optimal, no matter what the
number n of elements in our basic set N is, with the only restriction n = 3.
There are, namely, even 1-place funetions which generate one of the fune-
tions s,(z) and s.(x). Theorem 11.1 shows that the eriterion resulting from
theorem 5.1 is not optimal.

By theorem 3.2, the main diagonal of the matrix of every Sheffer
funetion f(r,y) has the property:

f(z,z) =z for any z.

In what follows we construet Sheffer funetions with an arbitrary pre-
assigned main diagonal satisfying this condition. That is, given any funetion
g(x) such that g(x) ===z for any &, we prove that there is a Sheffer
funetion f(x, y) with f(x, x) = g(x). This is obviously true when n = 2,
In the following theorem we assume n=3.

Toeorem 12.1. Let g(x) be a funcltion such that g(x) == x, for any .
Then there are at least 2™ Sheffer functions f(x,y) with f(z,z) = g(z).
If, in addition, g(z) is a permutation or a function of type [n—1,1]|
then there are at least " *" Sheffer functions f(x,y) with f(x,x) = g(x).

Proof. We use the following theorem of Piccard (ef. [9], pp. 80—S86).
For any permutation s,(x) different from the identity, there is a per-
mutation s.(x) such that s,(x) and s.(z) form a basis of the symmetrie
group N,, provided that not both n = 4 and s,() is one of the permutations
(12)(34), (13)(24), (14)(23).

Assume first g(z) is a permutation. By the hypothesis, it is different
from the identity permutation. Suppose it is also different from the three
exceptional permutations listed above. Then, according to Piccard’s theorem,
there is a permutation §(x) such that g(x) and §(x) generate the symmetrie
group S,. Let now f(x,y) be any funetion which satisfies the following
conditions:

flz,z) = g(z)
and
flz, f(x,2)) = g(x).
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Sinee always g(x) = z, these two conditions are mutually consistent. There
are n"* functions f(z,y) satisfying these two conditions. Each of them is
a Sheffer funetion, by theorem 11.1.

Suppose n = 4 and g(x) is one of the three exceptional permutations,
say (12)(34). We may choose §(x) to be the funetion whose value sequence
is 1341. The vest of the procedure above remains the same. The reader may
easily verify that any funetion whose matrix is of the form

is a Sheffer funetion.

Assume next that g(x) is a function of type [n—1,1]. Then the re-
quired n** Sheffer functions f(x,y) are obtained as conjugates of the
funections given in theorem 7.2, provided n=4. If n =3 we have to use
a theorem analogous to theorem 7.2. (For instance, it is readily verified
that any funetion whose matrix is of the form

-
L £

is a Sheffer funection.)

Finally, assume that g(x) is neither a permutation nor a funetion of
type [n—1,1]. Choose a permutation s,(x) such that, for any =, si(x) Fz
and s,(z) Fg(x). Such a permutation s (x) exists, by our assumption
concerning g(z). Obviously s, () ean also be chosen to be different from
the three exceptional permutations above. According to Piccard’s theorem,
there is a permutation s.(x) which together with & (x) forms a basis of
the symmetric group S, Let now f(r,y) be any funetion satisfying the
following conditions:

f(=z,x) = g(=),
flz, f(z,x)) = s ()
and
fz, 8:(x)) = su(z).

By the hypothesis and the choice of s,(x), these three conditions ave mutually
consistent. There are n** funections f(x,y) satisfying them. By theorem
11.1, each of these funetions is a Sheffer funetion. This eompletes the proof.

It seems probable that theorem 12.1 can be strengthened to yield gt
Sheffer funetions f(x,y) with f(z,2) = g(z) also when g(x) does not
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satisfy the additional condition required in theorem 12.1. In its present
form, theorem 12.1 gives the following lower bound for the number of all
Sheffer funetions f(x,y):

Uy - B2 4 ((n—1)"—u,,) - n*-0
where

ty = n(n—1) +Z('§ ) (—Din—i! .
i=0

Thus, in case n = 4 we obtain 1391616 Sheffer functions.

We present finally two conjectures which suggest improvements of
theorem 11.1.

Coxaecture 1. A funetion f(x, y) which generates the alternating group
A, is a Sheffer function, provided n=4.

Congecture 2. A funclion f(x,y), generating a circular permutation
s(x) and a function g(x) which is nol a power of s(x), is a Sheffer
function, provided n is a prime number.

As regards conjecture 1, the condition n =4 is essential because, other-
wise, the alternating group 4, is eyelic. In our estimation, the proof of
theorem 11.1 eannot be directly modified to yield conjecture 1. However,
there might be some method of showing that whenever f(x, y) generates
the alternating group A, then it generates also an odd permutation (provided
n=4). Conjecture 1 would follow from this fact, by theorem 11.1.

Conjeeture 2 ean be shown to hold true in cases n =2 and n = 3. It
can also be shown that if n is not prime then there arve funetions f(z,y)
which are not Sheffer funetions although they generate funetions s(x) and
g(x) as required. An equivalent formulation of conjecture 2 is the following

ConagEcTureE 2. A function f(xz,y) which is not self-conjugate and
generates a circular permutation is a Sheffer function, provided n is a
prime number.

Conjecture 2, if true, provides a solution to the following problem. As
we already saw in theorem 3.2, one value of a funetion f(x, y) may cause
f(z,y) not to be a Sheffer funetion, no matter what the other values of
f(x,y) arve. For instance, this is the case when f(1,1) = 1. In other words,
it suffices to fill one suitable entry in a suitable fashion in an n X n square
matrix in order to be sure that the matrix never represents a Sheffer
funetion, no matter how the remaining n*—1 entries are filled. Now the
question arises: what is the minimum number a of entries which have to
be filled in order to be sure that the matrix always vepresents a Sheffer
funetion, no matter how the remaining n*—a entries are filled? Theorem
7.1, for instance, implies @ = 2n. On the other hand, it ean be shown that
a>n -+ 1. Henee, conjecture 2 implies a = n + 2 when n is prime.
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A THEOREM CONCERNING THE COMPOSITION OF FUNCTIONS
OF SEVERAL VARIABLES RANGING OVER A FINITE SET

ARTO SALOMAA

Consider functions whose variables, finite in number, range over a fixed
finite set N and whose values are elements of N. The elements of N are
denoted simply by the natural numbers 1, 2, ..., n. There are n" distinct
m-place functions. If N is chosen to be the set of #n truth-values then the
functions considered are obviously truth-functions in #-valued logic.

A function g is said to be generated by a set F of functions if g can be
expressed as a finite composition of functions in F. A set F of functions is
termed a Sheffer set if F generates every function. (When we speak of
“functions’ we always mean functions of the kind considered.) A function
[ is termed a Sheffer function if its unit set is a Sheffer set. It has been shown
by Post in [2] that the set of all 2-place functions is a Sheffer set. Further-
more, Stupecki has shown in [3] that, provided # =3, every 2-place function
is generated by a set of functions consisting of all 1-place functions and
an arbitrary 2-place function f(x, y) which is non-degenerately binary and
assumes all of the numbers 1,2, ..., n as values.

The purpose of this paper is to establish the following

THEOREM. Let F be a set of functions consisting of all the n! permutations
of the numbers 1,2, ..., n and of an arbitrary 2-place function f(x, y) which
is non-degenerately binary and assumes all of the numbers 1,2, ..., n as
values. Then, provided n = 5, F is a Sheffer set.

Proor. According to Post’s result, it suffices to show that F generates
all 2-place functions. By Stupecki’s result, this is the case if F generates all
I-place functions. On the other hand, all I-place functions are generated
by a set F' consisting of all permutations and of a I-place function which
assumes exactly #—1 values. This can be proved by a method similar to
the one presented in [1]. Hence, to prove our theorem, it suffices to show
that F generates a l-place function which assumes exactly n—1 values.

It is convenient for our purposes to introduce a classification of all 1-place
functions. A function g(x) is said to be of genus y (1 < y =< n) if it assumes
exactly y values. A function g(x) of genus y is said to be of iype

a1@a:®. .. Da, where ay+-as+-...4+a,=n

if, for each » where 1 < » < y, there is a number b, such that g(x) assumes
b, as a value exactly a, times. Obviously we do not change the type if we
change the order of the numbers a,, i.e. “@®"” is commutative. The type of a
function g(x) tells us how many values g(x) assumes and how many times
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it assumes each value. It does not tell us what these values are or in what
order they are assumed.

Our aim is to show that F generates a function of genus n—1. Clearly,
every function of genus n—1 is of type

201@...®1.
A2 torms
We prove first several lemmas, beginning with
LemMa 1. If F generates one function of a certain type then it generates
every function of this type.
ProoF. Let g(x) be a function generated by F. A function g(x) which
assumes exactly the values of g(¥) in an arbitrarily chosen order can be
expressed as follows:

8(x) = gs.(%)
where s,(x) is a suitable permutation. On the other hand, for any function
g:{x) which is of the same type as g(x), we have

§(%) = 5,8(x)

where s,(x) is a permutation and g(x) assumes exactly the values of g(x)
in some order. Hence,

8(x) = s,85,(%)

where s,(%) and s,(x) are suitably chosen permutations and, therefore,
functions belonging to F. Thus we obtain Lemma 1.

LeMMa 2. F generates a function of genus y where 1 < y < n.

Proor. Since f(x, y) is non-degenerately binary, there are four num-
bers uy, us, #g and w4 where u; # ug and us +*u4 such that flu1, ug) =
f(u, us). Now let s1(x) be any permutation mapping | to #; and 2 to wus.
Let sp(x) be any permutation mapping 1 to #s and 2 to #4. Such permuta-
tions certainly exist because #; # ug and us w4 . The function f(s1(x),
s2(x)) is generated by F. Evidently this function is of a genus smaller than ».
If it is of a genus greater than 1 then the proof of Lemma 2 has been com-
pleted. Assume it is of genus 1. Since all functions of genus 1 are of the same
type we conclude by Lemma 1 that all functions of genus 1 are generated by F.

As the reader may easily verify, our two assumptions about f(¥, y) imply
that there are four numbers 1, §, & and [ such that f(Z, k) # {(j, k), f(i, k) #
16, 1) and f(G, &) # £, ).

Suppose f(i, x) # f(j, k), for any x. Let gi(x) be the function assuming
always the value 7. Then f(gi(x), x) is a function generated by F. Clearly,
it is of a genus y where 1 <y < n,

Suppose then that f(z, x) = f(j, k), for some value of x, say x = v;.
Necessarily, v; # k and v; 3 /. Choose from the set {1, 2, ..., n} a number
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vp # k, I, vy and a number vs + 4, j. This is possible because n = 5. Let
s3(¥) be any permutation mapping 1 to vs, 2 to j and 3 to i. Let s4(x) be
any permutation mapping | to s, 2 to # and 3 to v; or to /, depending
whether f(vs, va) 5 f(j, k) or f(vs, v2) = f(j, k). Such permutations always
exist. F generates the function f(ss(x), sa(x)). But the genus y of this function
satisfies the condition | < y < n. Therefore, we have proved Lemma 2 in
all cases.

LeMmA 3. If F generates a function of type a1 @as®. . . Da; where t < n
then it gemerates a function of type by@®bs®. .. Dby where by = ay+as
and by =a,.,, for 1 <v» <t—1,

Proor. Let F generate a function h(x) of type a1@as@. .. Da; where
t <n. By Lemma 1, F generates all functions of this type. Because ¢ < #,
there are two distinct numbers p; and pp such that h(py) = h(pz). In
addition, there are {—2 numbers ps, pu, ..., p¢ such that the following
two conditions are satisfied:

(1). p, # p, whenever u = .
(2)- hip,) # h(p,) whenever u = and p,» 2 2.

We now define a function A(x} as follows:
If 1 Sx <a then A(x) = p1. .
Ifay+... 48, <x <a1+...+a,+a,4 where ] <v < tthenkh() =P,.1
Obviously, A(x) is of type a1@a:@... ®a; and, hence, k(x) is generated
by F. This implies that also the function k(%) is generated by F. Further-
more, k() is of type (a1+a2) @as@®. .. Da;. This proves the lemma.

By Lemma 2 and, if necessary, repeated application of Lemma 3 we
obtain the following

LEMMA 4. F generates a function of genus 2.

We need two more lemmas in order to show that F generates a function
of genus n—1.

LemMA 5. If F generates a function of type (n—1)@®1 then it generates
a function of genus n—1.

ProoF. Let F generate a function of type (n—1)@1. The proof of
Lemma 5 is by induction. We make the following inductive hypothesis:
F generates a function of type

—m)®1D...®1
R ——

m terms
where 1 < m < n—1. We are going to show that this implies that a function
of type

n—m—1)D1ID...DI
—
m+1 terms

is generated by F. This will prove Lemma 5 because it shows that a function
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of type
201®...81

n—2 terms

is generated by F, i.e. a function of genus n—1 is generated by F.
By the inductive hypothesis and Lemma 1, all functions of type

(n—m)@1D...Dl

m terms

are generated by F. Furthermore, by repeated application of Lemma 3
and by Lemma | we see that F generates any (l-place) function which
assumes some value at least #—m times.

Let ,§, kand ! be the same numbers as in the proof of Lemma 2. Let
f(i, ) = qu, f(i, 1) = g2 and [(j, k) = gs. We know that these three numbers
are all distinct. Choose next m—1 pairs (x,,y,) where 1 =» =m—1 in
such a manner that the following condition is satisfied: the numbers

q1, 92, - - -, Gm+2, Where we put ¢,.4 = f(%,,9,) for 1 =v =m—1, are
all distinct. Such a choice is possible because f(x,y) assumes all of the
numbers 1,2, ..., n as values and m = n—2.

Define now two functions A;(x) and hs(x) as follows:
hm(x) =i for | Sx =n—m—1 and x = n—m+1,
h(x) =4 for x =n—m,
h(x) = %, for x =n—m-+1+4» (where | S» S m—1);
and
ho(x) =k for 1 Sx = n—m,
ho(x) =1 for x = n—m+1,
ho(x) =y, for x =n—m+1+4» (where | =v =m—1).

hy(x) assumes the value ¢ at least n—m times and hg(x) assumes the value &
at least n—m times. Hence, they are both generated by F. Consequently,
the function f(hi1(x), ka(x)) is generated by F. This function is of type

n—m—1)®1®...®].

— —
m+1 terms

This completes the induction, and we obtain Lemma 5.

LemmA 6. IfF generates a function of type (n—a) @a where | <a <n—1
then it generales a function of type (n—1)@1.

Proor. By the hypothesis and Lemma 1, F generates all functions
of type (n—a)@a where 1 <a <n—1. Let i, §, & 1, q1, 2, and g3 be the
same numbers as in the proof of the previous lemma.
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Consider the set £, of funetions whose variables, finite in number, range
over a fixed finite set
N={12,...,n}, n=2

and whose values ave elements of N. A subset F of E, is complete if every
member of K, equals a finite composition of members of F. A complete subset
of B, is a basis of E, if none of its proper subsets is complete. It is well
known that the number of all bases of E, is infinite. A subset @ of E,, which
is closed under composition and is not complete, is precomplete if the addition
to & of any member of E,— @ yields a complete set.

Any function, obtained from a given function f(x,,...,a:) by identi-
fying some of its variables, is called a diagonalization of f. According to the
definition, f is also its own diagonalization. A diagonalization of f is said
to be proper if it differs from f. Following Shestopal [2], we say that a basis
B of E, is simple if no set B,, obtained by replacing some funetion in B by
one of its proper diagonalizations, is eomplete, It is shown in [2] that the
number of simple bases of E. is finite. The purpose of this note is to establish
this result for all sets E,, n=3. We prove first the following

Lemma. Let G be a precomplete subset of E,, n=3. Then there is a num-
ber w such that, for any function f not belonging to @, there is a diagonal-
azation of f not belonging to G and depending on at most w variables. Further-
more, w=n",

Proof. 1t is known (ef. [1]) that the number of all precomplete subsets
of K, is finite. Furthermore, there arve only two possibilities for any such G:
(i) @ equals the set consisting of all 1-place functions and, in addition, of
all such i-place funetions, 1 > 1, which assume at most n—1 values.

(ii) There is a closed set I of 1-place funetions such that & contains exactly
those funections g(x,,...,x;) which have following property: if each hi(z),
i=1,....k, bhelongs to If then g(h,(x),..., h(x)) belongs to H.

Assume we are dealing with the ease (ii) and f(z,. ..., z;) does not belong
to (. This implies that there are functions hi(x), i = 1,...,1, in H such that
flhi(z), ..., hy(x)) is not contained in H. Obviously, H contains less than
n" elements. Hence, for any I[=a", some of the functions h;(x) are equal.
If the corresponding variables ave identified in f the resulting diagonalization
depends on less than n" variables and does not belong to . This proves the
lemma in the case (ii).

Assume we are dealing with the ease (i). We note first that if a funetion
(@, ..., a;) assumes some value b, for some assignment of values for its
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variables, then there is a diagonalization of g assuming the value b and
depending on at most n variables. This is due to the fact that at most n
distinet values may oceur in any assignment of values for the variables z;.
By an easy induetive argument we infer that if g assumes some values by, . . .,
b, there is a diagonalization of g assuming the values by, ..., b, and depend-
ing on at most n” variables. Let now f(xy,...,2;) be any function which does
not belong to G. Then [ depends on at least two variables and assumes all the
values 1,2,...,n. These conditions may be expressed by giving the value of
[ for n snitably chosen assignments of values for the variables of f. Thus,
we have completed the proof of our lemma.
Denote :

d(n) = (ﬂ»")"*-.

We claim that no simple basis of E, contains a function of more than d(n)
variables.

It is known (ef. [1]) that a subset F of E, is complete if, and only if,
F is not contained in any precomplete set. Let f be any member of a basis B
and let G,,..., G, be exactly those precomplete sets which do not contain f.
Sinee B is a basis and the number of all precomplete sets does not exceed the
number of all subsets of the set of 1-place funections, we have

1=s=2",

Replace f in B by a function f, which does not belong to any of the sets
(Gi,i=1,...,s The resulting set B, is complete. Let u;,i=1,..., s, be num-
bers eorresponding to the sets (7;, according to our lemma. By the lemma and
an obvious induetive argument, we infer that there is a diagonalization of f
whieh does not belong to any of the sets ; and depends on at most IT wu;

variables, Using our upper hounds for the numbers s and w;, we see that if
B is simple it does not contain any funetion depending on more than d(n)
variables.

Hence, the number of all simple bases does not exceed the number of all
subsets of the set of functions of d(n) variables, ie. 2" . Thus, we have
established the following

TrEOREM. The number of all simple bases of E,, n=3, is finite.
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1. Let E, be the set of functions f(a, ..., x) whose variables z; range
over a fixed finite set

N=1{12,...,0}, n=2

and whose values are elements of N. We say that a subset F of £, gencrates
a funetion f if f equals a finite composition of members of F. In particular,
F is said to be complete (or a Sheffer set) if it generates every member
of ¥,.' In the present paper we establish some completeness eriteria. Through-
out the paper, n means the number of elements in the basie set N.

We introduee some further terminology and notations. Let G4, ..., Gy be
non-empty subsets of N. Then f(G,, ..., (7)) denotes the set of values assumed
by f(@y, ..., x) when, for each i, only values belonging to &; are assigned
for x;. A funetion f(x,,...,xj ..., 7)) depends essentially on the variable x;
if there are sets ; snch that

f((‘!h”'th'-'!Gk)

contains at least two elements and every &, 1= j, contains only one element.
A funetion f(z,, ..., ;) satisfies Stupecki conditions if it depends essentially
on at least two variables and assumes all n values, i.e.

[(N,....,N) =N,

A 1-place funetion ¢(x) is said to be of genus t (1=t=n) if it assumes
exactly { values. A function ¢(r) of genus f is said to be of type

[“"haﬂs =it r“l']

where the a's are natural numbers satisfying a, +a.+ ...+ a; = n if, for
each v where 1=v=#{, there is a number b, such that g(z) assumes b, as
a value exactly ay times.

In this section, we shall establish the following

Turorem 1. Assume that n=5 and F is a subset of E, containing the
alternating group A, and an arbitrary function f(x,,...,x) satisfying
Stupecki conditions. Then F is complete.

We need several lemmas for the proof of theorem 1.

' For a detailed discussion coneerning these definitions, of, [1] or [2].
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Leyya 11, Assume that n=3" and f(zy,...,x;) satisfies Stupecki con-
ditions. Then for any j, 3=j=n, there are sets Gi,i = 1,...,k, each consist-
ing of at most j—1 elements such that f(G,, ..., Gy) conlains at least j
elements.

For the proof of lemma 1.1, ef. [1]. (Lemma 1.1 is a consequence of the
“fundamental lemma” in [1].)

Lesya 1.2 Assume that n=4 and h(x) is of genus =n—1. Then the
set consisting of h(x) and of the members of A, generates every function of
the same type as h(z).

Proof. Let h’(x) be an arbitrary function of the same type as h(z). Then
it follows from our definition of the type of a funetion that

(1) R (z) = sihs.(x)

where s, and s, are permutations. We have to show that (1) holds for some
even permutations s, and s.. This is the case if h(x) is of genus =n—2
hecause A, is (n—2)-ply transitive.

Therefore, we may assume that h(xz) is of genus n—1. We show first
that if in (1) s, is odd it may be replaced by an even permutation.

There are distinet numbers @, and «. such that h(a;) = h(a:). Denote
ay = s' (@) and a, = 53" (a2). Obviously, a; = a,. Consider the permutation
s’ defined as follows:

s (@3) = @, 8, (@) = @, &) (2) = su(x) for =3 ay, @,
Then also
W(r) = sihs (x).
aﬂiﬂr S or & is even.
to ertheeasethatm(l] susoddands,mexen
= hs.lx). Ol ditoast ‘numbire a. and a; such that h,(r)
‘Md& values h,(a.) and hil(as) only onee, The choice is always

h@lﬂh Hluimmu—l.Cleu-ly hy(as) = hi(ay).
e, Buth - bl. g *ﬁ,&- Let s, be the transposition
‘&) and & the product (‘u.}(u.) Furthermore, define

5:0r) =&aiz) and six) = sai(z).
Then both s; and s, are even. In addition,

* In the statement of theorem 1 the condition n=>5 is necessary. Thus for the proof
of theorem 1, it obviously suffices to assume that n=75. A sharper formulation is given to
lemma 1.1 and also to the following lemmas because we shall use these lemmas for other
purposes, too.
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W(x) = sshsa(x).
This proves lemma 1.2,

Lesya 1.3, The set of all functions of type [by, b, ..., b] where 1<t<n
generates every function of type [by -+ b, bs,. .., by].

Proof. Let g(z) be an arbitrary funetion of type [by+ bs, bs,... , be].
Suppose g(x) assumes the value ¢, exaetly b, + b. times and does not assume
the value ¢, at all. Such numbers ¢, and ¢. certainly exist. Consider any
function g,(x) defined as follows: ¢,(z) = g(x), except for b. values = such
that g(z) = ¢i, g1(z) = c.. Clearly, gi(z) is of type [by, Ds,...,0:]. We
now choose sueh a function ¢.(#) of the type mentioned which maps the
values assumed by g(x) the themselves and ¢, to ¢;. The choice is always
possible. Then

g(x) = gugn ().
Hence, lemma 1.3 follows. :

LemyMa 1.4, Assume that n=4 and F is a set of functions as in the
statement of theorem 1. Then F generates a function of genus smaller than n.
If n =5 then F generates a function whose genus t satisfies 1 < t < n.

Proof. By lemma 1.1, there are numbers a,, ..., oq such that

f(8,....8%)=N

where 8; = N—{a}, for i =1,...,% Denote f(ay,...,a;) = a. There are
numbers o, i=1,....k such that f(a|,...,d]) =a and o] Fa, for
i=1,...,k Choose k even permutations p;(x), i=1,...,k such that
pi(1) = a; and pi(2) = af. The choice is possible because n=4 and 4, is
(n—2)-ply transitive. Then f(p,(x),....pe(2)) is of genus smaller than n.

To complete the proof of the lemma, it suffices to consider the case
where n =5 and f(p.(x).....pe(x)) is of genus 1. Hence, F generates all
constants. Using lemma 1.1, we choose sets ;, 1 = 1,, .., k, sueh that each G;
consists of two (not necessarily distinet) elements 8; and g/ and f(@,,...,Gy)
contains at least three distinet elements 8, #’ and g”. By a suitable renumber-
ing of the variables, this choice can be made in such a way that

f(.lsl!reh---s.ﬂk) = fgr
F(B,r Boren B) = P
and
OB Bl s BL) = P
Clearly, F generates the 1-place funetion f(=z, B, ..., B:). If this funetion
does not assume the value B” we have completed the proof of the lemma.
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Suppose
Flyw By v oy Br) = B

Then necessarily v, =+ B, B, . Choose numbers y. and v, i = 2, ..., k, such
that y. == By, B, v: and ya ;= B;, B’ if B; F B but v, = B if g = B. As-
sume that

f(?zg Ya,2y- -0y '?‘x,ru) =B

Let gi(x) be any even permutation such that q,(1) = vz ¢:1(2) = B: and
q:(3) = B, Let gi(z), i=2,...,k be any even permutations or constants
sueh that qi(1) = vs4, ¢i(2) = £ and ¢i(3) = B, . (Le. if Bi=F g then
gi(x) is an even permutation but if B; =g/ then qi(z) = Bi.) Then
flga(@), ..., qu(x)) is of genus £ with 1 <¢<n. Finally, assume that

F(yas vazr < ooy ya) = B

Let ¢} () be any even permutation such that q; (1) = vs, q; (2) = ¥, and
q; (8) = B,. Then f(q (x),q:(x),...,q(x)) is of genus ¢ with 1<£<n.
This proves lemma 1.4. We note that the latter part of the proof remains
valid also for n = 4, provided I contains all permutations, The numbers
B and y and the functions ¢ arve defined exactly as above but, in this case,
some of the permutations ¢ may be odd.

The proof of lemma 1.4 is essentially the same as the proof of lemma 11.3
in [2], with two modifications due to lemma 1.1 above and the fact that A,
is (n—2)-ply transitive. Similar modifieations in the proofs of lemmas 11.6
and 11.7 in [2] yield the following

Liama 1.5, Assume that n =4 and F, is a set of functions satisfying the
Juypothesis of theorem 1 and, in addition, containing a function of type
[n—a, a] where 1 =a<n and not both n = 4 and a = 2. Then F, generates
a function of genus n—1.

We are now in the position to establish theorem 1. By lemmas 1.4, 1.2
and 1.3, F' generates a function of genus 2. Hence, by lemma 1.5, F generates
a funetion of genus n—1. Using lemmas 1.2 and 1.3 we see that F gen-
erates all 1-place functions which assume at most n—1 values, According
to a ecompleteness eriterion in [1], if #=3 then a set containing all 1-place
funetions which assume at most #—1 values and, in addition, some funetion
satistying Stupecki conditions is complete. Henee, theorem 1 follows.

2. We shall now apply theorem 1 to the proof of a conjeeture presented
in [2].

We say that a function is a Sheffer function if its unit set is complete.
Conjecture 1 presented in [2] is a special case (k = 2) of the following
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Turorem 2. A funetion f(w,,...,x;) which generates the alternating
group A, is ¢ Sheffer function, provided n= 4.

Theorem 2 is a consequenece of theorem 1 if n=05. For if a funection
generates A, then it obviously satisfies Shipeeki eonditions. Theorem 1 is
not valid if » = 4. Henee, in this ease, we have to use a different method
in order to complete the proof of theorem 2. (The eondition =4 in the
statement of theorem 2 is essential because, for n <4, 4, is eyeclie.)

We say that a funetion gl(@,...,#;) is self-conjugate under a per-
mutation p(z) if

plg(@y, . ..ox1)) = glple), ..., pl#)).

It is easy to see that a funetion self-conjugate under p(x) can generate only
funetions self-conjugate under p(z). (Cf. [1] or [2].)
We prove first the following

Levya 2.1, Assume that v = 4 and g(x,, ..., x)) has both of the follow-
ing properties:

(i) g(x,....x) = p(x) is a non-identical permutation belonging to the
four group.

(ii) Denote by H, the set consisting of all even permutations and of all
constants. Then g(h,(x),..., hi(2)) belongs to H, whenever each hi(x),
i=1,...,1, belongs to H,.

Under these assumptions, g(x., ..., x;) is self-conjugate under p(x).

Proof. It is readily seen that the lemma holds true for I = 2. In this case,
namely, there are only 12 funetions satisfying (i) and (ii). Tt is easily
checked that each of these funetions satisfies also the conelusion of the lemma,

Suppose that 1 = 3 and g(,, @, x,) satisfies (i) and (ii) but is not self-
conjugate under p(x). Henece, there are numbers a,, a., a; sueh that

(2) plogla, @z a3)) F g(pla), plas), plas)).

We may assume that the numbers a; ave distinet heeause, otherwise, we could
conclude by identifying some variables in ¢ that the lemma does not hold
for 1 = 2. By a suitable renumbering of the variables, we obtain the equation
p(a;) = aa. Sinee p belongs to the four group, the numbers a., @, as, p(as)
are the numbers 1,2, 3, 4 in some order. Let ¢,(x) be the 3-cyele (aap(as))
and e.(x) the 3-eyele (ayaaa). According to (ii), the following funections
¢:(x) and ¢;(z) belong to H,:

cs(x) = glay, z, ¢ (x))
and
ci(r) = g(-f.» ("-_.{ﬁ], ﬂ(ﬂ-:l))-
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Using our hypothesis (i) and the definitions of the funetions ¢;(x), we obtain
the following equations:

cslth) = s,

calaz) = glay, s, ay),

C;{Gs} =1 cl(“‘l)}

ci(plas)) = ay
and

eslas) = g(pla), plas), plas)).

There are only four pessibilities for the number g(as, as, as). In each case
it is easy to verify that (2) is false, provided ¢, and e, belong to H,. This
is a contradietion which proves our lemma for 7 = 3. The proof for the case
I = 4 is similar,

We now make the following inductive hypothesis: the lemma holds true
for I<m where m=5. Let g(y,...,%,) be an arbitrary function satis-
fying (i) and (ii). Suppose there are numbers b,, ..., b, such that

P(g(byy ... bw)) F g(p(by), ..., p(ba)).

At least two of the numbers b; are equal because m = 5, By identifying the
corresponding variables in g, we obtain a funetion g, of at most m—1
variables. Obviously, g, satisfies (i) and (ii) but is not self-conjugate under p.
This is impossible by the induetive hypothesis and, therefore, we have com-
pleted the proof of lemma 2.1.

We now prove theorem 2 for the case n = 4, By lemma 1.4, f(x,, ... 3 T )
generates a funetion of genus smaller than n. Sinece f generates the alter-
nating group, we obtain the inequality

(8) flz,...,2)Fx, for any =.

We elaim that f generates a function of one of the types [3,1], [2,2] or
[2,1,1]. Assume the contrary, i.e. that f generates only permutations and
constants. Then by (3), the function f(z) = f(z,..., =) is either a 4-cycle
or a non-identical permutation belonging to the four group. In the former
case, [ generates all permutations and, therefore, by the remark made at the
end of the proof of lemma 1.4, it generates also a funetion of genus 2 or 3,
ie. a function of one of the types mentioned. In the latter case, f is self-
conjugate under f, by lemma 2.1 and, hence, cannot generate A,

If f generates a funetion of type [3,1] or [2,1,1] then theorem 2 follows,
by lemmas 1.5, 1.2 and 1.3 and by the completeness eriterion mentioned at
the end of seetion 1.

There remains the possibility that f generates a funetion of type [2,2].
Henee, by lemmas 1.2 and 1.3, it generates all funetions of this type and
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all constants. By lemma 1.1, there are numbers a! where i = 1,...,k and
i =1,2,3 such that

f(a‘:a---sa‘;t)s f(a‘fl--o9a:) and f(ﬁ?,....ﬂ-:}
are distinet but, for any 4, at most two of the numbers a? are distinet. It is
possible to choose 1-place funetions w;(z), i = 1,...,k, of type [2,2] or [4]
such that
ui(j) =af, for j=1,2,38.
Hence, f generates the funetion
%)= F (wy(x)i o5 wur(zx)).

The funetion w(z) assumes at least three distinet values. If it is not a per-
mutation we have completed the proof. If u(x) is a permutation we may
conelude that f generates all permutations. For if u(x) is even we obtain an
odd permutation by interchanging in the definition of each u;(r) the values
wi(1) and w;(2).

Suppose f does not generate any 1-place functions other than the functions
of types [1,1,1,1], [2,2] and [4]. This implies that f(x,...,x) is seli-
conjugate under a non-identical permutation p(x) belonging to the four
group. Choose an arbitrary assienment of values (y,, ..., ) for the variables
of f. Define funetions vi(z), 1 = 1,...,k, as follows:

vi(1) =y, 0il(2) = p(yn), vi(3) = yi, vi(4) = p(ya).

The funetions v;(x) ave of type [1,1,1,1] or [2.2]. Therefore, according to
our supposition, the funetion

v(z) = f(w(z),...,w(x))

is of type [1,1,1,1], [2,2] or [4]. Since p(v(1)) = v(2), this implies that
p(v(3)) = v(4), ie

p(f(yree .- ue)) = Fplys), ..o p(yr)).

Sinee the numbers y; were arbitravy, this means that f is self-conjugate under
p(x) and, hence, cannot generate A, The contradiction shows that our sup-
position is wrong. Therefore, f generates a function of type [3,1] or [2,1,1],
and we may coneclude as above that f is a Sheffer funetion,

Thus, we have completed the proof of theorem 2 in all cases.
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Infinite-Valued Logics
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1. Let E,, be the set of functions mapping some finite Cartesian
power of the set of natural numbers into the set of natural num-
bers. Let E,, n = 2, be the set of functions mapping some finite Car-
tesian power of the set

Ny = {1,...,n}

into N(n). Each of the sets E is closed under composition, We may
generate new functions from some given functions by composing
our original functions in various ways. A function belonging to the
set E, is termed a Sheffer function if it generates all functions in L1
It is well-known that there are Sheffer functions in each of the
sets E,. Since E, is non-denumerable, it is also clear that there
are no Sheffer functions in the set E,. In fact, no denumerable
subset of E, generates all functions in E,.

Consider an arbitrary finite or denumerable subset S of E.
A function f € Eg is termed a Sheffer function of the set S if f gener-
ates all functions in S. In this paper, we are first going to show how
one can construct a 2-place Sheffer function fg (z, y) of an arbitrary
preassigned S. The method of construction yields, for any S, a con-
tinuum of 2-place Sheffer functions fg (z, y).* We shall then prove
a theorem concerning the infinite-valued logic of Luxasiewicz.
Finally, we shall discuss some decision procedures for the property
of being a Sheffer function.

1 For a more detailed account, cf. [5].

2 A 3-place Sheffer function of S, for any S, has been constructed
in [1]. It is also mentioned in [1] that the number of variables can be
reduced to two. The latter result is credited to O. B. Luranov.
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2, We shall establish a 1-to-1 correspondence between 2-place
and 1-place functions belonging to E,. Let @ (z, y) € E,, be defined
as follows:

P (5, y) = (x+y—1),)(x+y_2) + =.

&

It is seen that @ (z, y) assumes every natural number as a value
exactly once. Therefore, the equation

f2 (2, 9) = 1 (@ (% ¥))

defines a 1-to-1 correspondence between 2-place functions f, and
1-place functions f;.

Consider the following compositions of ¢:

P2 (1 To) = @ (1, Ty),
@@ s Z) =@ (@ Ey o Ty ) Tor i 2 3.

Every function g; assumes all natural numbers as values and each
value exactly once. Therefore, a 1-to-1 correspondence between
i-place and 1-place functions in E, can be established by using
the function ¢;.

We shall now prove the following

Tueorem 1. For any two functions

PLCTRERE N8 N SRS

there is a single 2-place function f(x, y) € E, which generates both
g and h.

Proof. Let g, (z) and h, () be the 1-place functions corresponding
to the functions g and h. By the definition of this correspondence,
the functions g,, h, and ¢ generate our original functions g and h.
Hence, to prove theorem 1, it suffices to construct a 2-place function
f(x, y) which generates the three functions g,, h; and ¢. Sucha
function f (z, y) can be defined as follows:

[ 2)=z+1 for 1 £ =4,
flxx)=1 for x =z 5;

[@ [ (@) =g, (x) where [, (x) =f(z,2),
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@ f} @) = by (),
f@iE)=2z+5,
[@fh@)=2z+4
f@z+52y+4) =09y
f(z,y) =1 otherwise.

No contradiction arises in this definition, i.e. there is no argument
(z, y) such that the value of f(z, y) has been given twice. This is
seen as follows. For any z, the numbers z, f, (), /3 (), /} () and
f % (z) are distinct. This implies that all arguments of f appearing
on the first six lines of the definition are distinct. Since always
fy (x) £ 5, we may conclude that the pair (2z 45 2y +4) is
distinet from all pairs of the form (z, f{ (2)), i =1, ...,4. Finally,
because 2z -+ 5 is always odd and 2y - 4 is always even we see
that the pair (2 + 5, 2y + 4) is also distinct from all pairs (z, 2).

It is an immediate consequence of the definition of the function
| that j generates the functions g, i, and . This completes the
proof of theorem 1.

Consider the matrix of the function f(z, y). The functions g,
and hy, as well as the auxiliary functions 2z + 5 and 2x + 4 are
obtained from the first five columns of the matrix. If we use other
parts of the matrix in order to generate the required 1-place functions,
we obtain alternative methods to construct 2-place functions gener-
ating g,, h; and @. For instance, also the following function /' (z, y)
generates the functions g,, h, and ¢:

f'(xﬂi) =z 41,

f @z 4+ 1) =gy (@),

." ($ + 1’ m) = hl (ﬁ),
['(tmz+2) =06z
fl+2,x)==06zx+3,
f(6z,6y+3) =0y,
f (x, y) = 1 otherwise.

As an illustration, we choose

gy =x+y
and
h(x, y) = zy.
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Then, for @, y < 15, the values of the function f' (z, y) are as follows:

1 2 3 4 5 6 7 8 8 t0 11 12 13 14 15

y
T
1] 2 2 &
211 3 3 12
3| 9 2 4 3 18
4 15 2 5 4 24
5 21 3 6 4 30
6 27 4 7 4 36 1 2
7 33 3 8 5 42
8 39 4 9 5 48
9 45 6 10 5 54
10 51 6 11 5 60
11 57 4 12 6 66
12 3 63 5 13 6 72 5
13 69 8 14 6 78
14 75 9 15 6
15 81 8 16

According to the definition of ' (z, y), number 1 occurs in the blank
entries. However, the values in these entries may be chosen arbitra-
rily. They are not needed for the construction of the functions gy, by
and .

The existence of 2-place Sheffer functions of any preassigned at
most denumerable subset of E, is guaranteed by the following

Tueorem 2. Assume S is an at most denumerable subset of Eg.
Then there is a continuum of 2-place Sheffer functions fg (%, y) of §.

Proof. Let

gi@,i=12...

be the 1-place functions corresponding to the functions in S. By the
definition of this correspondence, every function in § is generated
by the functions g; (x) and @ (¥, y). Thus, every function fg (z, y)
which generates the functions g; (z) and ¢ (z, y) is a Sheffer func-
tion of S.

Denote by h (z, y) any function in Eg such that

hiz,2) =2+ 1,
h@z+i)=g@fori=12....

There is a continuum of such functions h (z, y). Each function
h (z, y) generates all functions g; (z). Hence, every function fg (@, 1)
which generates ¢ (z, y) and some h (2, y) is a Sheffer function of S.
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For any function h, the existence of a function fg(z, y) which
generates both ¢ and h is guaranteed by theorem 1. Clearly, for
different functions h, the corresponding functions f may be chosen
to be different. Hence, theorem 2 follows.

If we use a result of SiereiNski we may simplify the definition
of the functions h. According to [6], any sequence of 1-place func-
tions in By, can be generated by two 1-place functions in L. Hence,
we may generate all functions g¢; (x) by two functions ¢’ () and
¢" (z). Then we may choose h (z, y) to be any function such that

hiz,2) =2+ 1,
h(z,z + 1) =g (x),
hiz+1,2) = g¢" ().

According to theorem 2, there is a 1-to-1 correspondence between
the whole set Ey and the set of Sheffer functions fg (z, y). If one
studies Sheffer functions of the set E, one is likely to agree that
there are surprisingly many Sheffer functions. Theorem 2 corresponds
to this fact in connection with the set Eq,.

8. It is natural in view of the results obtained in [1] and [2] that,
for some sets S, no Sheffer function of S is contained in § itsell.
This is the case if S is the set of truth-functions in the infinite-
valued logic of Lukasiewicz.

Turorem 3. Let S, be the (denumerable) set generated by the
truth-functions ty (x) and g (z, y) corresponding fo negation N and
implication C in the infinite-valued logic of Lukasiewicz. Then no
function in Sy is a Sheffer function of Sy.

Proof. Let f(zy, ..., x;) be a Sheffer function of S;. Then the
function

f1($}=,f(1',...,.1:),

called the main diagonal of f, has no fixed-points. Fixed-points are
preserved under compositions. And there is no number z such that

ty @) = I (%, 2) = =.
Let g (2, ..., %) be an arbitrary function in the set S;. Then

the main diagonal of g possesses at least one fixed-point.! Thus,
we have completed the proof of theorem 3.

1 For the proof of this result, cf. [7]. In connection with this proof
iL is convenient to change our notation in such a manner that (instead
of natural numbers) rational numbers in Lhe closed interval (0,1) are
considered as truth-values.
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For the finitely many-valued logics of fiukasiewicz, the statement
corresponding to theorem 3 is not valid. Let $' be the set generated
by the truth-functions corresponding to implication and negation
in the many-valued logic of Lukasiewicz with n truth-values. It
is a result due to McKinsey [4] that there is a function in S
which generates all functions in S,

4. We shall finally discuss some algorithms for finding out whether
a given function is a Sheffer function. Consider the following decision
problem: given an arbitrary at most denumerable subset S of E,
and an arbitrary function [ e E,, is there a method of deciding
whether f is a Sheffer function of §?* The answer is negative. In
fact, this problem is unsolvable even in the following most simple
form:

(D). To decide of two given I-place functions belonging to E,,
whether one of them generates the other.

(D) is easily reduced to some unsolvable case of the word problem.
Consider an arbitrary Thue system 7 over a finite alphabet. Enumer-
ate the equations of 7, beginning with the number 2. Given two
words ¢ and £, we define a function , (v) € E, as follows: p, () = 1
if 2 is not the number of the equation & = . If x is the number of
this equation then y; (z) = x. Let p, (z) be the function assuming
the value 1, for all x. Then v, generates y, if and only if the equation
a = f does not hold. Hence, if (D) is solvable then also the word
problem of T possesses a solution. However, T may be chosen in
such a manner that its word problem is unsolvable.2 Therefore,
(D) is unsolvable.

The corresponding decision problem for sets E, possesses a solu-
tion. Assume fe E,. To decide whether f is a Sheffer function, we
form all composition sequences with only one variable and with
length £ n®. The function f is a Sheffer function if and only if all
1-place functions in E, are among these composition sequences.?

1 We use the expression »a function is given» to mean that, for any
argument, the value of the function can be computed in finitely many
steps.

* We may choose the Thue system of the universal Turing machine.
Cf. [3, pp. 147—157]. Similarly, (D) can be reduced to the word problem
for groups.

? For a more detailed account, ¢f. [5]. The notion of the length of a
composilion sequence in terms of f is defined as follows: A variable
alone constitutes a composition sequence of length 0. If f is applied to
composition sequences which are of length < i and one of which is
of length i, the resulting composition sequence is of length i + 1.
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Hence, we have to consider such composition sequences only whose
lengths do not exceed a given constant k. These sequences give us
enough information to decide whether f is a Sheffer function. In
connection with the set E,, the situation is exactly the opposite.
Let S be an at most denumerable subset of E,, f a function belonging
to Eg and k a natural number. The composition sequences of length
< k do not, in general, give us any information at all concerning
the fact whether f is a Sheffer function of S. For any S and k, we
may construct a Sheffer function of S which generates no function
in § in terms of a composition sequence of length < k. This is shown
in our last theorem:

Tueorem 4. Lel S be an al most denumerable subset of Eg, and
k a natural number. Then there is a 2-place Sheffer function g, . (z, y)
of S such that no function in S is generaled in terms of a composition
sequence of length < k.

Proof. We choose a 2-place Sheffer function gg (z, y) of S whose
existence is guaranteed by theorem 2. Let

h@i=12...

be the main diagonals of the functions in S. We define a function
@ (x) as follows:

@(l)y=n, (1) + 1,
¢ (¥) = max (b, (), ¢ (z — 1)) + 1 forz 2 2.

Then ¢ (x) is monotonously increasing and, for any z, @ (z) > .
Also, for any z,

@ (¥) > Iy (2)-

Hence, g is different from all functions h, i =1, 2,.... Further-
more, the powers ¢/, j =1,2,..., are all different from each other
and from the functions A

A function fg ; (%, y), denoted shortly by [ (z,y), can now be
constructed as follows:

fx z) =g (=)

J@e@) =f@ @) =...=[@¢*@)=0¢@)
[@@),2)=f@@,2)=...=[(@*@)2)=0p@);
| (@, gk (2)) = @ = (1),

f(fP k+1 {x}, x) =g ek + 3k (1};

f (@ ok= (1), @ oku+3k (1)) = gg (2, y)i

f (z, y) = 1 otherwise.
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We have to show, first, that there is no pair (z, y) such that the value
of / (x, y) has been given twice. For the first five lines of the defini-
tion, this is an immediate consequence of the properties of the func-
tion @. Assume that, for some z, y and z,

( %% (1), @ okv + 3k (1)) = (@t (2), 2)
where 0 £ i £ Ik + 1. We obtain first

@ Okz+1 (1) = ¢ 0kv +3E (1)
and hence, by the definition of the function ¢,

6kr+i=6ky+ 3k
or
i=3k+6k(y — ).

This is impossible because 0 £ i £ k + 1. Similarly, we can show
that the equation

(¢ k@ (1), @ kY +3% (1)) = (z, ¢ (2))

is impossible for 0 £ i < k + 1. Hence, the value of f (x, y) has not
been given twice for any pair (z, y)-

The function f (z, y) is a Sheffer function of S because it generates
the function gg (z, y). Assume some composition sequence of / which
is of length < k is a function belonging to the set S. Then its main
diagonal is one of the functions h. But according to the definition
of f, its main diagonal is a power of the function . This is impossible.
Hence, [ (x, y) satisfies all requirements and we have completed the
proof of theorem 4. It is easy to see that a continuum of functions
fs, « (2, y) can be obtained.

Theorem 4 gives an example of the rich possibilities of functional
constructions in the set E,.

University of Turku.
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Let F4 be the set of funetions mapping some finite Cartesian power of
a fixed non-empty set A into A. Clearly, the set F, is closed under eom-
position. We say that a subset G of F', generates a funetion g belonging to ¥,
if g ean be expressed as a finite composition of members of & and variables
(ranging over A).

The set 4 is denumerably infinite if A is finite but non-denumerable if
A is infinite. In the former case, it is well known that one can construet a
2-place funection belonging to ', which generates all members of F,. This is
not possible in the latter case becanse any funection generates only de-
numerably many funetions.

Tt is shown in [2] that any sequence of l-place funetions in F, can be
generated by two 1l-place funections in F,. If A is denumerable then any
denumerable subset of F, is generated by a 3-place function belonging to
F,. This result is due to [1]. The purpose of this note is to establish the
following general

TuroreM. For any denumerable subset Dy of Fy, there is a 2-place
function fp(x,y) in F, generating all functions in D4}

Proof. The theorem holds true if A is finite. In what follows, we assume
that A is infinite. This implies that there is a 1-to-1 correspondence ¢(z,y) =2
between the Cartesian power /A2 and 4. We define recursively the following
funetions:

0a(31, T2) = o(x4, T2),
P (Bisioee5 B Tisn) =0 (Pa(Byy o ooy L)y Bia). TOT = 2

For any 1= 2, the function ¢; defines a 1-to-1 correspondence between A’
and A. Let h(x,,...,x:) be any 4-place funetion, i =2, belonging to F,.
We say that the 1-place funection h,(x) defined by the equation

hl(?‘(xl" 4 ‘lxi)) s h(zu” E !'T'i)

corresponds to the funetion A. (If & is a 1-place funetion then we let h, = h.)
Clearly, the funetions ¢ and h, generate the funetion h.
Let

Dy = {0103, .}

* The author expresses his indebtedness to Prof. A. Mostowskr for pointing out the
possibility to obtain this theorem as a generalization of the case where A is denumerable.
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be the set of 1-place funetions corresponding to the funetions in D,. To com-
plete the proof, we have to find a 2-place funetion in F,, generating the
funetion ¢ and all funections g;.

We choose a funetion ¢(x) belonging to ¥, sueh that, for all z in A and
all natural numbers 4, ¢'(x) F 2. (If "< is an ordering relation then we
may, for instance, choose any funection y such that & < y¢(x), for all z in 4.)
It follows that, for all « in A, y'(z) ¢/ (r) whenever i %= j. We choose next
a funetion k(z,y) such that

!"(1:‘":) — ‘!"(I)v
Sl ) Y = () 8 = ey

The choice is possible, by the properties of the function y. Let k,(z) be the
1-place funetion corresponding to k(x,y). Clearly, k(x,y) generates all fune-
tions gi. Henee, any funetion generating both %, and ¢ generates all funetions
in Dy

Let 4;, 1 = 1,2, 3, be pairwise disjoint subsets of A, each of which is of
the same cardinality as 4. We need three auxiliary 1-place funetions belong-
ing to F,. Let u,(x) be a funetion with values exclusively in 4, such that,
for all x, w](x) =z where i = 1,2, 3. Let u;(z) be a 1-to-1 correspondence
between A and 4;, 1 = 2, 3.

We are now in the position to define a funetion f,(x,y) as required in
the theorem. We wurite, shortly, f(x,y) instead of fp(ax,y):

f(z z) = w(x),

[z, (2)) = u(x),
flx,ui(z)) = ua(2),
flo,ul(z)) = ki(x),
T(ua(z), us(y)) = e(z,y).

For all other argument paivs (x,y), the value of f(x,y) may bhe chosen
arbitrarily from A. No contradiction avises in this definition, i.e. there is no
pair (x,y) such that f(z,y) has been defined twice. This is due to the follow-
ing facts. On the first four lines, the second arguments of f ave all distinet,
for the same first argument. Furthermore, the pair (u.(x), us(y)) is never
equal to a pair (z,2) because the values of u; lie in 4;, i = 2, 3, and the inter-
section of 4. and A, is empty. Finally, the pair (w.(z), u(y)) is never equal
to a pair (z,u i(z)) because the values of u i(2) lie in A, and those of u,(y)
lie in 4.

Clearly, f(x,») generates both &, and ¢. This eompletes the proof of our
theorem. We add some final remarks.
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1. The number of variables of f(x,y) cannot be reduced to one because the
set Dy may contain funetions of more than one variables.

2. The funetion f(x,y) does not, in general, belong to the set D itself.

3. There are "many” funections generating all funetions in D,. It is an
immediate consequence of the proof above that there exists, in faet, a 1-to-1
correspondence between the whole set 7', and the set of generators folz,y).
4. It is not necessary that all elements of A; are values of u;, i = 2.3, he-
cause we may replace the sets A; by subsets A/ consisting of all values of u;.
5. In case 4 is denumerable (say, the set of natural numbers) we can choose
A as the set of numbers congruent to i (mod 3), i = 1,2, 3. The functions
¢, ¢ and u; can be defined as follows:

= p Y —"2
o(ay) = ZU=DETY—E)

3]
=

Y(x) = x+1,
wi(z) =3z+14, 1=1,2,3.
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3. In sections 3 and 4 of this paper,’ we shall investigate sets E, where
p is a prime number. It turns out that the theory developed for sets E,
admits certain refinements if n is prime. In particular, the completeness
criteria obtained for subsets of ¥, are somewhat stronger than those obtained
for subsets of E,.

‘We shall first introduee some terminology and conventions. Throughout
sections 3 and 4, p denotes a prime number. 1t is well known that every
member of the set E, can be uniquely expressed as a polynomial modulo p.?
When we use polynomial notation for members of E, it is to be understood
that addition and multiplication are earried out modulo p. An element of

E, is said to be linear if the polynomial representing it is linear.
@ ()
The notion of linearity can be generalized as follows. Let + and ° be the

conjugates of ordinary addition and multiplication under a given per-
(8) (s)
mutation s. We say that a funection in E, is linear with respect to + and * if
(O] ()
it ean be expressed as a linear polynomial in terms of + and * . When there
is no ambiguity we also say that a funetion g in E, is linear with respect to
f@®if £ is a eonjugate of a linear funetion [ and g is linear with respeet
(8) (8)
to + and ° . For any given eireular permutation ¢, there are funections linear

with respeet to c.

We say that a funetion f(x,,...,x) in E, satisfies strong Stupecki
conditions if it depends essentially on at least two variables and, furthermore,
there are numbers ¢ and u;, j = 1,...,1—1, i+1,..., k such that

fi(%:) = F, . .y Yici, Bty Wisay o e o, i)

is a permutation of the numbers 1,2, ..., n. Thus, the "matrix” of a funection
satisfying strong Shupecki conditions possesses one "row” which is a per-
mutation.

In seetion 3, we shall prove the following
TaeoreyM 3. Let F be a subset of E, containing

1) a circular permutation c(x),
2) a 1-place function g(x) which is not linear with respect to e(x),

! Part I of this paper appeared in these Annals (Series A 153) and contains sections
1 and 2. Bibliographical references [1] and [2] were first given in part I.
* For a detailed proof of this faet, ef. [1, pp. 95—97].
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3) a function fiz,,...,T:) seofufeung steeny Shpeis st

Then F is complete.

We shall first present five lemmes seadied S She poss of theorem 3.
Lemma 3.1, due to JABLONSK, is purely combonsserill Lemums 32 deals with
permutation groups of prime degree

Lemma 3.1, Assume a set B of p clemenis s dionded snfe | sem-emply
and muiually disjoint subsets A;, i = 1,...,1, where 1 <I< g Esf ciz) be
a circular permutation on the elements of B. Let L combion coscily ome
element of each of the sets A;. Then there are numbers r and § sweh that
the set ¢'(L) contains at least two elements belonging fo the st 4.

For the proof of lemma 3.1, ef. |1, pp. 105—106].

Lemma 3.2. Let G be a permutation group of degree p, generated by ¢l x)
and c,(x) where ¢(x) is a cireular permutation and ¢,(x) is not linear with
respect to c(x). Then G is doubly transitive, Furthermore, ¢ contains a non-
identical permutation possessing at least two fized-points.

Proof. We may assume that

¢(z) =z +1

and ¢,(x) is not linear. For, by forming eonjugates, it is immediately seen
that if our lemma is true in this ease then it is true for any G.
‘We shall first prove the latter part of the lemma. The permutation

c:() = eree}’ (x)

is eireular and not a power of ¢(x) because ¢,(x) is not linear. This implies
that one permutation of the form c.c'(x), i = 1,..., p, possesses at least two
fixed-points. For every element 1,2,....p is a fixed-point in some per-
mutation of this form, and there are no fixed-points in the permutation

0" (z) = co(2).

On the other hand, all permutations of the form e.c'(z) are different from
the identity. Henece, the latter part of the lemma follows.

By a well known theorem of BurNsibE, because (7 is a transitive group of
prime degree it is either doubly transitive or solvable. To eomplete the proof
of the lemma, we show that  is not solvable. According to a theorem of
BRAUER, [3, p. 64], the commutator subgroup ¢’ of @ is simple. Henee, if
G is solvable then (7 is eyelic of prime order or eonsists of the identity alone.

Consider the following permutations belonging to 6”:

(1) cirelect(z), i=1,...,p.

Because an element of order p commutes with its own powers only, it is
easy to see that all permutations (1) are distinet. Clearly, & cannot be of
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(3) glztdi), 1=1,...,k

form a permutation of the numbers

(4) gl@)+di; 4= L,k

Assume the contrary, and let g. be a permutation belonging to ¢ such that
g2+ di) = ga(@) + dy,

for some x,, ¢ and | where 1=i{=k and [ > k. Choose a permutation g, in
(¢ such that, for some .,

3 (@) —gs(2:—1) = d;.

Then, for some suitably chosen y and 8§, the permutation g, = ¢¥g,c?® satisfies
the equations

gs(Z) = 24y g2+ 1) = a; +di.
This implies that
G203 (21 + 1) — G294 () = dy.

But because the permutation g.g, belongs to G, this contradiets the definition
of the set Dy. Therefore, the numbers (3) form a permutation of the numbers
(4). This implies that, for any ¢ in & and any «, the numbers

gle+di), i=1,...,k
form a permutation of the numbers
g(x"'l"‘i'dij"’dp(;), £:],<-.I.k

where 1=u(x)= k. This property is possessed by some linear permutations
only. This is a contradietion, and we may eonclude that (2) holds. Henee,
the first part of lemma 3.2 follows.

The condition of ¢,(x) being non-linear with respect to ¢(x) is essential.
If ¢, () is linear with respect to ¢(x) then the latter statement in the lemma
is always false. The first statement is true in some eases. If ¢(z) =z + 1
and ¢,(x) = ax + b then & is doubly transitive if and only if « is a primitive
root modulo p. We note finally that the hypothesis of lemma 3.2 is never
satisfied for p =2 or p = 3.

The proofs of the following three lemmas are merely parts of the proof
of theorem 3.

Lemma 3.3. Let H be a subsel of B, containing a circular permutation
c(x), a function g(x) which is not linear with respect to c(x) and a function
h(zy, ..., o) which satisfies Stupecki conditions. Then H generates all con-
stants.

179




Some completeness eriteria for sets of functions over a finite domain T

Proof. Sinee c(x) is a eireular permutation, it suffices to show that H
generates some constani. We shall show first that H generates a function
of genus smaller than p. This is obvious if ¢(2) is not a permutation. If g(z)
is a permutation then, aceording to lemma 3.2, H contains a doubly transitive
group &. By lemma 1.1 (in part I), there are numbers «; and o, o T al
i=1,...,k, such that

hiay, ..., a) =k(a’;1--'a“;]-

Whe choose from G k permutations gi(z), i = 1,...,k, such that g;(1) = «;
and gi(2) = a’. Then the function h(g.(z),..., gi(2)) is of genus smaller
than p.

Let a(x) be of genus y where 1<y <p. We shall show that ¢(z) and a(z)
generate a function of genus y, <+y. By repeating the same argument we see
that e(z) and a(x) generate a function of genus 1, i.e. a constant. Thus, the
proof of lemma 3.3 will be completed.

Let the values assumed by a(x) be a,...,a, and let 4,,...,Ay be
maximal subsets of the set {1,...,p} defined by the condition a(4;) = a;,
i=1,...,y. If a®(x) is of genus smaller than y then we have completed
the proof. If a*(x) is of genus y then the numbers a; are in different sets
A;. We denote

L= {ay...,0}.

By lemma 3.1, there are numbers » and j such that ¢’(L) contains at least
two elements belonging to A;. This implies that the function ac’a(z) is of
genus smaller than ».

We mention without proof that lemma 3.3 remains valid if g(z) is
replaced by any l-place function which is not a power of c(z). As regards
the funetion h, it suffices to assume that it depends essentially on at least
two variables. (Cf. the proof of lemma 4.3 below.)

Leyya 8.4, Let H be as in lemma 3.3, with the additional assumption
that g(x) is a permutation (which is not linear with respect to c(x)).
Then H generates a function g,(x) of genus y where 1<y <p.

Proof. By lemma 3.3, Il generates all constants. On the other hand, the
funetion hi(wy,...,x) and all constants generate a function h,(z,y) de-
pending essentially on both of its variables. This is easily established by
induetion on the number k.

Consider the matrix of h,(x,y). If the rows and eolumns are regarded
as 1-place functions belonging to K, then H generates all of these 1-place.
funetions. We may assume that each row and column is either constant or a
permutation because, otherwise, the proof is completed. Under this as-
sumption, either each row and column is a permutation or exactly one row
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and one eolumn are constants and other rows and eolumns are permutations.
This is due to the fact that h, depends essentially on both of its variables.
If we are dealing with the latter alternative then some funetion of the form
hy(z,e%(x)) ean be chosen as g,(x).

‘We may, therefore, assume that we are dealing with the first alternative,
i.e. each row and column in the matrix of A, (x,¥) is a permutation. Consider
the funetions

(5) h]_(ﬂ?,cl(x)), 1= 1:-“:9-

If one of these functions is of genus y with 1<y < p, the proof of lemma 3.4
has been completed. Under our assumptions, it is not possible that some
funetions (5) are constants and some other funetions (5) are permutations.

Assume. that all funetions (5) are constants. Clearly, they have to be
different constants, for i =1,...,p. By lemma 3.2, H contains a non-
identical permutation g.(x) possessing at least two fixed-points, We may
choose

() = hy(x,9:(x)).

Assume, finally, that all funetions (5) are permutations. There are
distinet numbers y, and . such that

h1(]:1)'1) — kl(zsyi) =L

By lemma 3.2, H contains a doubly transitive group. We choose from this
group a permutation g,(z) such that g(1) =y, and g,(2) = y.. If the
funetion h,(x,g:(x)) assumes some value other than 1 then this funetion
may be chosen as g,(z). If

h(2,9:(2)) = 1,
for all #, then the funection

ho(2,y) = hy(2,9:(y))

belongs to some case we have alveady considered. Henee, lemma 3.4 follows.
‘We note that the lemma is valid also without the additional assumption
concerning g(z). If g(x) is not a permutation then the coneclusion is trivial.

In the following lemma we are dealing with double transitivity concerning
funetions other than permutations.

Levma 3.5. Let H be subset of E, containing a circular permutation c(z),
a constant ¢/(x) = ¢’ and a function h(x,, ..., x:) satisfying strong Stupecki
conditions. Then, for any numbers @, s, Yy, Y= where x, % x., H generates
a function g(z) such that g(x,) =y, and g(z;) = y..

Proof. Tt obviously suffices to prove the lemma for the case ¢(z) = z + 1.
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e(a’ +u)—e(&) = ya—yi.
Then we may choose
g(z) = c®ecb(x)

where « = y,—e(z’) and B8 = &/—u,.

We assume that (9) does not hold, ie. I <p, and derive a contradietion.
We choose from H, functions gi(z), i =1,...,1, such that g;(1) =y,
gi(1+u) = v+ d;, and a function ¢’ (x) such that ¢’ (1) = p—u, g’ (1+u) = p.
Then the funetions

k:(x) =h,(g"(z),g,(1:)),i= I,‘..,I

belong to H,. Clearly, hi(1) =a and kj(1+wu) = vtdi, by (7) and (8).
Hence, by the definition of the set D;, the numbers v+d;—a form a per-
mutation of the numbers d;, i.e.

v d— A= =T L
Summation gives us the equation
I(v—a) = 0.

But because of (8), this contradicts the primality of p. Thus, the proof of
lemma 3.5 has been completed.

We note that if one has to show that some group is doubly transitive
then it suffices to show that the ordered pair (1,2) ean be mapped into an
arbitrary ordered pair by permutations belonging to this group. A similar
argument is not sufficient for the proof of lemma 3.5 beeanse we eannot, in
general, form inverses of functions belonging to H,.

‘We shall now present the following

Proof of theorem 3. Beeause any function satisfying strong Shapecki
conditions satisfies Shupecki eonditions it follows from lemma 8.3 that F gen-
erates all constants. Clearly, the funetion g(z) given in hypothesis 2) can-
not bhe constant. If g(x) is not a permutation we conclude that ¥ generates
a funetion of genus y where 1<y <p. By lemma 3.4, the same conelusion
holds true also if g(z) is a permutation.

‘We shall now use lemma 3.5 in order to show that if F generates a
funetion a(x) of genus y where 2<y<p then I generates a function o’ (z)
of genus y" where 2=’ <y. This assertion, together with the result obtained
above, implies that F generates a funetion of genus 2. To simplify the
notation, we prove the assertion for y = 3. The proof in the general case
is similar.

Assume that F generates a function a(x) of genus 3. Let the values
assumed by a(z) be ai, 1 = 1, 2, 3, and let A; consist of those numbers z which
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satisfy the equation a(r) = ai. It suffices to consider the case that a; belongs
to Ay, for i =1,2,3. For if the numbers « belong to different sets A then
the funetion a®(x) always possesses this property. If two of the numbers a
belong to the same set A; whereas the third of these numbers belongs to
a set A/ different from A; then the funetion a*(z) is of genus 2 which proves
our assertion. Finally, if all numbers « belong to the same set A then we
replace a(x) by a funection of the form c'a(z). Tt is easy to sce that at least
one funetion of this form belongs to one of the two ecases we have already
considered.

The sum of the cardinalities of the sets 4; is a prime number. Henee,
we may assume that the cardinality of A, is greater than the cardinality
of 4;. Choose an arbitrary element a, belonging to A,. By lemma 3.5, given
any element @, of A,, I/ generates a function e(z) such that e(a;) = @, and
é(e2) = a,. If some of these funections e(z) has the property that e(a;) be-
longs to 4, or A, then the function aea(x) is of genus 2. Therefore, we may
assume that all functions e(x) have the property that e(as) belongs to A,.

There are two distinet elements a, and a/ of A,, an element a; of A; and
two funetions ¢’(x) and ¢”(x) such that

() =y, () = ﬂ:; ¢ (a) = ¢ () = @z e (ay) = €”"(as) = as.

This follows from the fact that the earvdinality of A, is greater than that
of 4;. By lemma 3.5, F' generates a funetion e, (x) such that e,(@) = a; and
€,(a]) = a.. Consider the values

(10) er(a;) and e, (a;).

The function ae,e’a(x) is of genus 2, provided it is not the ecase that the
numbers (10) both belong to A, or one of them belongs to A. and the other
to A;. The funetion ae,e”a(x) is of genus 2, provided it is not the ease that
the numbers (10) both belong to A. or one of them belongs to A, and the
other to A,. (Note that we have not assumed that the numbers (10) are
distinet. In faet, they may be equal.) Hence, in every case F generates a
funetion of genus 2. Thus, the assertion is correct.

Let b(x) be a function of genus 2 generated by F. The next step in the
proof of theorem 3 is to show that F generates a funetion of type [p—1,1].
Assume b(z) is of type [p—p,B] where 2=p8 < p—pB. We shall prove
that F' generates a function b,(z) of type

(11) [p—pBi, B1] where 1=p8, <8,

Since we may repeat the same argument, this implies that F generates a
funetion of type [p—1,1].

We denote by B, and B, maximal subsets of the set {1,...,p} such that
b(x) assumes a constant value in both B, and B.. Then we may assume
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that the eardinality of B, equals 8 and the eardinality of B. equals p—g.
Given any i and j, ' generates a funetion b; ;(x) assuming the value i in
the set B, and the value j in the set B.. This is a consequence of lemma 3.5.

The funetion f(,,...,#;) given in hypothesis 3) of theorem 3 and all
constants generate a 2-place function f,(z,y) satisfying strong Shipecki
conditions. We shall now prove that ¥ generates a funetion [ (z.y) such
that, for some values x,, o,, ¥y, ¥,

(12) f:(xl;yt)*f; (xuyz) =f:(=¢=,‘!h) =f: (xﬂ’y'.')-

Because f,(r,y) satisfies strong Stupecki eonditions and p is a prime number
there are sets X, and Y,, containing exactly two elements each, sueh that
the set fi(X,,¥,) contains exactly three numbers ¢ £ and £, We suppose
£ is assumed by f; for two variable assignments in the sets X, and Y,,
whereas & and £ are each assumed for one variable assignment in these sets.
If & and ¢’ are in different sets B then the funection be e fi(x,y) satis-
fies (12). The case where ¢ and £’ are in the same set B is easily reduced
to this ease by considering functions of the form ¢'f, (2,1).

We now choose a number § such that ¢®(x) maps some element of B,
into some other element of B,. Then we obtain the following inequalities for
the eardinality of the interseetion of B, and ¢*(B,):

(13) 1= card (B,Ne®(B,)) < card (B,) = B.

The lower limitation is obvious, by the choice of 8. The upper limitation is
a consequence of the fact that ¢® does not map every element of B, into an
element of B,, Otherwise, the group generated by ¢ would not be transitive
which is impossible because ¢® is a eireular permutation.

We may now choose

bi(®) = f1 (bs,2,(2), by, v,c°(2)).

By (12), by(x) assumes two values. One of them is assumed for the values
of x belonging to the intersection of the two sets B, and ¢?(B,), the other
for all remaining values of x. It follows from (13) that b,(z) is of type (11).

Thus, we have shown that ' generates a funetion b’ () of type [p—1,1].
This implies, by lemma 3.5, that all funetions of this type are generated by F.
For any function of this type is of the form b”bc'(z) where the function
b”(x) maps the values of b’(x) into some preassigned ordered pair.

We shall now make the following hypothesis of induetion: ' generates
all funetions of type

(14) [p—m, 1, ..., 1] where 1=m < p—2.

m terms

We shall prove that this implies that ' generates all functions of type
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(15) [pP—m—1,1,...,1].
el terms

Consequently, F' generates all functions of genus p— 1. Henee, by lemma 1.3
(in part I), F generates all 1-place functions which are not permutations.
According to a well known eompleteness erviterion, [1, p. 72], this implies that
F is complete,

To show that all functions of type (15) are generated by F, we proceed
as follows. It is easy to prove that /' generates a 2-place funetion () such
that, for some p and v,

(16) ¢(my) =y, foranyy,
and
(17) p=elp—Lv) Felpv) =

The argument is similar to the one presented in the proof of lemma 3.5.

We denote by ¢, (x) any function assuming the value p p—1 times and
the value p—1 once, and by ¢.(x) any function assuming the value v p—m
times. Clearly, ' generates all functions ¢,(x). By our induetive hypothesis
and lemma 1.3, F generates also all functions ¢.(x). Consider compositions
of the form

(18) ¢(9: (), ¢0() ).

By (16) and (17), any funetion ¢,(x) of type (15), assuming the value p
once and the value v p—m—1 times, is among the funetions (18). By com-
posing funetions ¢s(z), we obtain any funetion ¢,(z) of type (15) which
assumes the values p and v. Let o be a natural number such that ¢®(p) = v.
Any function ¢;(z) of type (15) which, for some 5 and »/, satisfies the
equation

#s(n') = ¢ ()

can be expressed in the form c'e,(2). Thus, F generates all funetions #s(x).
We shall now assume that I7 generates all funetions ¢,(z) of type (15)
which, for some 3, and 5/, satisfy the equation

(19) ?o(n %) = c™¢;(n,)

where r is a fixed integer =1. We denote by ¢;(x) any funetion assuming
the value v once and the value ¢"®(v) p—m—1 times. By our assumption
and lemma 1.3, F' generates all funections of the form

(20) e(p1(2),¢:(2)).
By composing funetions (20) and multiplying by powers of ¢(z), we obtain
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all functions ¢s(z) of type (15) which, for some n. and 5/, satisfy the
equation

pa(nl) = ™% (n.).

We conelude, by induetion on the number », that F' generates all functions
of type (15) which, for some natural », satisfy (19). Because p is prime and
o3 0, any power of ¢(x) can be expressed in the form ¢™(x). This implies
that I generates all funetions of type (15).

Thus, our induetion has been completed. Hence, theorem 3 follows.

We shall make some final remarks concerning the neeessity of the as-
sumptions made in theorem 3. The theorem is not valid for subsets of E, if n
is composite. In this case, our ' may be contained in some elass T or in some
class UV, (For the notation, ef. [1, pp. 85—93].)

It is well known (ef. [1, p. 80]) that a subset of K, is complete if and
only if it is not contained in any precomplete subset of E,. In general, very
little is known about the precomplete subset of E,. The most powerful instru-
ment in the proof of theorem 3 is the cirenlar permutation e(z). As it turns
out, very few precomplete subsets of &, contain eireular permutations. The
funetion g(x) is needed hecause, otherwise, F may contain only functions
linear with respect to ¢(x). If we do not assume that g is a 1-place function
then ¥ may contain only functions self-conjugate under ¢(z). Finally, we
need a funetion satisfying Shipecki conditions because, otherwise, F may be
contained in the precomplete subset of E, consisting of all 1-place functions
and of those funetions of more than one variables which do not assume all
p values. (In [1], this precomplete set is denoted by 'y, ;-1.)

Although we need a funetion satisfying Stupecki conditions, it seems
most likely that we do not need a function satisfying strong Shipecki
conditions. Our original intention was to prove a stronger theorem where in
hypothesis 3) it is assumed only that f satisfies Stupecki conditions. However,
we have not been able to earry out the proof of this stronger theovem. It ean
be shown that, under these weaker assumptions, F generates all constants and
a funetion of genus 2. We leave the proof of this fact to the reader. For this
purpose, we have formulated lemmas 3.3 and 3.4 in somewhat stronger way
than is neeessary for the proof of theorem 3.

The hypothesis of theorem 3 is never satisfied for p = 2. If p = 3 then
also the stronger formulation of theorem 3 is valid. This follows because all
precomplete subsets of K, are known. (They are 18 in number and were first
listed in [4]. For a detailed account, ¢f. [1, pp. 109—140].) Tt is easy to
check that I is not contained in any of them,

The stronger formulation of theorem 3 has some direct implications to
the theory of precomplete sets. Of these we mention the following. For any
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cirenlar permutation c¢(x), there ave exactly three precomplete subsets of
E, containing ¢(x).

4. We shall now apply theorem 3 to the theory of Sheffer funections of E,.
We shall prove the following

THEOREM 4. A function f(x,, ..., x) belonging to E, is @ Sheffer function
if (and only if) it generates a circular permutation ¢(x) and a function g(z)
which is not a power of ¢(x).

Apparently, the “only if"-part of the theorem is trivial. Theorem 4 can be
stated also in the following form:

THEOREM 4. A function f(,, ..., xx) belonging to E,is a Sheffer function
if (and only if) it gemerates a circular permutation c(x) and is not self-
conjugate under c(x).

It is easy to see that the hypotheses of theorems 4 and 4" are equivalent.
Conjecture 2 presented in [2, p. 47] is a special case (k= 2) of theorem 4.
We need three lemmas in order to reduce theorem 4 to theorem 3.

Leaya 4.1, A non-linear function and all constants belonging to B, p=3,
generate a non-linear 1-place function.

A proof of lemma 4.1 can be found in [1, p. 98]. The lemma holds true
also with respeet to the generalized notion of linearity.

Lemma 4.2 A function f(x,, ..., o) satisfying the hypothesis of theorem
& is non-linear.

Proof. Assume the eontrary, i.e. the polynomial representation of [ is as
follows:

T, ) = Oy = T Ot (s
The necessarily
(21) aot...tag=1
because, otherwise, the funetion
f(x) =f(=z,...,2)

possesses one fixed-point which is impossible since [ generates a circular
permutation ¢(x). But (21) implies that f is self-conjugate under the cirenlar
permutation x + 1. Hence, f generates only funections self-conjugate under
¢+ 1. This implies that ¢(x) is a power of =+ 1 and f is self-conjugate
under ¢(x). This is a contradiction. Ilence, f is non-linear.

The given proof of lemma 4.2 is in terms of ordinary addition and
multiplieation modulo p. However, it can be formulated in terms of arbitrary
conjugates of addition and multiplication. Henee, f is non-linear in the
general sense.
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Lemya 4.3, Let p=3. Then there is no function h(x,, ..., x;) in B, which
depends essentially on all of its | variables, |=2, and satisfies the following
condition: the subset H of E, consisting of h and the linear permutations
z+1 and rz, r>1, generates no 1-place functions other than linear per-
mulations.

Proof. It suffices to prove the lemma for I = 2. The general case can be
reduced to this case by considering functions obtained by identifying some
variables. We assume that & (z,y) depends essentially on both z and y and,
furthermore, that h(x,y), £+ 1 and rx, r > 1, generate no 1-place funetions
other than linear permutations. We shall derive a contradiction.

Let I, be the set of 1-place functions generated by our three functions.
By the assumptions,

(22} h(!"{.ﬁ‘}' V,$+V}=dy$+bv, V=0:1:---:P—1:
because each of these funetions is in IH,. Consider the funetion
h(x) = h(z+r,z+1),

Beeause A is in H, it is a linear permutation. This fact and (22) imply that
the difference

((Zv -+ bv) = (dv.l + b"‘—ll

assumes a constant value, for v=0,1,..., p—1. The function &, (z) = h(z,z)
is in H; and, henee, is a linear permutation. This implies, by (22), that the
difference by—by-, assumes a constant value. Henee, also the difference
dy—dy_, assumes a constant value.

There is no number z, such that

dot; + by = diz + b,

because, otherwise, the funetion h.(z) = h(z+ re, 2+ 2,) is not a per-
mutation, contrary to our assumptions. This implies that d, = d, and by==b,.
Henee,

hire+v,2+v) = dez +by+vb, v=10,1,... yp—1,
where b= b,—b,==0. By easy computations, we obtain the result that hiz,y)
is linear:
(23) h(z,y) = Az +By+C, A0, B=+0.

Furthermore, A+ B =0 beecause, otherwise, the function h(z,z) is not a
permutation.

It follows from our assumptions that H, does not contain all linear
permutations. For if is well known that all linear permutations form a doubly
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transitive group. Hence, if H, contains all linear permutations then H,
and h generate, by lemma 1.1, a 1-place funection whieh is not a permutation,
contrary to our assumptions.

We may, therefore, assume that H, contains exactly the following
funetions:

szt 0=1=y, 0=j=p—1,

where u < p—1, @, = 1 and a, = r. (Clearly, the set consisting of the numbers
a; has to be closed under multiplieation (mod p).) The set H, contains the
funections h(aiz,z) and h(aix,aix), for i = 0,1,...,u. Beeause A+ B =0
and A =0 this implies, by (23), that the numbers Aa; + B form a per-
mutation of the numbers (A + B)a;. Since B =0, we obtain the equation

(24) ot tHay = w1,

By considering funetions h(a,a;x,z) and h(@a;x,a,a;x), we obtain similarly
the equation

(u+1)B = Ba,(a,+ ...+ a).

Hence, by (24), a, = 1 because v+ 1<p and B==0. But this contradicts
the faet that @, = r > 1. Therefore, lemma 4.3 follows. We note finally that
the proof remains unaltered if the permutations x4+ 1 and rz arve replaced
by e¢(x) and ¢'(x) where ¢(x) is a eivenlar permutation and ¢’(z) is a per-
mutation linear with respeet to e(x) but not a power of e(x).

We are now in the position to establish theorem 4 (and theorem 4'). By
known results (ef. [1, pp. 18—20]) the theorem is valid if p = 2. We may,
therefore, assume that p=3. By lemma 4.3, it eannot be the case that f
generates no l-place funetions other than permutations linear with respect
to c¢(xz). Hence, f has to generate either some constant (and, therefore, all
constants) or some l-place funetion not linear with respect to e¢(z). In the
latter case we may conelude, by lemma 3.3, that f generates all constants.
Hence, it is an immediate consequence of lemmas 4.1 and 4.2 that f generates
a 1-place function not linear with respect to ¢(z). By considering eomposition
sequences of ¢(x) in terms of f and constants, we see that f generates a
function satisfying strong Stupecki conditions. This means that f generates
a set F' satisfying the hypotheses of theorem 3. Thus, by theorem 3, theorem 4
follows.

We add some further discussion eoncerning the applications of theorem 4.
Given a funetion f(x,,...,:), we eall the funetion

fi(z) = f(=,...,2)
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the main diagonal of f. The following theorem is an immediate consequence
of theorem 4/:

THEOREM 5. Let Shd(p,k) be the number of such k-place Sheffer functions
in By whose main diagonal is a circular permutation. Then

(25) Shd(p,]..) = (P‘—l) l(pp*_p_ppl—!..l).

The equation (25) is easily obtained by computing first the number of
functions self-conjugate under a circular permutation. For p =2, (25)
obviously gives the number of all k-place Sheffer functions.

The number Shd(p,k) (which expresses the exact number of k-place
Sheffer funetions of a speeial form) is greater than any known lower
limitation on the number of all k-place Sheffer funetions. In case p =5
we obtain, by (25), 2.288.818.359.360.000 2-place Sheffer functions. A better
lower limitation on the number of all k-place Sheffer functions in E, is
obtained by adding to Shd(p,k) the number of all sueh k-place functions
f(xy, ..., 7) which generate a eireular permutation in terms of a com-
position sequence of “second order”, eg.

c(&) = Fif(2 iz m . T)

where ¢(«) is a ecireular permutation.

The equation (25) expresses the fact that almost every funection in E,
whose main diagonal is a eireular permutation is a Sheffer funetion. (One
may consider limits when either p or k approaches infinity.)

‘We shall, finally, eonsider the following problem. It is elear that one
value of a funetion [ in K, may cause f not to be a Sheffer function, no
matter what the other values of f are. Any fixed-point of the main diagonal
is sueh a value. The question avises: what is the minimum number a of values
of a k-place funetion f which have to be fixed in order to be sure that f
always is a Sheffer function, no matter how the remaining n*—a values
of f ave defined? It is easy to prove that a=n + 2. According to theorem 4,
@ = n + 2 when n is prime. For instance, any funetion f(z,,...,x) (in E,)
satisfying the following conditions is a Sheffer function:

f(z,...,z)=x+l,
£(2:250002) = £(8,204,2) =1

For composite values of n, a> n + 2.
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On essential variables of functions, especially in the algebra of logic

Current research in the theory of finite automata and deterministic
operators has led to problems concerning essential variables of functions
in the algebra of logic. In the present paper we give some results in this
direction. As it turns out, many of the proofs remain valid for arbitrary
functions.

SOLOVJEY, [2]. has considered the problem how many essential variables
are preserved if a constant value is assigned for some variable. He has
proved two theorems, one of which has been established also by Luraxov,
[1, pp. 95—97]. All these proofs make use of some intrinsic properties of
functions in the algebra of logic. By an argument of a more general character,
we prove two theorems which are extensions of Sorovsev's theorems for
arbitrary functions. This is done in section 1,

In section 2, we discuss the problem how the number of essential vari-
ables is reduced if some variables are identified. We prove two theorems.
One of them (theorem 3) deals with arbitrary functions. In the other (theo-
rem 4) we show that in the algebra of logic, for any function f of n essential
variables, there is a function of at least n-2 essential variables which is
obtained from f by identifying some of its variables.

Section 3 deals with the distribution of values of functions, all of whose
variables are essential. We prove a theorem which strengthens the well-
known »fundamental lemmay of JaBLoNskiI, [3, pp. 68—70].

L. Let i, . ..., denote the set of functions mapping the Cartesian
product M, x...x M, of non-empty sets M, i=1,...,n, into a
non-empty set N. Assume M| is a non-empty subset of M, i=
1,...,n Then, for any function

f(xl yiwieery n} € %JNII.“”MH:

we denote by f(M, ..., M,) the set of values assumed by f(z, , ..., 2,)
when, for i =1,...,n, the variable a, is restricted to the set M 5
A function f(z,,..., @;,...,%,) depends essentially on the variable z;

(or @; is an essential variable of this function) if there are sets M|, i =
1,...,n, such that
TR LN )

198




4 Ann. Acad. Scient. Fennicae A.I. 339

contains at least two elements and every M, i =+ j, contains only one
element.

Theorem 1. Let the function f(z,,...,x,) € Fiy ... », depend es-
sentially on all of its n variables, n = 2. Then there is an index j and
an element ¢ € My such that the function

f(:rl,...,zj_l,c,xj_,,,,..., Y

depends essentially on all of its n — 1 wariables.

Proof. For n = 2, the assertion follows by the definition of essential
variables. (In fact, we may choose j = 1 or j = 2.) We, therefore, assume
that n > 2.

Because f depends essentially on the variable x;, we have

Flaryags v Sy fosag v 5 @,
for some a; €M, and @, €M, i=1,...,n. Hence, the function
fl@,,ay,...,a,) depends essentially on the variable z,. I.e., we have

replaced n — 1 variables of f by constants (elements of the sets M)
in such a way that f depends essentially on the remaining variable.

We shall now make the following hypothesis of induction: we have
replaced n — k variables of f, 1 =k < — 1, by constants b; in such
a way that f depends essentially on the remaining & variables. By a
suitable renumbering of the variables, we may essume that they are the
first & wvariables, i.e. the function

fl{zl1'-'!xt)=f{xl"'"xirbl‘«l-l""!bn)

depends essentially on all of its & variables,
Let I, k+1=1[0=n, be the number defined as follows: for some
elements ;€ M, k+1=i=1,

(1) Jfli,. s Ty Gy e "ca‘—llclsbt+l yiv s D) S i ey )
whereas, for all elements y; € M, k+1<i<]—1,

(2) Fleey o hopdis Vi ool i sb =N B i )

Such a number ! exists because, otherwise, f would depend essentially
on the variables #,,..., %, only. The function

(3) fale, y it B i e s Lp 5 Cpgn ---101_1s51»bi+1----rbu)

depends essentially on all of its k 4 1 variables. In fact, by (2) and (1),

fz(ml:---sﬁ;bl]=f1(31s~-$3t)
and

f!(xl!--nxhsc‘l)*fl{xll---sxt)-
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Hence, (3) defines a function of % -+ 1 essential variables which is obtained
by replacing n — (k 4+ 1) variables of f by constante. The proof of theorem
1 is completed by induction.

Theorem 1 implies that it is always possible to replace n — 2 variables
of f by constants in such a way that the resulting function depends es-
sentially on both of the remaining variables. The following theotem gives
a stronger result.

Theorem 2. Let f(x,,....x,) be as in the preceeding theorem. Then for
any p, 1 = p = n, there is a v<=p and n— 2 constants such that if the
variables of f distinct from x, and w, are replaced by these constants then
the resulting function depends essentially on both of its variables.

Proof. Without loss of generality, we let u = 1 because we may, if
necessary, transpose the indices x and 1. As in the proof of the preceeding
theorem, we first determine constants a;, i = 2....,n. such that the
function

fl(zl)=f(mlsa2:"'9an}

depends essentially on 2;. We defire [, 2 = I.g n, to be the number
such that, for some elements ¢; € M;, 2 =i =1,

(4) 1 TSR e Tl ) T
whereas, for all elements y; €M;, 2=i<[1—1,
(5} f{xlryss"'!yl-l’al?“" u}=f]{x:}'

Then it is a consequence of (4) and (5) that the function

Solo, :3-';)=f{zavc:.——-=¢|~1 ATy Qpy's o vy @)

satisfies the requirements of the theorem, i.e. we may choore » = [. Thus,
theorem 2 follows.

It is obvious that if we choose fwo arbitiary variables z, and z, then
we do not always find # — 2 constants such that when the variables of f
distinet from z, and =z, are replaced by these constants then the resulting
function depends essentially on both x, and 2. Even the weaker stafe-
ment chtained from theorem 2 by changing the order of quantification of u and
v is falze. This is shown in [2]. We give the following more general counter-

example,

Consider the set
(6} %:1....,3{‘
where each of the sets M,,..., M, , N ccntairs at least two elements.
Choose two elements. denoted Ly 0 and 1, ficm cach of the cets M, .. ..,
M,,N and dencte by #7 rcwe fixed furcticn in §ay, . i=1,...,4,
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which interchanges the elements 0 and 1. We now define by the following
equations a function f belonging to the set (6):

J@,0,0,2) =2,

f@,0,1,2) =2,

f(xl!lso?md =££€j,
f@,1,1,z) =a,
f{okx‘s’xﬂ!oj =idg,

f{o‘xirxs’l) =23,
f(l‘-"z,xaao) =5§3],

f, 2, 25,1) =3,

f(zlsmzsza ‘x.}==€1,0them"ise.

It is easy to check that no contradiction arises in this definition, i.e. there
is no argument for which f has been defined twice. Furthermore, f de-
pends essentially on all of its four variables, But, for any constants « and
b, both f(x, a, b, x;) and f(a, @, x5, b) depend essentially on one variable
only. It is not possible to construet a 3-place function which would provide
a similar counter-example.

We note, finally, that the converse of theorem 2 holds, whereas the
converse of theorem 1 is false.

2. We denote

where 4 is a set containing at least two elements. Following [3], we also
denote F, = P, if A4 is a finite set of cardinality k. The set P, is
termed the set of functions in the algebra of logic.

Any function, obtained from a given function f(x,.....2,) € F,
by identifying some of its variables, is called a diagonalization of f. In
this section, we consider the problem whether essential variables are pre-
served in diagonalizations. If » is less than or equal to the cardinality of

A (denoted by card (4)), we may choose n distinct elements a, ,...,a, € A
and define a function [ as follows:

f{al,.‘.,ﬂ-"}za;,

J@, ..., 2,) = a,, otherwise .

Clearly, f depends essentially on all of its »# variables. But all diagonali-
zations of f are constants (= a,). Hence, we have the following
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Theorem 3. For any n < card (4), there is an n-place function f € Fa
such that all variables of f are essential and every diagonalization of fisa
constant.

Theorem 3 shows that, in general, essential variables can be preserved
in diagonalizations only in the case that n > card(4). We shall now con-
sider functions in the algebra of logic. It is well-known that every function
in the algebra of logic can be uniquely expressed as a polynomial modulo 2.
All variables appearing in this polynomial representation are essential.

A linear polynomial of n variables possesses diagonalizations of at
most n — 2 variables. Similarly, the polynomial a2, + 2,2, + 2,2, does
not possess diagonalizations of two variables. Hence, given a function f
of n essential variables in the algebra of logic, one can not always find a
diagonalization of f which possesses # — 1 essential variables. However,
as shown in our next theorem, a diagonalization of # — 2 essential variables
can always be found.

Theorem 4. For any function in the algebra of logic possessing n (= 2)
essential variables, there is a diagonalization possessing at least n — 2 es-
sential variables.

Given an arbitrary function in the algebra of logic, we denote by p
the polynomial representing it. We shall first prove the following

Lemma. [f p contains a conjunction of rank = 3 then, for some i and j,

(7) P = xzoy + 2,0, + ;05 + qq

where either a, contains a term which is both in a, and a4 or a, contains
a term which is neither in a, nor in ay .1

Proof. We choose from p a conjunction b such that p contains
no conjunction of a rank higher than the rank of b. By renumbering the
variables, we may assume

b=y oy
where k = 3. Consider the following conjunctions:
b = g e
b, =z, . .. 2,
By — Zavary s - Th

If at least two of them, say b, and b,, are contained in p, then we
choose ¢ = 2 and j = 3 and obtain an equation (7) where the first alter-
native for a; is satisfied. If at least two of them, say b, and b, are

* The notion of rank is defined in [3, p. 22]. No suparfluous terms (subject to
cancellation) are allowed on the right side of the equation (7) which is the ex-
pansion of p in the variables #; and .

-
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missing from p, then we choose i = 1 and j = 2 and obtain an equation
(7) where the second alternative for a, is satisfied. This proves our lemma,

Proof of the main theorem. The assertion is trivial for n = 2, We assume
the assertion holds for n < m (= 3). Let p be the polynomial represent-
ing an arbitrary given function of m essential variables. We separate two
cases,

Case 1. p contains at least one conjunction of rank = 3. We choose
variables @; and ; as in the lemma and write p in the form (7). Next,
we define polynomials ¢, ,...,¢; as follows:

¢, consists of terms common to a;, a, and ag.

¢, ©= 2,3, consists of those terms common to a, and a; which
are not in ¢;.

¢; consists of those terms common to a, and a; which are not in ¢,

Cppn ©=1,2,3 consists of the remaining terms in a,

Hence,

p = zzi(c; + o3 + &5+ ¢5) + ey + e+ 0+ €g) +
Zi(cr 4 5 + ¢+ &) + a.
According to the choice of #; and a;,
(9) : &4 s+ 0.
We now form a diagonalization p’ by identifying x; and a;. Clearly,

®)

P =zler + 05+ g+ ¢) + ag.
We denote
=6+t

and refer to the variables which appear in ¢’ but do not appear elsewhere
in p as Cl-variables. Tf r is the number of C-variables then, by the choice
of the polynomials ¢;, p’ possesses m — (r + 1) essential variables. Hence,
if #=0 or r=1 we obtain the required diagonalization by identifying
a; and aj.

We, therefore, assume that r = 2. (Clearly, r =m — 2.) Our in-
ductive assumption implies that we may identify some (-variables in
such a way that, after the identification, the resulting polynomial con-
tains at least r — 2 (-variables. (In this identification, some variables
other than (-variables may vanish from ¢'.) This identification gives
the required diagonalization because no variables other than {-variables
vanish from p. In particular, by (8) and (9), z; and ; are preserved.

Case 2. p contains only conjunctions of ranks 1 and 2. If p is linear
we may identify any two variables. Otherwise, we choose some non-linear
term, say x,2,, and write
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P = 22y + by + bg) + @a(b; + bs) + by

where b;, b, b; are linear and b, and H; do not contain common
terms. We separate three subcases,

Subcase 2a. b; contains at least two variables which do not appear
elsewhere in p. We may identify any two such variables,

Subcase 2b. Every variable of b, appears also elsewhere in p. In
this case, we identify »; and z,.

Subcase 2c. b, contains exactly one variable, say a;, which does not
appear elsewhere in p. We identify first #, and x,. If the resulting poly-
nomial depends on the variable identified we have finished the proof.
Otherwise, p is of one of the forms

P = 2% + @y(2y + 1) + w5 + by

D= &% + &g + wylag 4 1) + by .

In the former case, we identify @, and a; in the latter, o, and x,

We have, thus, completed the induction. (In fact, the inductive assump-
tion was not used in case 2.) This proves theorem 4.

The proof is easier in some special cases as, for instance, if p contains
some conjunction of rank = n — 3. It is also easy to see that the statement
analogous to theorem 2 is false for diagonalizations of functions in the alge-
bra of logie. In fact, if we choose some variable 2, it may happen that,
for any other variable x,, the diagonalization obtained by identifying =,
and 2, is a constant.

3. JABLONSKII has proved in [3, pp. 68—70] the following

Fundamental lemma. Let f(x,,...,x,) € B, (k = 3) depend essentially
on at least two variables and assume | > 2 wvalues. Then there are sets G,
i=1,...,n, each containing at most two elements such that the set
flGy ,....G,) contains at least three elements.

This lemma is an efficient tool in establishing completeness criteria for
sets of functions over a finite domain, and in some analogous problems.
We shall now extend the lemma to arbitrary sets §, where card(4) = 3.
Furthermore, we strengthen it by constructing the sets @; in such a way
that an arbitrary preassigned value of the function f is included in the set
S et S

Theorem 5. Let card(4) =3 and f(z,,...,x,) € §, depend essentially
on at least two variables and assume af least three values and let a be one of
these values. Then there are sets GiC A, i =1,...,n, each consisting of
at most two elements such that f(G, , ..., ) conlains at least three elements,
one of which is a.
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Proof. We first choose elements a,,...,a,€ 4 such that

flay,...,e)=a.

Let U be the set of n-tuples (u,,...,u,) where, for n — 1 elements
wi, wi=a; and the n™ element u; is arbitrary € 4. Denote by f(U)
the set of values assumed by f when its argument is restricted to the ele-
ments of U. Clearly, a € f(I/). We may assume that f(U) contains an
element b == a. For if all elements in U satisfy the equation

f{u[,...,ﬂ”}=a

then our original n-tuple (a,,...,a,) may be replaced by any element
in U. Then, for every n-tuple in U, we form the set of n-tuples differ-
ing by at most one coordinate from the given n-tuple and, if necessary,
continue the process. Because f does not assume the constant value a
we obtain an element b as required. By a suitable renumbering of the
variables, we may assume that

(10) (e S G SR e S B I
In what follows, we separate cases and subcases.
Case 1. There is an n-tuple (¢,,...,¢,) where ¢n = a. or ¢, = b,
such that
f{cl,-..,c"} ='=a,b.
Then, by (10), we may choose Gi= {ai,¢}, for i=1,...,2—1, and
G=ia, hals
Case 2. For all n-tuples (y,,...,y%,) where y.=a, or y,= bn,
f(y;,.-.,J,,)=ﬂ- or f[y:>---tyu)=b'
Subecase 2a. All values assumed by f can not be represented in the form
(11) T ST el
where x, runs through the elements of 4. This implies that there is a
d € A such that, for some n-tuple (d,,....d,),
ftd'ls-ooidn)=d
and, for every n-tuple (a,,...,a, ,,%,),
f{al!---!an—-lixn) *d-

Hence, by (10), d = a, b. By the assumption of case 2, dn =+ an . by,
Denote

e=f(ﬁ-1,..-,a._1tdn}'

According to the definition of d, e & d.
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If e = a we choose G;={ai,di}, for i=1,...,n—1, and G, =
{bn . dn},

If e +a we choose ;= {a;,di}, for i=1,...,n.

Subease 2b. All values assumed by f can be represented in the form
(11). Hence, there are at least three distinet values of the form (11).

There is an n-tuple (k,,...,%,) such that

(12) B =flay, .o Oy b)) =Ry ke R)=1

because, otherwise, f would depend essentially on the last variable only.
Suppose @ =k or a =}’. By the assumption of subcase 2b, there is
an element A, € 4 such that

f(a'],...,ﬂn_l,k;)%:k,k'.

By (12), we may choose @; = {a;,h}, for i=1,...,n—1, and
G, = {h, K.},

Suppose a = A, k. Then we may choose G;= {a;,k}, for i—
| RS =

Thus, we have completed the proof of theorem 5 in all cases.

In general, it is not possible to construct the sets (; in such a way that
two arbitrary preassigned values of the function f are included in the set
f(Gy, ..., G,). Thus, a further strengthening of the fundamental lemma in
this direction is not possible. We shall finally mention a consequence of
theorem 5 which can be proved by an easy induction. (Cf. the proof of con-
sequence 1 in [3, p. 70].)

Theorem 6. Let card(4) =3 and f(x,,...,2,) €S, depend essen-
tially on at least two variables and assume at least v -+ 2 values and let
@y, ... ,a, besome of these values. Then there aresets Gy A, i = 1,...,n,
each consisting of at most r + 1 elements such that f(G,, ..., @) contains
at least r + 2 elements, including the elements a, , . ... a,
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On basic groups for the set of functions over a finite domain

1. Results. Let &, be the set of functions whose variables, finite in
number, range over a fixed finite set

N={1,2,...,n},n =2

and whose values are elements of N. If § c €, we denote by § the
closure of F under composition. §F is said to be complete if § 7= 1)

Every complete set contains a function satisfying Stupecki conditions,
i.e. depending essentially on at least two variables and assuming all »
values, We say that a subset § of €, is a basic set for €, if F is not
complete but the addition to § of any function satisfying Slupecki con-
ditions yields a complete set. If a basic set is a group with respect to com-
position it is termed a basic group for G,.

It is shown in [1, pp. 72—76] that all 1-place functions belonging to &,
form a basic set F, for @, provided n = 3. This result has been
strengthened to concern various subsets of F, which are closed under
composition. It is shown in [1] that the subset of §, consisting of all 1-place
functions other than permutations is a basic set for @, provided n = 3.

On the other hand, it is shown in [2] that the symmetric group of degree
n is a basic group for §..*) Furthermore, according to [3], the alternating
group of degree n is a basic group for .. (Obviously, the latter result
implies the former.) These results are valid for all values of n = 5. Counter-
examples presented in [2] show that they are not valid for n = 2, 3, 4,

In this paper, we shall study the problem whether it is still possible to
reduce basic groups, i.e. whether the alternating group can be replaced by a
smaller group of degree n, provided n = 5. In proofs of completeness
criteria for subsets of ©,, the essential fact concerning groups is the degree
of transitivity. Therefore, it is natural to ask whether the alternating group
can be replaced by an arbitrary group of degree n with some lower limita-
tion on the degree of transitivity.

1) For a detailed discussion, cf. [1, pp. 36— 58]. Throughout this paper, n means
the number of elements in the set N,

#) In fact, a slight modification in the proof of the theorem in [2] will yield this
result.
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It is clear that an arbitrary doubly transitive group is not basic for G..
Counter-examples are found, for instance, by considering prime values of »
and linear groups. A triply transitive group is basic for € if = is not a
power of 2. A quadruply transitive group is always basic for €, (provided
the condition n =5 is satisfied). These results are due to the following
theorem which we shall prove in section 2.

Theorem. Every quadruply transitive group of degree n is a basic group for
E,. provided n =5. If, in addition, n 4= 2" then every triply transitive
group of degree n is a basic group for €.

It is a eonsequence of this theorem that if a quadruply transitive group
of degree n is contained in the closure of a function f € G, (i.e. if f gener-
ates a quadruply transitive group) then the unit set of f is complete.)
The same statement holds true for triply transitive groups of degree =,
provided n = 27, r = 3. It is very likely that the statement holds true for
arbitrary triply transitive groups, perhaps even for arbitrary doubly
transitive groups if n = 3.

In section 3, we consider the exceptional cases in our theorem: n = 27,
r = 3. We construct a triply transitive group of degree 2" which is not a
basic group for €. Such a counter-example is provided by the holomorph
of an Abelian group of order 2" and type (1, 1,...,1).

2. Proofs. To prove our theorem, we shall first establish several lemmas.
We shall use the terms genus and fype (of 1-place functions belonging to )

as defined in [3]. Assume that G;, i = 1,...,k are non-empty subsets of
N. Then, for any funetion f(z,,...,x,) € €, wedenote by f(G,,..., )
the set of values assumed by f when, for i = 1,...,k, the variable z;

is restricted to the set @
Lemmas 1 and 2 are the same as lemmas 1.1 and 1.3 in [3]. Therefore,
we omit their proofs.

Lemma 1. Assume that n =3 and f(x,,...,x) satisfies Slupecki
condivions. Then for any j, 3 =j = n, there are sets G, i=1,...,k
each consisting of a most j — 1 elements such that f(G,,...,G,) conlains
at least j elements.

Lemma 2. The set of functions of type [by, by, by, ..., b] where
1< t<n generates every function of type [by + by, by, ..., 5]

Lemma 3. Assume that n = 4 and F C €. contains a triply transitive
group ® (of degree n) and a function f(x,, ..., ) satisfying Slupecki

conditions. Then § generates a function of genus 2 and all functions of genus 1.

1) This means that f is a so-called Sheffer function. The result is valid for n > 4
because, according to [3], it is valid for n = 4.
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Proof. 1. We shall first prove that § generates a function g(z) whose
genus y satisfies 1 <y < n.
By lemma 1, there are numbers «,, ..., a, such that

(1) fG,....8)=N

where Gi=N —{a;}, for i=1,...,k By (1), there are numbers
a?,i:l,...,k, such that

fay,...,a)=fa,...,a)

and a, +=a, for i=1,...,k We choose from & F& permutations
px),i=1,...,k such that pi(l) = a; and pi(2) = a;. The choice is
possible because & is doubly transitive. Then the function

(2) f(pi@) , ..., pif)

is of genus smaller than n. If it is of genus greater than 1 we have found a
function g(x) as required.

We, therefore, assume that the function (2) is of genus 1. Hence, ¥
generates all functions of genus 1, i.e. all constants. Using lemma 1, we
choose sets H;i=1,...,k such that each H; consists of two (not
necessarily distinct) elements b, and b, and f(H,,...,H,) contains at
least three distinct elements &, 6" and b". By a suitable renumbering of
the variables, this choice can be made in such a way that

(3) Jlby by, .., b)) =5,
(4) fb1,bs,...,0)=1%
and

(5) Fby, 005 o5 by = D",

Consider the 1-place function
9(®) = flx, by, ..., b))

which is generated by §F. If g,(x) does not assume the value 5" we may
choose g(x) = g,(x). Suppose

(6) nie) =1b".

Then necessarily ¢, < b;, b;. Choose numbers ¢, and ¢;,,i=2,...,k
such that ¢, &b, b;,¢, and ¢y, +b,b, if b, 4b] but ¢, ,—b, if

b, = b,. The choice is possible because n = 4.
Assume that

{7) f(czicS.Z!‘--)GSJt]:b”‘
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Let gi(x),i=1,...,% beconstantsin ‘5 or permutations in &, defined
as follows. The function g¢(x) is a permutation such that g,(1) = e,
@(2) =056 and q(3)= b, Let 2<i=<k and b=+ . Then gq,(z)
is a permutation such that g¢(1) = ¢, ¢(2) =5 and ¢(3) = b;. Let
2<i<k and b, =b;. Then g(z) =05, By (3), (5) and (7), we may
choose

9(@) = flg(2) , - -, () -

Assume that

(8) Sles, Ca2s 0500 F 0"

Let g;(z) be a permutation in @& such that qi(1) = s, q1(2) = ¢; and
q1(3) = b. By (5), (6) and (8), we may choose

9(2) = f@i(®) . @), . . ., @@) -

Thus, in all cases, § generates a function g(x) whose genus y satisfies
l<y<mn

II. Assume that » > 2. We shall now prove that §F generates a
function h(z) whose genus y, satisfies 2 =y <y. By repeating the
argument, we may conclude that 7 generates a function of genus 2.

Let u be a value assumed by g(x) at least twice and let v and w be
any other distinet values of g(x). Hence, there are distinct numbers wu,,
w, and », such that

gluy) = gluy) =w and g(y) =v.

Choose from 65 a permutation p(z) such that p(u) = u;, p(w) = u, and
p(v) = v,. Then the function

h(z) = gpg(2)

is of genus 3, where 2 = 3, < .

We have, thus, shown that F generates a function ky(x) of genus 2.
Let hy(dy) = My(dy) = d, dy +dy, and hy(dy) = d’', d’ 4= d. To complete the
proof of lemma 3, we choose from & a permutation g(x) such that g(d)=d,
and ¢(d') = dy Then hyghy(x) = d. Thus, § generates the constant d.
Because § contains a transitive group, we may conclude that § generates
all constants. Hence, lemma 3 follows.

Lemma 4. Assume that n = 3Y) and § € G, contains a triply transitive
group & (of degree n), a function f(z,,...,x,) satisfying Stupecki con-
ditions and a function g(z) of type [n — 1,1]. Then T is complele.

1) For the proof of our theorem, it obviously suffices to consider the cases n = 4.
A sharper formulation is given to some of the lemmas because their proofs remain
unaltered. On the other hand, lemmas 4 and 5 may be considered as completeness
criteria for subsets of (., n = 3.
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Proof. Obviously, any function of type [» — 1,1] may be expressed in
the form pygps(x) where py(x) and py(x) are permutations belonging to 5.
In fact, p, may be chosen from any transitive subgroup of ® and p,
may be chosen from any doubly transitive subgroup of . Thus, F
generates all functions of type [n — 1,1].
We shall now make the following hypothesis of induction: §F generates
all functions of type

(9) [y L]
nms
where 1 = i < n — 2. We shall prove that this implies that §F generates
all functions of type
(10) s R
m terms

We choose numbers b, and b,,i = 1,...,k asin the proof of lemma
3 such that the equations (3) — (5) hold, for some distinet numbers b,
and b".

Let A(x) be an arbitrary function of type (10). We have to show that
hiz) € F.

The function h(x) assumes i + 2 distinet values. Let «; be the value
assumed by A(x) » — (i + 1) times and let U consist of all numbers y
such that A(y) = ;. Hence, the cardinality of U (denoted by card(U))
is at least 2. Finally, let the other values assumed by h(x) be oy, ..., ;.
and let », be numbers such that A(u,) =, for »=2,... i+ 2,

We choose from @ a permutation p(z) such that p(b’') = oy, p(b) = xy
and p(b") = ay and denote

(11) fil@y, oo m) =p(fE, ... 3)).
Clearly, fy(z,,...,%,) satisfies Slupecki conditions. Therefore, it is
possible to choose numbers af, g =1,...,i —Lr=1,..., k, such that

fi applied to the p'™ row vector of the matrix

yields the value «,.,, forany p=1,...,i— L
We now consider auxiliary functions hiz), i = 1,...,k defined by
the following table:
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i | i@ | @) o st )
1 ]
zev [ e L
| .
% SR, A by
r ’ ’
= uy by l ba by
| 1 1 | 1
T = Uy L1 ‘ g L |
|
i=1 i—1 | i—1 ‘
| T = Uits x) | 2 g |

It follows from our inductive assumption concerning functions of type (9)
and lemma 2 that every function assuming some value at least n — i
times is generated by . Because the functions /() satisfy this con-
dition, we may conclude that hi(z) E?}, for ii=1 . ik

It is a consequence of (11) and the choice of the functions Ai(x) that

hz) = filly(2) , . . ., (@) .

Thus, we have shown that all functions of type (10) are generated by .
We conclude, by induection, that all functions of type

(12) Bl
m terms

are generated by . By lemma 2, the set of functions of type (12) generates
the subset of &, consisting of all 1-place funetions other than permutations.
By the criterion mentioned in section 1, we may conclude that § is com-
plete.

Lemma 5. Assume that n = 3 and F C G. contains a iriply transitive
group & (of degree n), a funcrion f(x,, ..., ) savisfying Slupecki con-

ditions and a function g() of type [n — a,a] where a +—. Then § is

complete.

Proof. If mn =3 or n =4 the assumptions of lemmas 4 and 5 are
equivalent. Therefore, we assume that n = 5. We shall show that
generates a function of type [n — 1, 1]. This implies, by lemma 4, that &
is complete.

By the hypothesis, n — a == a. We assume that the notation is chosen
in such a way that » —a > a. If @ =1 the proof is completed. We,
therefore, assume that @ = 2. We shall show that §F generates a function
¢i(x) of type [n — ay, a;] where 1 = a; < a. By repeating the argument,
we conclude that §F§ generates a function of type [n — 1, 1].
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Let E, and E, be disjoint subsets of N such that card(E,) = n — a,
card(E,) = a = 2 and g(x) assumes a constant value both in E, and
in E, Because F contains a doubly transitive group it generates every
function assuming a constant value both in K, and in E,.

We choose from (& a permutation p(x) mapping some element of E,
into itself and some other element of £, into E,. Consider the sets

Vi=E NpE,), V,=E,NpkE),
Va=E,Np(E,), Vy=E NpkE).

The union of the sets (13) equals N. On the other hand, by the choice of the
permutation p,

(14) 1< card (V) <card (By;) =a, for i=2,3,4.

(13)

Furthermore, 1 = card (V;). The sets (13) are not of the same cardinality.
For if card (V;) = card (V,) and card (V) = card (V,) we obtain
card (V) = 4 card (E)) > { card (E,) = card (V) .

Let b, and b;, i=1,...,k bethe same numbers as in the proof of
lemma 3. Thus, equations (3) — (5) hold, for some distinet numbers b, b’
and b”. Choose arbitrary elements »; € Vi, i = 1, 2, 3, and a permutation
p'(x) € such that p'(h) = v, p'(b’) = v, and p'(B") = v,.

The following auxiliary functions hi(z) are generated by 3:

hiBy) = (b}, h(Ea) = (B3, §=1,...,k.

(Some of the functions hi(z) may be constants which are generated by &,
according to lemma 3.) Let

§(@) = p'(flh(@) , hap~'(@) 5 - . ., Ip™'(@))) -
It follows from the definitions of the funetions involved that
(15) glz)y=w9v, for x€V:, i=1,2,3:

Furthermore, §(x) assumes a constant value »', for z € V.

Suppose v’ € V,. Then §*(z) is a function of genus 3 and type [t,, &, ;]
where at least one of the numbers ¢, say t;, satisfies 1 = t; < a. This is
due to (14) and the fact that »" € V; UV, U V,. Let the values assumed
by §(x) be u, u, and wuy; where w, is assumed at least twice and u,
exactly f; times. Choose numbers ], 4 and wu} such that §'(ul) =
7'(u}) = u; and §(u}) = uy. Furthermore, choose a permutation py(z) € 6
mapping the ordered triple (u,, uy, u;) into the ordered triple (ul, uj, ul).
Then we may choose

N(@) = §'pg*(@) -
Clearly g,(z) is of type [n — 3, 6] where 1 =1, <a.
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Thus, we may assume that »" = v, € V. The equations (15) may be
written in the form
(16) Fla)y =iy for €V W =1 2058 ¢

We say that a quadruple (&), &. &y, £,) is a permissible set of representatives
for the numbers w»: if there is a permutation in & mapping » into &,
i=1,2 3, 4. Assume that the elements of some permissible set of repre-
sentatives are contained in exactly three sets V, and let p.(x) be the
corresponding permutation. Then the function gp.g(x) is of type [t &, &;]
where 1 = t; << a. Proceeding as above, we obtain a function g(r) as
required. We may, therefore, assume that there is no permissible set of
representatives whose elements are contained in exactly three sets 1.

We shall now make use of the fact established above that the sets (13)
are not of the same cardinality. If «(i) is a permutation of the numbers
1, 2, 3, 4 such that

card (V) = card ( Vm,] = card (V) = card (V)

then necessarily

(17) eard (V) = card (V) .

Furthermore, by (14),

(18) 1 < card (V) <card (E) =a, for i =2,3,4.

Let V., = {vi, .- ., ¥yl Consider the numbers v in the equations

(16). Choose from & f permutations gfz), i = 1,...,f, such that

FlVs1) = Yagz) » (V0 = f":;m » D) = Vagm -

Then, for all i, q,(v,,) € V,y because, otherwise, we would obtain a
permissible set of representatives whose elements are contained in exactly
three sets V.

By (17), this implies that, for some g and » p =+,

TuVa) = 0(Va) = "':h} €V -

We have, thus, constructed the following two permissible sets of repre-
sentatives which differ by one element only

(19) (Vagey » Vi) » Vogsy » ’-’:u)] 3 (Yt » Yoy + Yags) » ”:m) .
We now choose from (& a permutation ¢'(z) such that

7' (%0) = Vagy + 4’ Wag) = Page) + €' Wagy) = Vaqy -
Consider the values

(20) 7'(vyy) and q'(v3y) .
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Because the sets (19) are permissible and ¢" obviously maps a permissible
set into a permissible set, the values (20) are both contained in the set V.
Otherwise, we would obtain a permissible set of representatives whose
elements are contained in exactly three sets V.

We may now choose

(@) = §7'9,4() .

The function g(x) assumes the value v, for = €V ., and the value
¥y, Otherwise. By (18), it is of type [n — ay, @] where 1= a, < a.
This completes the proof of lemma 5.

Proof of the theorem. We assume first that 2 = 5.2 4 2° and & isa
triply transitive group of degree n. Let f(x,,..., ) be an arbitrary
funetion satisfying Stupecki conditions. To show that 6 is basic for ©,,
we prove that the set §F consisting of & and f is complete.

By lemma 3, § generates a function g(x) of genus 2. This implies, by
lemma 5, that §F is complete, provided g(xz) is not of type

(21) [3n, in].

We assume that g(x) is of type (21) and that E, and E, are disjoint sub-
sets of N such that card (F,) = card (E,) = in and g(x) assumes a
constant value both in E; and in &, We shall now proceed as in the proof
of lemma 5.

We form the sets Vi = 1,2, 3,4, and obtain a function §(x) satis-
fying the equations (16). (Otherwise, we would obtain a function of genus 2
and not of type (21) which would complete the proof.) Furthermore, we may
assume that the sets V', are of the same cardinality because, otherwise,
we could use the inequality (17) as in the proof of lemma 5. Thus, the set N
is divided into subsets as follows:

N

(siimioy sl Rtaee
!_ "y | Vs | Vs | Vs |

We now form a new partition of N into V-sets by choosing from & a
permutation @(x) which maps some element of 17, into itself and some
other element of V, into V, and denoting

Vi=E NpHh,), Vi=E,NpE), Vi=E,NpHE,), Vi=E NpHE,).

Again, we may conclude that the sets V! are of the same cardinality.
Furthermore, we may assume that the following equations hold:
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(22) card (V, N V1) = card (V, N V}) = card (V, N V]) = card (V, N V)
= card (Vo N V) = card (V, N V) = card (V5N V)
= card (V4N ¥3) = § card (V,) = % card (E,)
=}card (N)=1¢n.

For if the equations (22) do not hold we may argue as follows. Assume that,
for instance,

(23) card (V, N V}) > card (V, N V}).

Let V,NV}={#,...,5). We choose from & permutations =(z),
i=1,...,9 such that m(»,) = &, @(v,) equals some fixed element in
V,N V! and x(v;) equals some fixed element in V, N Vi, If, for some i,
n(vy) € V, NV} we obtain a function of genus 2 and not of type (21). If,
for all i, m(v,) € V,N V] we obtain, by (23), two permissible sets of
representatives differing by one element only. Then we may argue as in the
proof of lemma 5.

Equations (22) express the fact that N is divided into subsets as follows:

(24) | L2 _._'_._ —t L e ’__

lnlvlv|lvln

We continue the process by forming a new partition of N into sets V3,
i=1,2 3 4. If we do not obtain a function of genus 2 and of some type
other than (21) we obtain equations corresponding to (22). The common

1
cardinality of the sets involved equals T

By repeating the argument for new partitions of N, we conclude that
we either obtain a function of genus 2 and not of type (21) or n = 2. Thus,
the part of our theorem concerning triply transitive groups follows.

Assume that » =5 and @ is a quadruply transitive group of degree
n. Let § be as above. The completeness of § follows because we may
choose from ( a permutation mapping the numbers v,i = 1,2, 3, 4,
into exactly three of the sets V. We, thus, obtain a permissible set of
representatives whose elements are contained in exactly three sets 1.

Therefore, we have established our theorem. We note, finally, that the
main difficulties in the proof are due to the fact that no analogues of
lemma 1.2 in [3] are available.
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3. Special cases. We shall now show that the condition n == 2" in the
statement of our theorem is essential. If n = 2" (r = 2) there is a triply
transitive group of degree n which is not a basic group for E.. In what
follows, we shall discuss the case n = 8 in detail.

Let @3 be the holomorph of an Abelian group of order 8 and type
(1, 1, 1), expressed in the usual way as a permutation group of degree 8.
@®, is generated by the two permutations (1376528) and (17)(46). It is of
order 1344 and consists of 384 7-cycles, 224 permutations of cyelic structure
33, 224 permutations of cyclic structure 6 <2, 252 permutations of cyclic
structure 4 x4, 49 permutations of cyelic structure 2x2x2x2, 42 per-
mutations of eyclic structure 2% 2, 168 permutations of eyclic structure 4 > 2
and the identity. The group @ can also be characterized by the following
six defining relations:

X = I = Y (RS = L (X ==
(FXAEXA X = 1 PR X e X s XX =",

Obviously, the holomorph of an Abelian group of order 2" and type
(1,1,...,1) (i.e. the holomorph of a so-called generalized Klein group) is
triply transitive. In particular, @ is triply transitive.

However, (§; is not a basic group for . Consider the following
funetion f(x,y) which satisfies Slupecki conditions:

fRx—1,y)=y.fC2z,y)=9—y.

Then the set §F consisting of & and f(x,y) is not complete.

To prove this, we quote some terminology and notations, from section 2.
We let B, ={1,2,3,4)}, E,=1{5678}, V,={1,2}, V,={3,4},
V,={5,6} and V,= {7,8}. The following (unordered) quadruples are
called permissible sets of representatives:

1234, 1256, 1278, 1357, 1368, 1458, 1467,
2358, 2367, 2457, 2468, 3456, 3478, 5678.

The permutations in 63 always map a permissible set of representatives
into a permissible set. Furthermore, they preszerve the subset structure (24)
of N.

Let §sc G be the set consisting of the following I-place functions:

1) Permutations in .

2) Constants.

3) Those functions of type [2, 2, 2, 2] whose values form a permissible set
of representatives and which, furthermore, assume a constant value in the
sets Vi Vi Vi and Vi, for some i=1,...,7, where
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Vi=dqu, 9} v =1sh g wi={o oy, V=i 8);
Vi={1,8}, Vi={2.4}, V5=1{5,7}, Vi={6,8};
Vi=1{1,4}, Vi=1{2,8}, V3=1{5,8}, Vi={6,7};
Vi={1,5}, Vi={2,6), Vi={(3,7), Vi={(4,8};
E={1.6}, P2 —{d 9} V=12 56}, Vi=4{3,8}:
Vi={1,7}, Vi=1{8.8}, Vi=1{2,8}, Vi={4.6};
e LU IR e S R e o o e i

4) Those funetions of type [4, 4] which, for some i, assume a constant
value in one of the sets ViU Vi, ViUTVi or ViU Vi

The set Fg is closed under composition. In classes 1)—4) there are,
respectively, 1344, 8, 2352 and 392 functions. Thus, card () = 4096.
This number can be computed more directly as follows. Fy consists of all
functions which map every permissible set of representatives into a per-
missible set, a quadruple of type [2, 2] or of type [4]. (In what follows,
quadruples of these three forms are called permissible images.) Thus, we may
choose arbitrarily the values A(1), k(2), k(3) of a function k(x) € Fs. They
determine uniquely the value A(4). Again, A(5) may be chosen arbitrarily
but then the values A(6), &(7), h(8) are uniquely determined. Hence,

card (§g) = 8' = 4096 .

Our function f(x, ) forms a closure in the set Fg, i.e.if gy(x), ga(2) € Fs
then also f(g,(z), g2(z)) € Fs. To prove this, it suffices to show that if
(iy, Tg, By, iy) and (jy, . js. js) are two permissible images then also

(f(tl !jl} 1f["2 ’js) rf(ia ,J's) 9f(id ,.M)
is a permissible image. This can be readily verified by considering the matrix
of f(z,y).

Thus, § generates no l-place functions other than the functions in .
This proves that F is not complete. Clearly, instead of the function f(x, y),
we may choose any function which satisfies Stupecki conditions and forms a
closure in the set .

Consider the general case') n = 27, r = 3. Let (&, be the holomorph
of an Abelian group of order 2" and type (1,1,...,1). The order of this
triply transitive group @, equals

(2 — 1)(2 —2) (2 — 2 (2 —27Y

1} We have regarded the case n = 8 as the first exceptional case. In fact, also the
case n = 4 may be considered as exceptional, the exceptional group being the holo-
morph of the four-group (which equals the symmetric group of degree 4). Our theorem
is not valid for n = 3 because lemma 3 is not valid in this case.

223




AnTo Saromas, On basic groups for the set of functions 15

Define a function g¢(x, y) € Gy as follows:
p2Z—1,9)=y, ¢(2,y)=2"+1—y.

The function g(z,y) forms a closure in a set F, consisting of 2+
I-place functions. This implies that the set F consisting of @, and
@(x, y) is not complete. Hence, the group ®,- is not a basic group for E,.
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1. Introduction. According to a result of Posr, [5], every closed set
of finitary operations in a two-element algebra possesses a finite basis. This
result is not valid for n-element algebras where n=3. As shown hy MucnNik
and Jaxov, [4], there are in these algebras infinitely generated sets of
finitary operations, closed under composition. Le., if we use the terminology
and notations of BuTLER, [2], there ave closed subsets of F, (n=3) possessing
no finite basis,

In general, very little is known about infinitely generated subsets of F,.
The results of MucuNIK and Janov imply that there are closed subsets F,
of F, which are mazimal in the following sense: F, is infinitely generated
but every proper extension of F, is finitely generated. However, no example
of such a maximal set F; is known. Also the following problems are open:

A. What is the number of maximal subsets of F,, for a fixed number n?
In particular, is the number finite? (It is a result of MucnNIK and JaNov
that every F, (n=3) possesses a continuum of closed subsets.)

B. Can a subset precomplete in F, be infinitely generated? Or, equi-
valently, are there maximal precomplete subsets of F',? Gzmexko, [3], has
shown that, for n =3, all 18 precomplete subsets of F, possess a finite basis.

C. Given an infinitely generated set F CF,, we construet a maximal
set D F. Is this extension F” always unique?

In this paper, we restrict our study to the subelass L(n) of F, consisting
of all linear operations in I, and consider problems mentioned above and
related questions for the class L(n). In particular, we construct several
maximal subsets of L(n) and show that, for L(n), the problem B possesses
a positive and the problem C a negative solution. ;

The theory of infinitely generated subsets of L(n) is a part of the theory
of infinitely generated subsets of F,. This is due to the fact that, for every
infinitely generated L CL(n), there is an infinitely generated subset in any
F,., m=n, obtained as a homomorphic image of L.

2. Definitions. Let L(n), n=2, be the set of all finite sequences
(@, ...,a;) of the elements 0,1,... ,n—1. Consider the following rules of
generating new elements from given elements of L(n):

1. Introduction and elimination of unessential variables. From an element
(@, ...,0,)eL(n), r=1, to obtain the element (0,a,, ... ,a,)eL(n), and
viee versa.

229




4 ARTO SALOMAA

2. Renaming of variables. From an element

(ah =Y af) ar+l) € L(ﬂ)
and a permutation P(z) of the index set {1,...,r)} to obtain the element
(aPtlh vovy @P(r), a’f.q) € L(ﬂ'.}

3. Identification of variables. From an element
(@1,8, . . oy Gr,@r) € L(0), r=2,

to obtain the element (a; +as,...,a,,d.:) € L(n) where addition is earried
out modulo n.
4. Composition. From two elements

(ahaﬁs cany Oy ey ), (bls coiy Dy b)) e L(n), ria==1,
to obtain the element
(ady, ... @by, . .. @@y Daey + Grin) € L(0)

where addition and multiplication arve carried out modulo n.

Remark. Cf. [6] where different methods of compounding finitary
operations are considered, If L(n) is interpreted as the set of all linear
polynomials modulo n then the rules 1—4 include all of these methods.

A set LCL(n) is said to be closed if it is closed under the rules 1—4.
For LC L(n), we define the closure of L, in symbols, C1(L) to be the least
closed extension of L. (Clearly, Cl is a closure operation in the sense of
[1, p. 49].) A set LCL(n) generates a set L’ if I/ CCI(L). Obviously, the
set consisting of (1,1,0) and (1,1) generates the whole set L(n).

If a set L CL(n) generates L(n) we say that L is complete. A closed
set is termed precomplete if it is not complete but every proper extension
of it is eomplete.

A closed set LCL(n) is said to be finitely gemerated (or to possess a
finite basis) if there is a finite set L, C L which generates L, i.e. L= CL(L,),
for some finite L, C L. Otherwise, L is said to be infinitely generated. 1t I,
is infinitely generated but every closed proper extension of L is finitely
generated we say that I, is maximal,

For a closed set LCL(n) and a natural number k, we define the
k-restriction of L, in symbols, Rex(L) to be the subset of L consisting of
all sequences of at most & elements, The order of a closed subset I of L( n)
is defined to be the smallest integer & such that

Cl(Rex. (L)) = L.

If no such integer k exists, L is said to be of infinite order. (The notion of
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order is due to GNIDENKO, [3].) Clearly, L is infinitely generated if and only
if it is of infinite order.

Let L be infinitely generated. For any natural number k, there is an
element ¢ € L—C1(Rex(L)). On the other hand, for any g€, there is a natural
number I such that geRe;(L). Hence, we have the following

TrreorEM 1. Every infinitely generated set contains an infinity of closed
subsets.

For n = 11;"; p{', an element ¢ = (a,,...,a,)eL(n) and a fixed 4, 1=i=m,
we define Hi(p) = (a},...,d, JeL(p;') where aj denotes the least non-
negative remainder of a; (mod pf*). Hi(¢) is termed the representative of ¢
in the set L(p{'). Clearly, an element peL(n) is uniquely determined if all
of its representatives are known. The representative H,;(L) of a set L CL(n)
is understood fo consist of the representatives 1;(g) of the elements pel.

Obviously, H; is a homomorphism with respeet to the rules 1—4. This
implies the following

TrEOREM 2. Every representative of a finitely generated set is finitely
generated.

Theorem 2 enables us to construct infinitely generated subsets of L(n)
if an infinitely generated subset of L(p?), p’|n, is known.

3. Maximal and precomplete maximal sets. For n=p*m (where p is
prime, m is not divisible by p and k=1), we define the following subsets

of L(n):
Lirm C L(n) consists of all elements (a,, ..., a,, a,.,)€ L(n) where at least
r—1 of the numbers «,, ..., a, are divisible by p. Note that
(1) Res(L(n)) C L™,
If n=p then

Cl(Res(L(n))) = L&™,

Thus, in this ease, Ly " is of order 1. If n>p then L™ is of order 2. Henee,

the set Ly ™ is always finitely generated.

L,” CL(n) consists of all elements (a,,...,a, G..)e L(n) where either
all the numbers a,,...,a, are divisible by p or r—1 of these numbers are
divisible by p® Again, we have

(1) Re:(L(n)) C L.

The set Ly” is included in the set L™ | the inclusion being proper if p*==p
(mod n).

It is easy to check that the sets L) and L{"™ are closed. We shall now
prove the following
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Turorem 3. The set L™ is precomplete. If w is divisible by p* then the

set LY is maximal.
Proof. To prove the first part of the theorem, we choose an arbitrary
element

(2) p6 L(n)—Ly™,
‘We have to show that

(3) L= ClUL ™ Ufg}) = L(n).

It follows from (1), (2) and the fact that I is closed under composition
(rule 4) that, for some @ and b where ab is not divisible by p,

(4) (a,b,0)el/.

Bearing in mind that 2 = p*m, where m is not divisible by p, we choose a num-
ber i such that b+ip=1 (mod m). The numbers b+ip and n ave relatively
prime. Hence, we may choose a number j such that

(5) (b+ip)j=1 (mod n).

From the relation (1,ip,0)e Ly ™ we infer, by (4), that (a,b+ip,0) ¢ L".
Henee, by (5),

(6) (a.1,0)el’.

By repeating the same argument, we infer from (6) that (1,1,0) eL’. Hence,
by (1), the equation (3) follows.
To prove the latter part of the theorem, we note first that if k=2 then,
for any r=1,
(B, >0, 0) e B —Cl(Re: (LY.

—_—
r coples

This implies that the set L is infinitely generated (for p*|n).

We shall now show that the only closed proper extensions of LY ave the
sets Ly " and L(n). Since both of these sets are finitely generated, we may
conelude that LY is maximal.

Let L” be an arbitrary elosed proper extension of L, and ¢ an arbitrary
element of the set I/ — L . Then .

(7) LD L* = CHLSU{y)).
By (1’), we may conclude that

(8) (¢,d,0) e L7,
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for some ¢ and d where ¢ is not divisible by p and 4 nes divisible by p*. We
choose a number u such that ¢+up*=1 (mod m). Then the numbers ¢ +up*
and n ave relatively prime. Finally, we choose a number ¢ sueh that

(9) (ctup*)v=1 (mod n).

From (8) and the relation (up®,1,0)e L we obtain the relation (c+up?,
d,0)e L* and hence, by (9), the relation

(10) (1,d,0) e L*,

If d is not divisible by p we infer, by repeating the given argument, that
(1,1,0)€ L*. This implies, by (1’), that I” = L* = L(n).

Therefore, we write d = pd, where d, is not divisible by p. Let w, be such
that d, +u,p=1 (mod m) and v, such that

(11) (d, + wp)v,=1 (mod n).

Because (1,u,p%0) ¢ L,” we obtain, by (10), the relation (1, p(d,+u.p),0)e L*
and hence, by (11), the relation (1,p,0)eL* This implies, by (1’), that
L*D Ly™. Since the set L™ is precomplete, we have either L* = L™ or
L*=L(n). Henee, by (7), L” = L™ or I/ = L(n). This completes the proof
of theorem 3.

We shall now consider sets L(n) where n is of the form n = pFq'm where
p and q are distinet primes, /=2, 1=1 and neither p nor ¢ divides m. Let

WP = L(n) be defined as follows:

L consists of all elements (..., &, a,,,)€L(n) where either all num-
bers ay, ..., a, ave divisible by p or all divisible by q or r—1 of these numbers
are divisible by pq. It is easy to verify that the set LY is closed. Further-
more, we have

(17) Rey(L(n)) C L.

Our next theorem deals with problems B and C, mentioned in the in-
troduction.

TueoreM 4. The set LY is both precomplete and mazimal.

Proof. For any r=1,

(12) (D, -..,2,0) 6 LS® —Cl(Re,(LP)).
—
T copies
The relation (12) follows because n is divisible by both p* and pq and, henee,
the element on the left side cannot be obtained from the elements of the set

Re, (L") by the rules 1—4 in seetion 2. (12) implies that L is infinitely
generated. Therefore, if L” is precomplete then it is also maximal.
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To complete the proof of the theorem, we show that L? is precomplete.
Let g e L(n)—L"™ be arbitrary and denote

L' =CI(LF U {p)).
We have to show that I/ = L(n). It suffices to prove that
(13) (1,1,0) e I.

By (17), the set L’ contains an element (a,b,0) where a is not divisible
by p and b not divisible by ¢. We assume first that b is not divisible by p.
Choose a number i such that b+ipg=1 (mod m). Then the numbers b+ipq
and n are relatively prime. Since we have (1,ipg,0)6 LI . we obtain the
result (a,b+ipq,0)€ L. This implies that ( a,1,0)e L/ and, finally,

(14) (a,p,0)el’.

We assume next that b = pb,. In this case, we choose a number j such
that b;+jg=1 (mod pm). Because b is not divisible by g, this implies that
bi+jq and n ave relatively prime. From the relation (1,ipg,0) € L¥” we in-
fer the relation

(a,p(b.+jq),0)e L/

and, hence, the relation (14).
By a similar procedure, we eliminate the number @ from (14) and obtain
the result

(15) (q,p.0)el’.

Let w be such that up* + ¢*==1 (mod qm). Sinee (q,q,0) and (up,up,0) are
elements of the set LY, the relation

(16) (up*+g*,up*+4¢°,0) e L/

is a consequence of (15). Because the numbers up*+¢* and n arve relatively
prime, (13) is implied by (16). Hence, theorem 4 follows.

We shall now present two corollaries of theorem 4.

CoroLLARY 1. Some infinitely generated sets are contained in two distinct
mazximal sets. (Le. the mazimal extension of an infinitely generated set is not
always unique.)

For let # be such that L/” is defined. By theorems 3 and 4, both L\ and
Ly" are maximal. Consider the set L C L(n) consisting of all elements
(@y...,6aa.,)eL(n) where all numbers Gy ..., @y ave divisible by p. It is
easy to verify that L,” is closed and infinitely generated. Furthermore, it
is contained in both L,” and L7 .
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CororLrary 2. The converse of theorem 2 is not valid.

For let n = pq. Then the representatives of the set L™ are the sets L(p?)
and L(g) and, hence, finitely generated. However, the set L”. is infinitely
generated.

Remark. The converse of theorem 2 may be viewed as a special case of the
following more general problem: When is the property of being finitely
generated preserved in subdireet produets! Evidently, the answer depends
on the structure of the systems considered.

Let k and I be relatively prime and assume that L(k) possesses an in-
finitely generated subset L' and L{l) possesses an infinity of closed subsets
Li,i=1,2,.... Let L{,i=1,2,..., be a closed subset of L(kl) with repre-
sentatives 1’ and L}. By theorem 2, L] is infinitely generated, for i =1,2,....
For instance, if k=p* and I=¢* where p and g ave distinet primes then
LT C L(p*q*) may be chosen to eonsist of all elements (@1,...,Qr 01 ) € L(P2q*)
where all numbers a,,...,a, are divisible by pg and at least r—i of these
numbers are divisible by p* Henee, we have established the following

THEOREM 5. Assume that L(k) possesses an infinitely gencrated subset and
L(1) possesses an infinity of closed subsets where k and [ are relatively prime.
Then the set L(kl) possesses an infinity of infunitely generated subsets.

The given conditions ave not necessary. Thus, it ean be shown that L(p*)
possesses an infinity of infinitely generated subsets.

Clearly, every closed set is infinite. We say that a closed set is non-trivially
infinite if, for every natural 1, it contains sequences of more than i non-zero
elements. An argument similar to the one used in the proof of theorem 5 vields
the following

TurorEM 6. Let n = p¥q'm where p and q are distinet primes, k=2 and
[=1. Then, for any u=3, there is a closed non-triviaily infinite set L L(n)
of order u.

As regards problem A of the introduetion, we present the following

Conjecture 1. For any n = p* where p is prime and k=2, the set L is the
only maximal subset of L(n).

The proof of the following weaker statement is straight forward.

THEOREM 7. Assume that n = p* where p is prime and k=2. Then the only
mazimal subset of L(n) which contains the set Res(L(n)) is the set L.

4. Sets L(n) with a prime n. In this section, we shall determine all closed
subsets of Z(p) where p is a prime number. It turns out that L(p) possesses
only a finite number of closed subsets. There ave no infinitely generated sub-
sets contained in L(p). This follows either by a direct verification or by
theorem 1. We denote

L, = Cl(Re:(L(p))).
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Clearly, the number of closed subsets of I, is finite. Let this number be I (p).
TueoreM 8. T'he number of closed subsets of L(p) equals I(p) + p+3.
We shall only outline the proof of theorem 8 beeause, at each step of the

proof, the procedure is straight forward. .

Let L be a closed subset of L(p). We shall first assume that p=3. If L
is not a subset of L; it follows from the primality of p that

(17) ¢=(a,b,c)el, a,b=0.
1t
(18) at+b--1 (mod p)

then by composing ¢ and members of the set LM Ly we infer that (1L,b,¢')e L,
for some b’#0 and ¢’. This implies that either L = L(p) or, for some
$=0,1,...,p—1, L=L;" | the set consisting of all elements of the form

(G0 8y (Bt o Far—1)8),

(Addition and multiplication are carried out modulo p.) The former alter-
native holds if L contains two elements (a,,a,) and (a,,a% ) where a,==as. The
set Ly is generated by the element (1,1,s).

Assume that L contains only such funetions (17) which do not satisfy (18).
Then, for any 1=0,1,..., p—I1,

(19) (4, p—i+1,¢) e L,

for some ¢;. This follows, by the primality of p, if we compose elements of the
form (19) belonging to L. As a consequence, we have the subsequent two alter-
natives:

If L contains no element of the form (17) with ¢=£0 then I, = L;', the set
consisting of all elements of the form (ay,...,a, 0) where a,+...+a,=1
(mod p).

If L contains some element of the form (17) with ¢==0 then L = LY, the
set consisting of all elements of the form (ay,...,a,, a5.,) wherve a;+ ... +a,=1
(mod p).

Both of the sets L, and L7V gy of order 2.

The proof remains unaltered if p = 2, with the exception that in (17) ¢ has
to be replaced by a 4-tuple. The sets L3' and LI are of order 3.

The following corollaries are now immediate.

CoroLrArY 1. The order of a closed subset of L(p) is at most 2 if p=3,
and at most 3 if p =2.

CoroLLarY 2. The set L(p) possesses p+2 precomplete subsels, namely,
Ly, L™ and L3, s = L e
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5. Sets L(n) with a square-free n. As seen in section 3, L(n) contains
infinitely generated subsets, provided = is divisible by a square. In section 4,

we have shown that L(n) does not contain infinitely generated subsets if n is
prime. In this seetion, we shall establish the following
TrEoREM 9. Let n be square-free and

(20) Re.(L(n)) CL=ClL) C L(n).

Then L is finitely generated.
Proof. Assume that L contains an element (a,, . .., @, @) where, for some
iand j, 1=i< j=r, the condition

ged. (ap,n) =ged. (an) =1

is satisfied. Then, by (20), L contains the element (1,1,0) and, hence,
L=L(n).

‘We may, therefore, assume that L contains only elements (a,,...,a,a,.,)
where at most one of the numbers a;, 1=i=r, is relatively prime to n. We
divide L into three subsets L, L, and Ly, as follows:

L, consists of the elements (a,, ..., a,,,) where one of the numbers a;,
1=1i=r, is relatively prime to n.

L. consists of the elements (a, ..., a,, a.,) which do not belong to L, and
satisfy the condition g.e.d. (ay,...,a,) =1.

L. consists of the remaining elements of L.

We shall prove that, for each i=1,2,3, there is a finite subset L of L
sueh that

(21) Ly OL(L: ).

From this faet, our theorem immediately follows.

Assume that L, is not contained in Cl(Re.(L(n))). (Otherwise, we may
choose Li =Re.(L(n)).) Let m be the least natural number such that, for
some a,, (a,,m,0)e L, and g.e.d.(a,,n) = 1. By our assumption, such a natural
number m exists. Because of (20) and the fact that a, and n ave velatively
prime we conclude that

(22) ¢= (1,m,0)el,.
‘We now claim that
(23) L, C Cl(Res(L(n)) U{p}) = CI(L; ).

Clearly, CI(L%) contains all elements (¢, ..., @y, ar.y)€L(n) where at most
one of the numbers a,,...,a, is not divisible by m. Assume that (b, b, ...,
b,, bya)e Ly where b, and b, are not divisible by m. By the definition of the
set L,, we may assume that g.c.d.(b,,n) =1. This implies, by (20), that
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(24) (1,:,0) €Ly.
It is a consequence of (20), (22) and (24) that
(25) (1,g.ed.(m,b.),0) € L.

By our assumption concerning b., (25) contradiets the choice of m. Henece,
(23) follows.

Next, we consider the set L,. We denote by L% the subset of L. consisting
of all elements (a, ..., a,0)€ L, such that g.c.d.(a,, ..., a,) =1 but any r—1
of the numbers a,, ..., a, possess a g.e.d. > 1. Such an rtuple (a,,...,a,) is
referved to as a minimal system in the sequel. Obviously, the set L7 is finite.
Let s be the greatest number of elements in a minimal system and assume
that L. is not eontained in Cl(Re.., (L) ). Let m” be the least natural number

such that, for some minimal system (a,,...,a.), (@, ..., d,m’, 0)€ L,. Then,
by (20), ¢’ = (1,m’,0) e L. Now it can be shown that
(26) L, CCl(LYURes(L(n)) U{¢}).

The relation (26) is established in the same fashion as (23).
To show that (21) holds also for i =3, we proceed as follows. For every

member (@, ..., a, @) e Ly, the condition

(27) ged.(ay...,a0.) =d>1

holds, for some d. Consider the subset Li” of L, consisting of all elements
(@, ..., a0, a,,) satisfying (27). Because there is only a finite number of
such sets L{", it suffices for us to prove that each of them satisfies

f28) taf'.' CGI(LN)

where I"’ C L is finite. If d and n arve relatively prime then (28) follows, by

(20) and the fact that (21) holds for i =2, If g.e.d.(d,n) = d, > 1 then either
(28) holds or the set L(nd;') possesses an infinitely generated subset which
contains the set Re.(L(nd;')). This is a consequence of the fact that n is
square-free.

Thus, we have shown that if our theorem is not valid for some square-frec
n then it is not valid for some square-free n’ where 1 <n’<n. By theorem 8
(and theorem 1), this completes the proof of theorem 9.

‘We end up with the following

Conjecture 2. The set L(n) does not possess infinitely generated subsets
if n is square-free.

Conjecture 2 implies that L(n) possesses infinitely generated subsets if
and only if n is divisible by a square. By theorems 7 and 9, both conjecture 1
and conjecture 2 are implied by the following

Conjecture 3. If L CL(n) is infinitely generated then also C1(LU {p}) is
infinitely generated, for any ¢eRe,(L(n)).
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On the heights of closed sets of operations in finite algebras

The notion of the height of a closed set of operations in a finite algebra
(ef. [2]) has been introduced in connection with the study of complete and
precomplete sets. As a result of the theory of Posr, [8], the lattice of all
closed sets in a two-element algebra can be constructed and the height of
any given set can be determined. However, very little is known about
the corresponding lattice in an n-element algebra where n = 3.

An approach more general than the theory of elosure with respect to
composition has been indicated by A. V. Kvzxersov. (Cf. [6].) Consider a
closure operation in the sense of [1, p. 49], defined on the subsets of an
arbitrary given set. (The additivity of the operation is not presupposed.)
Then the subsets elosed with respect to this operation form a complete lattice.
The height of a given closed set is defined by its position in this lattice.

In sections 1 and 2 of this paper, we shall consider heights of closed
sets in the latter (more general) sense. However, some of the results are
compared with the corresponding results concerning finite algebras. In
section 1, we shall prove that the existence of an infinitely generated set is
equivalent to the existence of a set of infinite height satisfying certain
additional condition. Upper and lower bounds for the number of sets of
given height are deduced in section 2. In section 3, we are concerned with the
lattice of closed sets of operations in an n -element algebra where # = 3.
Our main result is that, in this case, there are at most denumerably many
sets of finite height and a continuum of sets of infinite height. (In fact, a
somewhat stronger theorem will be established.)

1. By a closure operation Cl for a set S we mean a mapping from the
set 2% of all subsets of S into 2° such that the following conditions are
satisfied:

(i) XcCl(X), forall Xc&8.

(i) CI(CI(X))=Cl(X), forall Xc8S.
(ili) XcV implies Cl(X)cCl(Y), forall X, Y cCS.
(iv) Cl(0) =@ where @ denotes the empty set.

Aset X8 isclosed if Cl(X)=X. Aset X iscompleleinaset ¥ 8
if Cl(X)= Y. Aset X isprecompleteinaset ¥ 8 if X is not complete
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in Y, theset ¥ — X is not empty and, for any z€ ¥ — X, the set
X U {z} is complete in ¥ . (It is obvious that a set precomplete in another
set is closed.) Sets complete (precomplete) in 8 are termed, shortly, com-
plete (precomplete). A set X C 8 is finitely generated if there is a finite set
X, cX such that X cCl(X,). Otherwise, X is infinilely generated.

"L'he height of a closed set X © 8 is defined as follows. The height of &
equals 0. The height of a set X = 8 equals [ (I > 0) if, for all elements
z €8 — X, the height of Cl (X U{z}) is less than or equal to I — 1 and,

for some z, € S — X, the height of Cl (X U {z}) equals { — 1. (Hence,
the height of a precomplete set equals 1.) A closed set X is of infinite height
if, for all natural numbers &, there is a sequence =z, , ...,z of elements
of § such that

(1) v €X

and

(2) T ECL(X Uy ,...., 51} ),

forall i where 2 =i = k. A closed set X is of sequentially infinite height
if there is an infinite sequence ;,i = 1,2,..., of elementsof S satisfying
conditions (1) and (2).

1t follows that every set of sequentially infinite height is of infinite
height. The converse is not true. As a counter-example we mention the well-
known sets F? ,i=1,...,8, defined in [8]. (Whenever possible we
consider examples of sets of operations in the algebra of logic or, more
generally, in finite algebras where closure means closure with respect to

composition.)
Let X =8 be a closed set. A sequence of closed sets X, = X,
Xo, ..., Xy is termed a composition sequence of X if X, is precomplete

and, for all ¢ where 1 =¢=#k— 1, X; is precomplete in X, ,. The
number k is referred to as the leagth of the composition sequence. A
sequence {a;} (finite or infinite) of elements of S satisfying conditions (1)
and (2) is termed a sequence of elements independent of X or, shortly, an
I-sequence of X . The number of elements in an I -sequence is referred to
as its leng h. We note that neither composition sequences nor [ -sequences
are unique. Furthermore, every closed set X = § possesses an [ -sequence
whereas it is not necessary for such an X to possess a composition sequence.
We omit the proof of our first theorem because it is straight forward from

the definitions.
Theorem 1. A set X is of infinite height if and only if there is no non-
negative integer I, such that X is of height l. Furthermore, for any natural
ber k, the following three conditions are equivalent: (1) The height of X
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equals k. (2) The length of the longest I-sequence of X equals k. (3) X possesses
a composition sequence of length k and no I-sequence of length k -+ 1 .

It is a consequence of theorem 1 that if a closed set X with the finite
height Iy is properly included in a closed set ¥ with height [, then
Iy =ly + 1. If the equality holds then X is precompletein ¥ . The
converse of this statement is not valid. (Thus, for the sets considered in
[8], Dy is precomplete in Dy but the height of the latter equals 1 whereas
the height of the former equals 3.) Furthermore, if a set possesses no subsets
of a finite height ! then it possesses neither subsets of a finite height I, > 1
nor subsets which are of infinite but not of sequentially infinite height.
We shall now prove the following

Theorem 2. If a finitely generated set X is included in an infinitely
generated set then X is a subset of a set of sequentially infinite height. Con-
versely, if X is of sequentially infinite height then it is a subset of some infinite-
ly generated set.

Proof. Assume that X € ¥ where X is finitely and ¥ infinitely
generated. Hence, there is a finite set X, € X such that

(3) X cCl(X,).

Since Y is infinitely generated, there is an element z € ¥ — Cl (X,).
Denote
(4) X®—Cl(X,U{z,...,z}), k=1,
Then there is an element
(5) # EX = X0
because the relation

¥l (X;U{z,.n2})
contradicts our assumption. The relations (3), (4) and (5) guarantee the
existence of an infinite sequence satisfying conditions (1) and (2) with X
replaced by Cl (X;). Thus, the first part of theorem 2 follows.

Assume next that X is of sequentially infinite height. Then there is
an infinite sequence {ay} satisfying conditions (1) and (2). We claim that
the set

o
X=X L a
i=1
is infinitely generated. Assume the contrary: there is a finite Z c X’
such that

(6) X' cC(2).
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Since Z is finite, there is a natural number » such that
(7) v el S
By (6) and (7), we obtain

2,, €X' CCl(Z)cCl(XU{x,...,u})

which contradicts the condition (2). Hence, X’ is infinitely generated. This
completes the proof of theorem 2.

Because the unit set of any element is finitely generated and, hence,
all infinitely generated sets possess finitely generated subsets we may infer
the following theorem as a corollary of theorem 2.

Theorem 8. For any set S and closure operation Cl, S possesses an
infinitely generated subsel if and only if S possesses a subset of sequentially
infinite height.

It is a result of Post, [8, p. 94], that there are no infinitely generated
sets in the algebra of logic. Henee, by theorem 3, there are no sets of sequen-
tially infinite height. (This result can be obtained directly by considering the
corresponding lattice.) In section 3, we shall show that in an n -element
algebra (n = 3) there is a continuum of sets of sequentially infinite height.

Our next theorem gives a characterization of finitely generated sets.
It is an extension of a theorem by JABLONSKIIL, [4, p. 78], for the general case.

Theorem 4. If a closed set S is finitely generated then every sequence
{Si} of closed sets satisfying conditions

(8) i e o s S (=
and
) S =U 8

satisfies also condition
(10) 8 = 8., for some r = 1.

Conversely, if a closed sel S is denumerable and every sequence {Si} of closed
sets satisfying (8) and (9) also satisfies (10) then S is finitely generated.

Proof. The proof of the first part is identical with the corresponding
proof for finite algebras. (Cf. [4, p. 78].) To prove the converse part, denote
the elements of S by ai,i=1,2,.... Then

(Ol ...,z =1}

is a sequence of closed sets satisfying conditions (8) and (9). By the assump-
tion, it satisfies also condition (10) which means that 8 is finitely generated.
This proves theorem 4.
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The latter part of theorem 4 is not valid if § is non-denumerable. If we
define (denoting the cardinal of X by card (X)), for X C S,

X if card (X) < card (S)
8 if card (X) = card (8)

then every sequence satisfying (8) and (9) also satisfies (10). However, §
is not finitely generated.

Ol (X) = {

2. Following [4], we denote by B, the set of functions whose variables,
finite in number, range over a fixed finite set N of n = 2 elements and
whose values are included in N . For X c ., Cl(X) is defined to be the
closure of X under composition. One of the basic results (ef. [4, p. 79])
concerning finite algebras thus defined is that every finitely generated
closed subset of P, (in particular, B, itself) possesses only a finite number
of sets precomplete in it. As will be seen below, this result is not valid
for arbitrary sets 8 and closure operations Cl. We shall consider the prob-
lem of determining the range of the number of precomplete sets and, more
generally, the range of the number of sets of given height.

We denote by PC(S, Cl) the cardinal of the family of sets precomplete
in S with respect to the closure operation Cl. Furthermore, we use the

customary notations (’;) for the binomial coefficient and [z] for the

greatest integer less than or equal to @ . In the next theorem, we shall give
an upper bound for PC(S,Cl). It is also shown that the given bound
is the best-possible in the general case.
Theorem 5. Assume that the cardinal of a non-empty set S equals ¢ .
Then
2°4f ¢ is infinite
(11) PO(S, 0l = &N R
(Ijz“ t]) if ¢ is finite
and, for any S, Cl may be defined in such a way that the equality holds in (11).
Proof. We assume first that the given set S is infinite. Because
PC(S, Cl) cannot exceed the cardinal of the family of all subsets of § we
obtain the estimate (11). To show that, for any S, the operation Cl may be
defined in such a way that there are 2° sets precomplete in S, we proceed
as follows. We divide 8 into two disjoint subsets S; and 8, satisfying the
condition

(12) card (8,) = card (S,) = card (S) = c.
Let ¢ be a bijective mapping from 8; onto S,. We denote
(13) B = {(x), %) |y €8y, 2y = qlay) } .
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For X © 8, Cl(X) is defined as follows:
8 if x,2,€X such that (z;,2)€R

X , otherwise.

ClIX) = {

(It is clear that the postulates (i)— (iv) for closure operations are satisfied.)
For any X c 8;, the set

(14) X U {g(a) o €8, — X}

is precomplete in S . Because all sets (14) are distinct we conclude, by (12),
that there are 2° sets precomplete in S .

Assume next that the given set S is finite. It is obvious that there are
no two precomplete sets such that one of them is included in the other.
It is shown in [10] that every family of subsets S; of a set of finite cardinal

¢, such that S; ¢ 8; for i+j contains at most ([ ‘;c]] elements. Thus, we

obtain the estimate (11) also in this case. On the other hand, given a set §
of finite cardinal ¢, we define the operation Cl, for X €8, as follows:

8 if card (X) > [3¢c]
X , otherwise.

CI(X) = {

Then every set of cardinal [ ¢] is precomplete in S and, thus, S possesses
([ ‘;‘31) precomplete subsets. This completes the proof of theorem 5.

Remark. The first part of the proof shows that a finitely generated set
S of infinite cardinal ¢ may possess 2° precomplete subsets. (An obvious
modification of the method yields an infinitely generated set with 2°
precomplete subsets.) There are other well-known results concerning finite
algebras which are not valid in the general case. Thus, if a set S is finitely
generated then every complete set possesses a finite complete subset.
By considering the following example (where S is an infinite set and
x, €S a fixed element), we see that this result is not valid in the general case:

) = {X if X is properly included in S — {z,}
S, otherwise.
Another result valid for finite algebras (and also for finitely generated
groups, cf. [7, theorem 5]) is that every proper subset of a finitely generated
set S is also a subset of a set precomplete in S . The following example
(where S and z, are as above) shows that this result is not valid in the
general case:
S if 2, € X or X is infinite

(15) CYx) =

X , otherwise.
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We shall now determine an upper bound for the number of subsets of
given height when the basic set S is of infinite cardinal ¢. It is obvious
that 2° is an upper bound for this number, and it turns out that it is also
the best-possible one. It is easy to define Cl in such a manner that S pos-
sesses 2° subsets of sequentially infinite height. An obvious modification
of the first part of the proof of theorem 5 yields 2° subsets of given finite
height . For the remaining case, the construction is carried out in the
proof of the following.

Theorem 6. For any set S of infinite cardinal ¢, there exists a closure
operation Cl such that the cardinal of the family of subsets which are of infinite
but not of sequentially infinite height equals 2° .

Proof. We divide the given set S into three disjoint subsets S, , Sy, 8,
such that 8, is denumerable and 8, and 8, satisfy condition (12). Denote
the elements of S; by #:i,i=1,2,.... Let ¢ be a bijective mapping
Arom §; onto S8, and R the set defined by (13). We define the closure
operation Cl first for subsets X of the set S, U S, as follows:

S, U8, if 2,2, € X suchthat (z,,2,) €R

ClX) =
i) (& {X , otherwise.

Let X c&S be arbitrary. Then it possesses a unique decomposition
X=ZUY where ZCcS;US, and Y cS,. We define

(17) CIX) = CZ) U {5 |i = min (€ ¥) }.
i

The equations (16) and (17) constitute a definition of a closure operation
Cl such that S possesses 2° subsets which are of infinite but not of sequen-
tially infinite height. For if X <., is arbitrary then the set (14) satisfies
these requirements. Thus, theorem 6 follows.

We shall finally consider the lower bound for the number of subsets of
given height included in a given basic set S. If we define CI(X)= &,
for any non-empty X 8, then the only set precomplete in S is the empty
set and there are no subsets of height > 1. The definition (15) shows
that it is not necessary for an infinite set to possess a precomplete subset.
Finally, it is easy to prove that a finite set always possesses at least one
(possibly empty) precomplete subset. Hence, the best-possible lower bound
equals 0 or 1 where the latter value occurs if and only if we are considering
precomplete subsets of a finite set.

3. In this section, we shall consider the heights of closed sets of functions
in finite algebras (i.e., closed subsets of %,) where closure means closure
with respect to composition. Because the lattice of closed sets of functions
in the algebra of logic (i.e., the lattice of closed subsets of ) isknown, cf.
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[8, p. 101], it is easy to determine the number of sets of any given height.
Thus, there are exactly 28 sets which are of infinite but not of sequentially
infinite height. (As we noticed in section 1, there are no sets of sequentially
infinite height in the algebra of logic.) The number of sets of any given height
is seen from the following table:

Height 01,2 38 4 5 @& =7

Number of sets |1 5 11 13 11 12 9§ 8

We shall now consider subsets of ‘B, where n = 3. As we pointed
out in the introduction, very little is known about the corresponding lattice.
The following results have been presented in the literature. Each B, pos-
sesses only a finite number of precomplete subsets, and for $B; this number
equals 18, (Cf. [4, pp. 80, 109].) Each B, (where n = 3) possesses a con-
tinuum of closed subsets. (Cf. [5].) The number of subsets of height 2 in B,
is finite. (This result follows because it is shown in [3] that every set pre-
complete in P, is finitely generated. In general, if in B, there is only a
finite number of subsets of height ! and each of them is finitely generated
then there is only a finite number of subsets of height [+ 1.) We shall
now prove that in each B, the number of subsets, which are either of finite
height or of infinite but not of sequentially infinite height, is at most de-
numerable. We shall first establish the following

Theorem 7. All sets M € B, possess at most denumerably many precom-
plete subsets.

Proof. For a given (closed) set M € P, , wedenote by M, k=1,2,...,
the set of all % -place functions included in 3 . Let M, be an arbitrary
proper subset of M. We now claim that, for any & and M, there is
at most one set £ precomplete in M such that

(18) ENM.= M.

To prove this, we consider the subset /() +) of M consisting of all elements
[ satisfying the following condition:

(19) Cl(MLU{f)N My = M.

It is easy to see that the set G(M;) (which may be empty) is closed.
Furthermore,

(20) G (M) + M

because no element of the non-empty set M, — M; belongs to G(M;) .
Let now K be an arbitrary closed set satisfying condition (18). By the
definition of the set G(M}),

(21) EcaM).
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If B is precomplete in M then, by (20), the inclusion (21) cannot be proper.
Hence, if there is a set # precomplete in M and satisfying (18) then
necessarily K — G(M;) .

On the other hand, for any set E precomplete in M , there is a k
such that condition (18) holds, for some proper subset M, of M, . To find
such a &, it suffices to choose a function

f@, ..., ) €EM — K.

Hence, the cardinal of the family of the sets precomplete in M cannot
exceed the cardinal of the family of the sets M, . Since the sets M,
k=1,2,..., are finite we have completed the proof of theorem 7.

Remark. 1t is seen in theorem 5 that, in the general case, a denumerable
set may possess a continuum of precomplete subsets. As shown above, this
may not happen in connection with finite algebras. The proof is based
essentially on the fact that the set of elements satisfying condition (19) is
closed. In general, consider an arbitrary denumerable set M and a closure
operation Cl for M such that

M = UM,
k=1

where all the sets M, are finite and, furthermore, for any & and any
proper subset M, of My, the set of all elements f satisfying condition
(19) is closed. Similarly as in the proof of theorem 7, it may be shown that
M possesses at most denumerably many precomplete subsets.

We do not know any example of aset M C B, which possesses an infinite
number of precomplete subsets. Such a set M has to be infinitely generated.
Considering sets presented in [9], it is easy to construet examples of infinitely
generated subsets of B, possessing no precomplete subsets or possessing
some finite number (== 0) of precomplete subsets.

It is a direct consequence of theorems 1 and 7 that each B, possesses at
most denumerably many subsets of finite height. Furthermore, each 3,
possesses at most denumerably many subsets which are of infinite but not
of sequentially infinite height and, in addition, possess a composition
sequence. For sets which are of infinite but not of sequentially infinite
height and possess no composition sequences, the result is a consequence of
the properties of descending sequences of closed sets (cf. [8, p. 97]).

On the other hand, it is shown in [5] that each B,,n = 3, possesses a
continuum of closed subsets. Hence, each B, (n = 3) possesses a continuum
of subsets of sequentially infinite height. (In fact, using the method
presented in [5], for each B, (n = 3) , a continuum of subsets of sequentially
infinite height can easily be constructed.) Thus, we obtain the following
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Theorem 8. All sets B., n =2, possess at most denumerably many
subsels which are cither of finite height or of infinite but not of sequentially
infinite height. All sets B, ,n = 3 , possess a continuum of subsets of sequen-
tially infinite height.

It is an interesting open problem to determine the height I, of the subset
of R, consisting of all functions which can be expressed as polynomials
(mod n). It is known (cf. [4, p. 95]) that [, = 0, for prime values of =,
and [, = 2, for composite values of = .
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On Some Algebraic Notions in the Theory of
Truth-Functions

ARrTO SALOMAA

We shall denote by P, where ¢=2 is an arbitrary cardinal the
set of all ¢c-valued truth-functions. Composition of functions induces
in a natural way a closure operation for subsets of P.. All closed
sets of truth-functions (i.e., closed subsets of P;) form a complete
lattice. The height of a closed set (cf. [2] and [11]) is defined by its
position in this lattice.

In the first two sections of this paper, we shall assume that ¢ is
finite. Precomplete sets, i.e., sets of height 1 are discussed in section 1.
In particular, we shall consider precomplete sets containing multiply
transitive groups. Our main result is that if certain special cases
are excluded then, in each P, there is exactly one precomplete
set containing a triply transitive group. Furthermore, we introduce
the notion of strong precompleteness and determine all strongly
precomplete sets.

Sets of arbitrary height are discussed in section 2. For each ¢= 3,
we shall construct a continuum of subsets of infinite height included
in P.. The construction is based on a method presented in [5]. Fur-
thermore, we shall deduce upper bounds for the number of sets of
given height. Using the theory of Posr, [8], we shall finally determine
the heights of all closed subsets of P,, in particular, the heights of
the sets generated by the truth-functions corresponding to the most
common connectives in the two-valued propositional caleulus.

In section 3, we extend the notion of height to include arbitrary
cardinal numbers.

1. Let S be a set and Cl an operation associating with every subset
X of § a subset CI(X) of S such that (i) X=Cl(X), for all X< §;
(ii)) CHCIX))=Cl(X), for all Xc<S§, and (iii) X<Y implies
CI(X)=Cl(Y), for all X,Y<=S. Such an operation Cl is a closure
13
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operation for the set S (in the sense of [1, p. 49]). The set CI(X) is
termed the closure of the set X. A set is closed if it equals its closure.
A set X is complele in a set Y =8 if CI(X)=Y. A set X is pre-
complele in a set Y= S if X is not complete in Y, the set ¥ —X
is not empty and, for any z € Y —X, the set X U {z} is complete in Y.
Sets complete (precomplete) in S are termed, shortly, complete
(precomplete). A set X< is finilely generated if there is a finite
set X,< X such that X<=CI(X;). Otherwise, X is infinitely gener-
aled.

We denote by P, (where ¢ = 2 is an arbitrary cardinal) the set of
all functions whose variables, finite in number, range over a fixed
set W of cardinal ¢ and whose values are elements of W. In sections
1 and 2 of this paper, we shall assume that ¢ is finite. For a subset
X of P, we denote by CI(X) the closure of X with respect to com-
position. (For a more detailed definition, cf. [4, p. 57].) Obviously,
the operation Cl thus defined is a closure operation for P_. It is well-
known that there are infinitely generated subsets of P if and only
if ¢ 2 3. (Cf. [8, p. 94] and [5].)

The family @, consisting of all precomplete subsets of P, is cri-
terional for P, in the following sense: a set X < P is complete if and
only if it is not included in any of the sets belonging to €. (Cf. [6]
and [4, p. 80].) The sets in the family € have been constructed in
the cases ¢=2 and ¢=3. (Cf. [8, p. 105] and [4, pp. 109—113].) In
the general case, it is known that €. is finite (cf. [4, p. 80]) and,
furthermore, some examples of sets belonging to €. have been given
(cf. [4, pp. 82—109] and [7]).

We shall consider 1-place functions included in a precomplete set.
For ¢=3, we denote by T, the subset of P consisting of the set
P'r of all 1-place functions in P, and, in addition, of those functions
in P, which depend essentially on at least two variables and assume
at most c—1 values. The set T is precomplete (cf. [4, p. 90]). We
shall prove that if a sufficiently large part of the set Pl- is included
in a precomplete set E then E=T, and, hence, E contains the entire
set P:.

Following [13], we say that an element fixy,...,xg) of P is
essenlial if it depends essentially on at least two variables and assumes
all ¢ values. (In [9], such elements are called elements satisfying
Stupecki conditions.) It is immediately verified that all precomplete
subsets of P, contain essential elements. We shall now prove the fol-
lowing
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Tueorem 1. For ¢z=3, T, is the only sel precomplete in P, which
does nol conlain essential elements.

Proof. 1t follows from the definition of T that T does not contain
essential elements. Let E be an arbitrary precomplete subset of P,
which does not contain essential elements. Hence, we have

(1) EcT,.

Since E is precomplete, the inclusion (1) cannot be proper. This
proves theorem 1.
In the statement of our next theorem, permutations are under-

stood to be elements of the set P:.

Tueorem 2. Assume thal ¢=24 and c#2". Then T is the only sel
precomplele in P which conlains a lriply transilive permulation group
of degree ¢. If ¢=3 or, for some rz2, ¢=2" then there is a sel
Ve#T. such thal V. is precomplele in P; and contains a [riply
fransitive group of degree c.

Proof. In the proof, we shall use results presented in [9]. It is
obvious that T contains a triply transitive group of degree ¢ because

P: is a subset of T, Assume that ¢=4 and ¢+#2". Let E be an
arbitrary precomplete subset of P. which contains a triply transitive
group of degree ¢. Then E does not contain any essential elements
of P, because, otherwise, E would be complete, by the theorem
established in [9]. Thus, by theorem 1, E=T,.

If ¢ = 3 then we choose Vj to be the subset of Py consisting of all
linear functions in Py. Obviously, V, possesses the required properties.

Assume that ¢=2", for some r=2. Let G, be the holomorph of
an Abelian group of order 2" and type (1, 1, . . ., 1), expressed in the
usual way as a permutation group of degree 2. Let F,, be the ex-
tension associated with G, consisting of 2+") l1-place functions.
(CIL. [9].) We choose V. to be the subset of P; consisting of all fune-
tions f(xy, ..., 2x), k= 1,2, ..., such that

(g (@), - -+, gi(¥)) € Fyr

whenever gi(x) € Fy, for each i where 1=i<k. By [9], V,is pre-
complete in P.. On the other hand, it is well-known that G, is triply
transitive. Because it is obvious that V.#T. we have completed
the proof of theorem 2.

We note that, for ¢=2", the sets V. are different from the pre-
complete sets presented in the literature. We shall now consider the
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set V, in detail. We denote by F, the subset of P,! consisting of all
permutations of the elements 1, 2, 3, 4 and, in addition, of all func-
tions which assume some value twice and another (not necessarily
distinet) value twice. (F; consists of 64 elements.) Then V, is the
subset of P, consisting of all functions f(xy, . . ., x), k=1, 2,...,
such that

flgy(x), - - -, gp(2)) € Fy

whenever g;(1) € F,, for each i where 1 £i<k. The following function
f(x, y) is an example of an essential element in the set Vi

zy|[ 1 2 3 4

Lol - ]
Ll O -]
e b W

It can be shown that, in the cases ¢=3 and ¢=4, T and V, are
the only sets precomplete in P which contain a triply transitive
group of degree c.

We denote by Hc the subset of Pt consisting of all pcrmutatlons
and of all functions assummg at most c-2 values. The symbol H(
denotes any subset of Pt consisting of a maximal subgroup of the
symmetric group S; and, in addition, of all functions assuming at
most ¢-1 values. Furthermore, by the k-restriction (k= 1,2, ...) of
a set X< P, in symbols, Rex(X) we mean the set of all k-place func-
tions included in X. A subset X of P, is termed strongly precomplete
if, for every k, the set Cl(Reg(X)) is precomplete in the set Cl(Rex(P;)).
It is obvious that every strongly precomplete set is precomplete and,
furthermore, generated by the 2-place functions included in it.

We shall now determine all strongly precomplete sets. We shall
first establish the following

Tueorem 3. The sels ch and H: are the om‘y sels precomp!efe in P:

Proof. It is easily \fer:fled that the sets H and Ht are precom-
p]ete in PE If E< Pr is an arbitrary set which is not complete in
Pc then either

(2) EcH,

or
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®3) E < H,

for some set H:. If, in addition, E is precomplete in P: then the
corresponding inclusion (2) or (3) cannot be proper. Thus, theorem
3 follows.

Tueorem 4. For ¢ 24, P possesses no strongly precomplete subsels.
The set of linear functions is the only strongly precomplele subsel of P,
The sel of monolonous functions is the only strongly precomplele subset
of P,.

Proof. Assume that ¢z 3 and E is a strongly precomplete subset
of P.. Then necessarily E-T, because Cl(Rey(T,)) is complete in
the set

() P; = Cl(Rey(P)).

Hence, by theorem 1, E contains an essential element of P.. By
theorem 3,

) Rey(E) = H,
or
(6) Rey(E) = H, »

for some set H:. The equation (6) cannot hold true because, other-
wise, E would be complete, by the completeness criterion presented
in [4, p. 72]. On the other hand, if (5) holds true and ¢ =4 then, by
the "fundamental lemma” in [4, p. 69], E contains a 1-place function
assuming exactly ¢ —1 values and, hence, E is complete.

Thus, the only possibility is that c=3 and the equation (5) holds
true. By checking through the precomplete subsets of P,, it is seen
that E equals the set of linear functions. Because the latter is gen-
erated by the 2-place functions included in it we conclude that E
is strongly precomplete.

Assume, finally, that ¢=2. The set of monotonous functions and
the set of self-dual functions are the only precomplete subsets E of
P, such that Cl(Rey(E)) is precomplete in the set (4) where ¢=2.
However, only the former of these sets is generated by the 2-place
functions included in it. This completes the proof of theorem 4.

It is an open problem whether or not there are infinitely generated
precomplete subsets of P.. This problem is closely linked with the
problem of simplifying completeness criteria for subsets of P.. (It is
shown in [3] that there are no infinitely generated precomplete sub-
sets of Py. In [10], we have considered analogous problems for subsets
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of P.) It is easy to find examples of precomplete sets which can or
cannot be generated by one element. Some sets of self-conjugate
functions provide examples of the former type, and the set T'. provides
an example of the latter type.

2. Consider an arbitrary set § and a closure operation Cl for §.
The height of a closed subset X of S is defined as follows. The height
of S equals 0. The height of a closed set X348 equals [ (I>0) if,
for all elements z € S—X, the height of CI(X U {z}) is less than or
equal to [—1 and, for some z, € S— X, the height of CI (X U {z})
equals I—1. (Hence, the height of a precomplete set equals 1.) A
closed set X is of infinile heighi if, for all natural numbers k, there
is a sequence 1y, . . .,v; of elements of S such that

(7) I €X
and
®) T €CUX U {xy, . . .,z }),

for all i where 2=i<k. A closed set X is of sequentially infinile
height if there is an infinite sequence x;, i=1, 2, ..., of elements
of § satisfying conditions (7) and (8). (For other equivalent defini-
tions of the notion of height, cf. [11, theorem 1].)

After these general definitions, we shall turn to the discussion of
the sets P for which closure means closure with respect to composi-
tion. We have shown in [11] that P, possesses a subset of sequentially
infinite height if and only if it possesses an infinitely generated subset.
Furthermore, if ¢=3 then P, possesses a continuum of subsets of
sequentially infinite height. Using the method presented in [5], we
shall now construct such a family of subsets of P.. Denote the range
W of the variables of the functions in P, by {1,2,3,...,c}.
Consider the following infinite sequence of functions in P:

T Tys o - o TE) =
21if yy=...=1; =1, =...=5=3, =2, 3 (i=1,...,k);

1, otherwise,

where k=2, 3, ... . Itisshown in [5] that, for every k,
€al :
9) 3 (E;Léjk gl)'

Denote by B, the (infinite) set generated by all functions g,;. Then
the following theorem is an immediate consequence of the relation (9).
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Tueorem 5. For ¢2 3, there is a conlinuum of closed subsels of B..
Each of them is of sequentially infinile height.

We have shown in [11] that each P, (where ¢ is finite) contains
at most denumerably many subsets which are either of finite height
or of infinite but not of sequentially infinite height. Assume that
P, possesses only finitely many, say, r subsets of height [ which are
all finitely generated. Let s be a number such that every subset of
height [ is generated by the s-place functions included in it. (By our
assumption, such a number s exists.) Using the estimate for the num-
ber of precomplete sets included in a given finitely generated set (cf.
[4, pp. 79—80]), we obtain the upper bound r.2" where u=ct’
for the number of subsets of height I+1 included in P.. In partic-
ular, if there is only a finite number of sets of height I and each of
them is finitely generated then there is only a finite number of sets
of height [--1. (Thus, the result established in [3] implies that P,
possesses only finitely many subsets of height 2.) Hence, if each
subset of finite height included in P_ is finitely generated then, for
each (finite) I, P possesses only finitely many subsets of height [
We note that these results are not valid for arbitrary sets S and
closure operations Cl because, in the general case, a finitely generated
set may possess an infinite number of precomplete subsets.

We shall now consider the heights of closed sets of functionsin the
algebra of logic, i.e., the heights of closed subsets of P,. There are
no subsets of sequentially infinite height. The height of any given
closed set is seen from the table below which can be constructed
using the theory of Post, [8, especially p. 101]. Also his notation
is used.

Height | Sets
0 |C
1 | Ay, Cq, Gy, Dy, Ly
20 A A T i gy Lige PR S peh
3 ApiDyy Py Ry, Rygs Rysy S By Ko K, By B F,
4 Lgi Oy, Rioy B Bl Foy 0T B IS B
5. D0, 0p R By By Wy Py By Y, B, F,
¢ |0, F, F}F,F,F,F,F,F,

i 2% | Fi, Fls, Fi, FLUES, FRL P, B
infinite | 0, Oy, Oy, Oy Og, Pi, Py, Py, Py, Ry, Ry, Ry, Ry, Res Ry Ry,
sn siv sa! Sl- Fjw (1 é}és)
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Consequently, we obtain the following

Tueorem 6. The heights of the sefs generated by the truth-functions
corresponding lo negafion and equivalence are, respeclively, 5 and 2.
The (ruth-funclions corresponding lo conjunclion, disjunction and
implicalion generale each a sel of infinile height.

As we have pointed out, very little is known about the heights of
subsets of P, where ¢=3. Even the heights l; of the set P; and

f; of the subset of P, consisting of all functions which can be ex-
pressed as polynomials (mod c¢) are not known. The following result
can be proved: For every finite [, there is a finite ¢ such that both

I, >land I, > I.

3. We shall now extend the notion of height to include arbitrary
cardinals. We shall again first consider an arbitrary set S and a
closure operation Cl for S. For two subsets X and Y of S, we say
that X is Y-independent if, for all x € X,

T€ECHY UX — {a}).

A set X is independent if, for some Y (possibly empty), X is Y-
independent. A closed set Y is of independent height ¢ if there is a
Y-independent set X of cardinal ¢ but no Y-independent set X' of
cardinal ¢'>c.

We note that if ¢ is infinite then a set of independent height c is
also of sequentially infinite height (and, hence, of infinite height).
On the other hand, if ¢ is finite then a set of independent height ¢
is of height z¢. Also the proof of the following theorem is straight
forward from the definitions.

Tueorem 7. If S possesses an independent subset of infinile cardinal
¢ then S possesses al least 2° subsels of independent height grealer than
or equal lo c.

We shall now consider sets P.. The next theorem is an extension
of a result established in [2].

Tueorem 8. The sel Py, possesses 28 subsels of independent height X.

Proof. Since the cardinal of Py equals 8 it is clear that there is no
, family of subsets of Py whose cardinal exceeds 2% and no subset
of Py, is of independent height greater than N. Hence, by theorem 7,
it suffices to prove that there is an independent set X < Py of
cardinal N.

Denote by natural numbers the range of the functions in Py.
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For every subset N of the set of all natural numbers = 3, we define
a 1-place function fy(x) as follows:

z, forx € N,
x-+1, otherwise.

In@) =

Obviously, the cardinal of the set F of the functions fy(z) equals R.
All the functions [y(x) satisfy condition fy(1)=2 whereas this
condition is not satisfied by any composition of the functions in the
set F. This implies that F is independent and, thus, theorem 8 fol-
lows.

The following difference between the set P, and the sets P, where
¢23 (which can be considered as a difference between the two-
valued and many-valued logics) is worth mentioning. In P,, there
are no subsets of independent height card(P,) (the cardinal of P,).
For P. where ¢=3, there is a one-to-one correspondence between
the family of all subsets and the family of those subsets which are
of independent height card (P(). The latter result is obtained simi-
larly as theorems 5 and 8.

4. We have considered arbitrary closure operations and the re-
sulting notions of height, with special reference to the sets P, where
closure means closure with respect to composition. It is obvious that
the postulates (i) —(iii) mentioned at the beginning of section 1 are
insufficient to characterize the closure operation for sets P.. On the
other hand, beginning with the less restrictive postulates (i)—(iii),
one may apply general results concerning heights to various special
cases not considered in this paper. Thus, considering sets P, we
may allow the use of constants in compositions or choose some spe-
cial type of composition (such as the ones presented in [12]). An
example of an entirely different nature is obtained if we consider
the set S of sentences in a deductive theory and, for subsets X of §,
define CI(X) to be the set of all consequences of the set X. Then
precomplete sets of sentences correspond to complete axiomatizations
of the theory.
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Matematiikka ja tietokone®

Prof. Arto Savomaa, Turku

lan } tava edella-

CGambridgen yliopiston matematiikan professori ja tietok
kiviji Charles Babbage Kirjoitti viime vuosisadan puolivilissi seuraavasti:

»Laskukoneet ovat mitid parhaita apuvilineitd aritmeettisissa toimituksissa. Jotkut
niistéi suorittavat koko laskun vain alkuarvot saatuaan ilman etti ihminen sen jilkeen
puuttuu asiaan. Toiset taas tarvitsevat toimituksen aikana jatkuvaa valvontaa. Nimi
jalkimmiiset ovat rakentecltaan paljon yksinkertaisempia kuin edelliset eivitki lain-
kaan niin hybddyllisii kuin edelliset.»

Kuvattuaan kuinka paljon laskijoita tarvittiin Ranskassa laadittaessa suuren vallan-
kumouksen jalkeen ttisia taulukoita Babbage jatkaa:

»Epiilemitti suurin osa heistd, muutamia suunrultc]ljmta lukuun ottamatta, olisi
kiiynyt tarpeettomaksi, jos olisi ollut kaytctlavlssa sopivia laskukoneita. Tilléin se vi-

syttivin yksitoikkoinen tyd, jota 1 laskutoimitusten toistuva suorittaminen
cdellyttaa, olisi voitu siirtid koneille ja samalla lopputulos olisi ollut luotettavampi.
Tyonjakoa ihmisten ja koneiden kesken voidaan soveltaa yhid menestyksellisesti henki-

siin ja ruumiillisiin tehtéiviin.»

Babbage rakensi ja suunnitteli useita laskukoneita. Hanen kunnianhimoisin tavoit-
teensa oli kone, jota hin kutsui analyyttiseksi ja Jﬂnka to:rmn(apcrl.aalc oll samanlai-
nen kuin nykyisten tietokoneiden. Analyyttiselle koneelle voidaan ohjelmakirjastosta,
kiyuaaksemme nykyisti terminologiaa, valita ohjelma erilaisten tehtivien suoritta-
mista varten. Tamén koneen mahdollisuuksista Babbage kirjoitti scuraavasti:

»Laskunopeuden moninkertainen kawu ja luotettavuuden pammummen tuovat ulot-
tuvillemme tehtivid, joiden ratkai ei kévisi pdinsid. Talloin myos kiisi-
tyksemme siitd, miten jokin tehtdvi olisi paras suorittaa, saattaa muuttua, koska koneen
menettelytavat poikkeavat inhimillisten laskijoiden metodeista.»

Babbagen analyyttinen kone jii teknillisten vaikeuksien vuoksi ittelu- ja pii-
rustusasteelle ja toteutui vasta noin 100 vuotta mydhemmin 2. maailmansodan jilkeen.
Saadaksemme jonkinlaisen kuvan siitd, kuinka suureksi Babbagen ennustama lasku-
nopeuden parantuminen on muodostunut, ajattel kahden wviisi isen luvun
kertomista keskenain — tyd, jonka ihminen suorittaa paperilla ehki yhdessi minuu-
tissa. Samaan laskuun kuluu puytakoncua kiyttavilti laskijalta 10 s, ensimmaisilta
tietokoneilta 1940-luvulla 1/100 s ja nykyisiltd ns, kolmannen sukupolven keskisuurilta
tictokoneilta 1/100 000 s. Sns noin 20 vuodcma, y‘talmnelsw nykyisiin tietokoneisiin,
laskunopeus on kertaiseksi. On varmasti vaikea 16ytdd esimerkkeja
muista inhimillisista tmamnnmsta, joissa niin lyhyeni aikana olisi saavutettu samaa
luokkaa oleva parannus. Jos sitten ajattelemme vaikkapa sadan miljoonan tillaisen
kertolaskun edellyttimid kustannuksia, ne ovat viimeksi mainitulla tictokonetyypilla

' Turun Yliopistossa 16. 10, 1968 pidetty virkaanastujaisesitelma.
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kymmenen markan suuruusluokkaa, mutta poytikonetta kiyttavilld laskijalla miljoo-
nan markan suuruusluokkaa.

Varmasti Babbagen ennustus tictokoneiden soveltuvuudesta mitd erilaisimpien teh-
tivien ratkaisemiseen on myds kdynyt toteen. Niiden kiytté eri aloilla on jatkuvasti
yleistynyt. Ehka on kuitenkin syyti lisitd, ettd kaikissa kysymyksissi tietokoneet eivit
ole tiyttineet alkuaikojen suuria odotuksia. Niinpi 1950-luvun alkupuolella pidettiin
todennikéiseni, ettd koneellinen kiclenkéZntiminen kivisi pdinsi jo muutaman vuo-
den kuluttua. Sittemmin ei asiassa kuitenkaan ole tapahtunut mitiiin ratkaisevaa edis-
tystd eiki koneellisella kielenkidntimiselld nykyisinkadn, jonkin erikoisalan tekstid
lukuun ottamatta, ole kiytinnollistd merkitystd. Vaikka kone pystyisikin suorittamaan
lauseiden syntaktisen analyysin, tuottavat semantiikan piiriin kuuluvat kysymykset suu-
ria vaikeuksia, Kun kielenkiéntiji heti nikee tekstiyhteydestd, miki sanan merkitys
on kysymyksessi, kone saattaa valita tihin yhteyteen soveltumattoman merkityksen
ja lopputulos voi olla pelkistiin huvittava. Niinpd kone saattaisi kiidintad sananlaskun
wout of sight, out of mind» sanoilla »nikymitén idiootti».

Toinen esimerkki tietokoneelle yllattivin vaikeaksi osoittautuneesta tehtivistd on
aikataulujen, esim. oppikoulun lukujirjestyksen laatiminen. Onnistuneen lukujédrjes-
tyksen tulee perusehtojen lisiksi — samalla luokalla ei saa olla yhtaikaa kahta opetta-
jaa eikii sama opettaja saa olla yhtaikaa kahdella luokalla — tiyttid useita opettajien
toivomuksista ja oppilaille tulevan rasituksen tasapainottamisesta johtuvia chtoja.
Vaikka asian teoreettista puolta onkin paljon tutkittu ja yritetty kehittad kilytantdon
soveltuvaksi, ei sellaiseen ratkaisuun ole vield piisty, jonka voisi sanoa kiytinnossa
korvaavan kesihelteelli uurastavan rehtorin ponnistelut. Vaikka tietokone onkin yli-
voimainen rehtoriin verrattuna siind nopeudessa, milli se kiy lipi lukujirjestyschdok-
kaita, siltd kuitenkin puuttuu rehtorin kyky karsia yhdelld kertaa suuri joukkosellai-
sia ehdokkaita, jotka civit johda tyydyttiviin lopputulokseen.

Haluaisin nyt tarkastella jo Babbagen ennustamaa muutosta kisityksessaimme siitd,
miten jokin tehtivi olisi paras suorittaa. Tulkitsen tamin yleisesti kysymykseksi siitd,
miten tictokone on vaikuttanut matematiikan tutkimukseen. Tallsin, kuten jo aikai-
semminkin esityksessini, tarkoitan tietokoneella ns. digitaalikonetta enki ns. analogia-
konetta. Digitaalikoneessa tutkittavat suurect esitetiin numeroilla, kun ne analogia-
koneessa palautetaan jonkin fysikaalisen suureen, esim. pituuden tai jannittcen, tar-
kasteluun. Yksinkertainen esimerkki digitaalikoneesta on péytilaskukone ja analogia-
koneesta laskutikku tai auton nopeusmittari. Koska analogiakoneella laskeminen viime
kiidessi palautuu jonkin fysikaalisen suureen mittaamiseen, se on epitarkkaa. Lasku-
koneena digitaalityyppi onkin naista kahdesta tyypistd yleisempi ja tirkeampi.

Mainitsemaani kysymysti, miten tictokone on vaikuttanut matematiikan tutkimuk-
seen, voidaan tarkastella kahdelta taholta. Toisaalta voidaan kysyi, miten tietokone on
muuttanut suhtautumistamme jo aikaisemmin tutkittuihin probleemeihin, ja toisaalta,
mitd uusia tutkimusaloja tictokoneen vaikutuksesta on syntynyt. Tarkastelemme aluksi
edellisti nikdkohtaa.

Koska tictokone operoi numeroilla, kiytinnossi 0:lla ja 1:114, sen kisitemaailma on
diskreetti; siind ei voida menni infinitesimaalisiin tarkasteluihin. Hieman karjistien
voimme sanoa, etti uscissa klassillisen matematiikan kysymyksissd olemme kiinnostu-
neita vain siiti, miti tapahtun mennessimme haluamamme rajan e:mn alapuolelle.
Tietokonetarkasteluissa siti vastoin pysymme aina em ylipuolella. Tietokoneen kan-
nalta on hyvin vaikea tulkita esim. eroa Riemannin ja Lebesguen integraalikasittei-
den vililli. Viime aikoina on paljon kiytetty nimitysti »diskreetti matematiikka», mer-
kitsemiissi toisaalta aloja, jotka jo luonteeltaan ovat diskreettejd (esim. kombinatoriik-
ka), ja toisaalta muiden alojen ainakin osittaiscen diskretisointiin tahtadvid tutkimuksia.

Hyvin suuren alueen probleemeja, joissa tietokone on muuttanut suositeltavaa rat-
kaisutekniikkaa, muodostavat numeerisen analyysin piiriin kuuluvat kysymykset.
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Approksimaatioteoria, virheanalyysi, funktioiden arvojen laskeminen, numeerinen in-
tegrointi ja differentiaaliyhtiliden ratkaiseminen, lineaarinen ohjelmointi, algebral-
listen ja transsendenttisten yhtildiden ja yhtidléryhmien numeerinen ratkaiseminen
sekid useat matriisiteorian probleemit ovat kaikki tillaisia. Huomaamme niiden koh-
dalla esityksen tuntuvasti muuttuneen, jos vertaamme viime vuosien oppikirjoja viitisen-
toista vuotta sitten ilmestyneisiin, joissa ajateltiin vield lihinni péytilaskukonetta kiyt-
tavid laskijaa. Yleensi tietokoneen kannalta on iteratiivinen, saman operaation lukui-
siin toistoihin perustuva, siis tavallaan episuora lihestymistapa suositeltava. Tilléin
kone ottaa kunkin toiston lopputuloksen uudeksi lihtéarvoksi, ellei sen toistojen vililla
suorittama tarkkuustarkastelu ole antanut myénteisti tulosta.

Edelld on jo viitattu tictokoneiden aikaansaamaan laskunopeuden suunnattomaan
kasvuun ja siihen, miten timin vuoksi laskennollisesti kisiteltdvien kysymysten piiri
on laajentunut. Vaikka timiin merkitys onkin suurempi satelliittien radan laskemiseen
verrattavissa kuin puhtaan matematiikan piiriin kuuluvissa kysymyksissi, on sen an-
siosta esim. useita lukuteorian arvioita voitu tuntuvasti parantaa. Esimerkin matema-
tilkan historian kannalta mielenkiintoisesta, mutta vailla suurempaa teoreettista ja
kiytannollisti merkitysti olevasta kysymyksestd antaa luvun 7 likiarvojen laskeminen.
Jo Arkhimedeesti alkaen tutkijat pyrkivit yhd parempiin likiarvoihin, ja vuonna
1873 englantilainen Shanks saavutti 15 vuotta kestineiden laskujensa tuloksena 707
desimaalia késittivdn m:n likiarvon. Tietokoneella m:n likiarvo on laskettu ainakin
1% miljoonalla desimaalilla. Kuriositeettina mainittakoon, ettd Shanksin tuloksesta on
laydetty virhe ja kaikki desimaalit alkaen 528:nnesta ovat olleet viiirid.

Tutkittaessa algoritmeja eli jonkin kysymyksen ratkaisumenetelmii klassillinen sa-
nonta »airellinen maara kokeita» on jouduttu korvaamaan sanonnalla »tietokoneen
reaalisessa ajassa suorittama méird kokeita». Asiaa voitaisiin valaista useilla numeeri-
sen analyysin piiristd otetuilla esimerkeilli, mutta kiytimme mieluummin yleisemmin
tunnettua esimerkkid, nimittdin Sakkipelii. Kussakin tilanteessa meilli on valittava-
namme aérellinen médri, vielipi hyvin pieni miiri, siirtoja. Vastapelaajallamme on
kuhunkin siirtoomme direllinen miiri vastauksia, Voimme tarl lla niiti, edell
omia vastauksiamme nithin jne. Tasapelisiiintéjen perusteella Sakissa siirtojen luku-
médrilli on ddrellinen yliraja. Jos siis pidimme kysymysti ratkaistuna niin pian kuin
se on voitu palauttaa direlliseksi médriksi kokeita, 3akki on triviaalinen peli, sillid voim-
mehan kussakin tilanteessa kiyda lipi kaikki mahdolliset jatkot ja valita niistd sen, joka
vastustajan siirroista riippumatta antaa meille parhaan lopputuloksen. Enti onko timi
adrellinen mdard niin pieni, ettd tietokone pystyisi tutkimaan kaikki vaihtochdot ja
siten pelaamaan absoluuttisesti oikeaa Sakkia? Pitimilld valon nopeutta tietokoneen
toimintanopeuden ylirajana voidaan laskennollisesti osoittaa, ettd vastaus tihin kysy-
mykseen on kielteinen. Seuraavaksi voimme asettaa vaatimattomamman tavoitteen:
koneen on tutkittava pelitilanteita siten, etti se pystyy pelaamaan hyvii akkia. Ilmei-
sestihiin kukaan Sakkimestarikaan ei kiy lipi kaikkia vaihtoehtoja. Tihdn vaatimat-
tomampaan tavoitteeseen tahtaavia tutkimuksia on tehty jo usean vuoden ajan ja kiyttd-
kelpoinen tulos saavutettiin viime vuonna Massachusetts Institute of Technologyssa.
Ohjelma, joka on kirjoitettu Digital Equipment Corporationin koneelle PDP-10, on
osoittautunut voittoisaksi keskinkertaisia harrastelijapelaajia vastaan, vaikka paremmat
pelaajat ovatkin sen voittaneet, Koska koneessa on osuusjirjestelmi (time sharing),
se pystyy pelaamaan myos simultaania sanan todellisessa merkityksessii: analysoimaan
useita peleji samanaikaisesti. Kone antaa kullekin pelitilanteelle numeroarvon, joka
médrdaytyy padasiassa nappuloiden lukumiirdn, mutta myds niiden aseman perus-
teella. Kokeiltuaan lihtétilanteessa kaikkia mahdollisia siirtoja se valitsee tietyn mii-
rin parhaimpaan numeroarvoon johtavia siirtoja jatkotutkimuksia varten. Naihin se
tutkii mahdollisia vastauksia, valitsee niistd parhaat, tutkii omia vastauksia niihin jne.
neljanteen siirtoon saakka. Joissakin erityistilanteissa, esim. mattiuhan vallitessa, se
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voi jatkaa tutkimusta pitemmillekin ennen kuin tekee lopullisen valintansa. Ohjel-
massa on lisiksi parametreji, joiden arvoa voidaan muuttaa, esim. kuinka monen par-
haan siirron kohdalla kone suorittaa jatkotutkimuksia. Jos tillaisen parametrin arvoa
korotetaan, koneen peli paranee ja samalla sen kiyttimi aika pitenee. Ohjelmassa oli
alun perin se heikkous, etté se oli kauttaaltaan deterministinen. Jos voitti koneen kerran,
voitti sen jatkuvasti pelaamalla saman pelin uudestaan. Nykyisestd versiosta timd heik-
kous on poistettu siten, ettd kohdatessaan useita yhti edullisia siirtoja kone tekee valin-
tansa satunnaislukujen perusteella. Hyviii pelaajaa vastaan timi ohjelma on sidnndl-
lisesti havinnyt. Tillaisella pelaajalla on, samoin kuin aikaisemmin mainitsemallamme
rehtorilla, kyky karsia suoralta kideltd suurin osa vaihtoehtoja. Tiéti kykyi ei 3akin-
peluuohjelmaan toistaiseksi ole riittivissi midrin pystytty saamaan mukaan, vaikka
edelld mainittu erityistilanteiden (kuten mattiuhan) lihempi tutkimus onkin jonkin-
lainen edistysaskel tihdn suuntaan,

Mainitsen nyt joitakin matematiikan tutkimusaloja jotka saavat virikkeensd tieto-
koneista ja liittyvat laheisesti niiden yleiseen teoriaan. Ns. automaattien teoria sai
alkunsa englantilaisen matemaatikon Turingin 1930-luvun puolivilissi suorittamista
tutkimuksista. Turing formalisoi automaattisen laskettavuuden kasitteen, ts. han maa-
ritteli matemaatikkoa tyydyttavalla tavalla sen, ettd jokin tehtivi on automaattisesti,
koneellisesti suoritettavissa. Tétéd tarkoitusta varten Turing otti kiytinté6n laskukoneen
abstraktisen mallin, joka nykyisin yleisesti tunnetaan Turingin koneen nimelld. Tu-
ringin koneella on kiytettivissiiin potentiaalisesti ddretén perdttiisiin ruutuihin jaetiu
nauha, joka toimii sekd sybttonauhana ettd koneen muistina. Kukin ruutu joko on
tyhji tai sisaltdd merkin annetusta ddrellisestd aakkost Kone tarkastelee yhti ruu-
tua kerrallaan. Sen toiminnan mairii annettu édirellinen joukko ohjeita, ns. ohjelma,
jonka mukaan kone voi siirtdéi nauhaa yhden ruudun verran jompaankumpaan suun-
taan ja korvata tarkastelemansa merkin jollakin toisella aakkostonsa merkilld. Kaytydin
ohjelmansa lipi kone pysihtyy, ja sen vastaus nauhalle alun perin kirjoitettuun syst-
t66n on nauhassa ohjelman loputtua oleva teksti. Turingin koneen toiminta koostuu
siis kahden hyvin yksinkertaisen toimenpiteen, merkin painamisen ja nauhan siirron
toistoista. Kuitenkin nykyisin on verraten yleisesti hyviksytty Churchin teesin nimelld
kulkeva viite, jonka mukaan miki hyvinsi jollakin laskukoneella suoritettavissa oleva
tehtivi voidaan suorittaa Turingin koneella. Churchin teesid tukee toisaalta se, cttd
kaikki esitetyt Turingin koneen yleistykset ovat osoittautuneet alkuperdisen version
kanssa ekvivalenteiksi, ja toisaalta se, ettd kaikki eri maissa eri aikoina esitetyt lasketta-
vuuden kisitteen hyvinkin toisenlaiselta pohjalta lihtevit formalisoinnit ovat osoit-
tautuneet ckvivalenteiksi Turing-laskettavuuden kanssa.

Turingin esittimissi formalismissa ei kiinnitetd huomiota siihen, paljonko aikaa ja
muistitilaa tietyn tehtivin suorittaminen vaatii, ts. paljonko alkeistoimenpiteiden
toistoja ja nauhan ruutuja tarvitaan, kunhan vain molemmat lukumadrét ovat airel-
lisii. Siten absoluuttisesti oikean Sakin pelaaminen kiy Turingin koneelta kylli hyvin
piinsi, vaikka yhteen siirtoon kuluva aika saattaakin olla pitempi kuin maailmankaik-
keuden arvioitu ikd ja ruutuja saatetaan tarvita enemmin kuin maailmankaikkeudessa
on arvioitu olevan atomeja. On selvii, ettd kysymys tehtivin suorittamiseen kuluvasta
ajasta ja muistitilasta on kdytinnon kannalta hyvin tirked. Tasta syystd automaatticn
teoria on viimeksi kuluneiden 10 vuoden aikana tutkinut lukuisia malleja, jotka ajan
ja muistitilan kiytossi ovat ahdasalaisempia kuin Turingin koneet. Niin on padsty
tiettyyn tehtivien laskennollisen vaikeusasteen luokitteluun.

Automaattien teoriaan liittyy liheisesti ns. formaalisten kielten teoria. Formaalisella
kielelld tarkoitetaan mitd hyviinsd kokoelmaa adrellisii merkkijonoja, jotka on muo-
dostettu kiyttden annetun direllisen aakkosten merkkeji. Luonnollisen kielen, esim.
suomen kiclen lauseet muodostavat tillaisen kokoelman, samoin jonkin ohjelmointi-
kielen mukaan laaditut tietokoneohjelmat. Luonnolliset kielet ja ohjelmointikielet ovat
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siis kielid myds formaalisessa mielessd. Haluttaessa spesifioida jokin formaalinen kicli
voidaan joko luetella kaikki siihen kuuluvat merkkijonot tai, milloin tima ci kiy pdinsi,
miiritelld kiclioppi, jonka mukaan merkkijono kuuluu kicleen tarkalleen siind tapauk-
sessa, ettii se on voitu johtaa kicliopin siéintoji noudattaen. Tallainen formaalinen kieli-
oppi e¢i salli poikkeuksia. TéAmi heijastaa siti ohjelmointia koskevaa tosiseikkaa, ettia
ohjelma on kirjoitettava tarkalleen oikein, esim. vairissi kohtaa oleva pilkku saattaa
muuttaa koko ohjelman. Asettamalla kicliopeille tiettyjd rajoituksia on pidsty saman-
laiseen tehtivien vaikeusasteen luokitteluun kuin automaattien teoriassa.

Informaatioteoria pohjautuu statistiikkaan ja todennikéisyyslaskentaan. Teoria tut-
kii tiedonantojarjestelmii, jollainen on esim. puhelimessa toiselle puhuva henkild, ja
erottaa jarjestelmissi viisi osaa: lihde ja vastaanottaja (esimerkissimme puhuja ja
kuuntelija), koodaus- ja dekoodauslaitteet (esimerkissimme kummankin puhelimet)
sekii tiedonantokanava (esimerkissimme puhelinjohdot). Kukin osa korvataan mate-
maattisella mallilla ja tutkitaan eri osien keskiniista riippuvuutta. Teorian keskeisia
kisitteiti ovat tiedonantokanavan kapasiteetti ja lihteen informaatiosisaltd. Esim.
sihkotysti ei voida suorittaa mielivaltaisen nopeasti ilman etti sanoma tulee sekavaksi;
nopeuden yliraja sopivasti mitattuna ilmoittaa tissi tapauksessa kanavan kapasitee-
tin. Lahteen informaatiosisdlté on sitd suurempi, miti vihemmén sanoman kustakin
osasta tiedetidin aikaisempien osien perusteella. Siten jos lihde lahettdad umpimihkain
kirjaimia, informaatiosisilté on suurempi kuin kirjainten muodostaessa suomen kielen
sanoja, koska jalkimmaisessi tapauksessa voidaan tchdi johtopadtoksid kirjainten ja
kirjainyhdistelmien tilastollisen jakautumisen perusteella ja usein olla jopa varmoja siitd,
miki seuraava kirjain tulee olemaan. Informaatioteorian perustuloksen mukaan voi-
daan tiedonantojirjestelmissi saada sanoman virheprosentti mielivaltaisen pieneksi
suorittamalla koodaus ja dekoodaus sopivasti, edellyttien, etti lihteen informaatio-
sisilté on kanavan kapasiteettia pienempi, mutta painvastaisessa tapauksessa tima ci ole
mahdollista.

Laajakantoista kysymystd, miti nikékohtia matematiikan opetuksessa tulisi ottaa
huomioon tietokoneiden yleistyessd, en voi tissi yhteydessa lihemmin késitella. Mai-
nitsen vain kaksi nikokohtaa. Ensiksikin tietokonealalla kdytannon palvelukseen antau-
tuva ei vilttimittd tarvitse pitemmille menevidd matemaattista koulutusta, vaan ha-
nelle voi jonkin muun alan tuntemus olla hyddyllisempi. Useissa maissa tictokonealan
yliopisto-opetus onkin nykyisin tiysin erilliin matematiikan opetuksesta ja tapahtuu
erityisten tictokonetieteen tai informaatioticteen osastojen puitteissa. Toiscksi ticto-
konetieteen perusteet sopisivat mielestdni erittiin hyvin oppikoulun matematiikan
opetuksen yhteyteen. Opetus voitaisiin suorittaa jonkin ohjelmointikiclen yksinkertais-
tetun version puitteissa. Ala tayttiisi cksaktisuuden vaatimukset ja olisi varmasti mie-
lenkiintoinen ja ajan tarpeita ajatellen kiytiokelpoinen. Opetuksen yhteydessi ei olisi
vilttdmitonta kiyttia tietokonetta.

Monet matemaatikot ovat vaikuttaneet tietokoneiden kehitykseen. Heistd mainit-
takoon von Neumann, joka esitti ajatuksen ohjelman tallettamisesta koneen muistiin.
Voidaan kysyd: onko odotettavissa myds piinvastaiseen suuntaan tapahtuvaa vaiku-
tusta, ts. tietokoneet alkavat johtaa uusia tuloksia ja todistaa teoreemoja, scki kiyvitko
matemaatikot ajan mittaan tarpeettomiksi? Toistaiseksi tictokone on pystynyt kehitti-
miin joitakin melko yllattivid koulugeometrian teoreemojen todistuksia ja johtamaan
uusia teoreemoja yksinkertaisen aksiomaattisen jarjestelmin, esim. lausekalkyylin puit-
teissa. Ottaen huomioon Turing-laskettavuuden periaatteelliset rajoitukset ja yksinker-
taistenkin tehtivien suorittamisessa ilmenneet vaikeudet nikisin kuitenkin tilanteen
matemaatikon kannalta valoisana enké pitéisi tietokonetta ainakaan lahitulevaisuudessa
hiinen vakavana kilpailijanaan.
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6 Reviews about the work of Arto Salomaa

This section presents reviews of the work by Arto Salomaa in multiple-valued
logic.

1. Review by A.R. Turquette, The Journal of Symbolic Logic, Vol. 25,
No. 3, September 1960, 291-293.

2. Review by A.R. Turquette, The Journal of Symbolic Logic, Vol. 27,
No. 2, June 1962, 247.

3. Review by N.M. Martin, The Journal of Symbolic Logic, Vol. 29, No.
3, September 1964, 145.

4. Review by A.R. Turquette, The Journal of Symbolic Logic, Vol. 31,
No. 1, March 1966, 119-120.

5. Review by N.M. Martin, The Journal of Symbolic Logic, Vol. 32, No.
4, December 1967, 539.

6. Review by I. Rosenberg, The Journal of Symbolic Logic, Vol. 33, No.
2, June 1968, 307.

7. Review by J. Hartmanis, SIAM Review, Vol. 17, No. 1, January 1975,
179-180.

8. Review by A. Blikle, The Journal of Symbolic Logic, Vol. 42, No. 4,
December 1977, 583-584.
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The Journal of Symbolic Logic, Vol. 25, No. 3, September 1960, 291-293.
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is ever shown to be verified or falsified, the claim that it has “middle” value will be
shown to be unfounded. But by the same token it is ‘“dangerous’” to make any state-
ment of empirical content whatever! To avoid all danger one must say nothing — and
have no opinions. (2) Feyerabend insists emphatically that a theory whose consequences
are refuted by observation must be changed. Of course. But evidently it suffices to
change some of the axioms, not all. Usually the logical axioms are left unchanged;
but if someone proposes to modify these and leave others unchanged instead, it is
not clear why he should be charged with failure to make a *‘serious’ effort to eliminate
refutation. (3) Even if Levi is correct in asserting that a three-valued theory of quan-
tum-mechanics should be translatable into a two-valued theory, mo justification
whatever is adduced for the contention that its translation must be that theory which
admits ‘‘causal anomalies” (or any other two-valued theory given in advance). Hence
the dimness with which he perceives the future of three-valued logic need not be a
general affliction. Leon HENKIN

ARTO SALOMAA. On many-valued systems of logic. Ajatus, vol. 22 (1959), pp. 115-
159.

ArRTO SaroMaa. On the composition of functions of several variables
ranging over a finite set. Annales Universitatis Turkuensis, Series A, Turun
Yliopisto, Turku 1960, 48 pp.

The first of these works is divided into two rather independent sections. The shorter
is devoted to historical and philosophical remarks relevant to the development of
many-valued logics. The longer section is concerned with certain problems of extending
to the many-valued case such 2-valued connectives as implication, equivalence, nega-
tion, conjunction, and disjunction. The author expresses indebtedness to Professor
Georg Henrik von Wright in connection with the historical and philosophical part
of his work, and this section, though brief, is more complete and interesting than
usual treatments of the subject. For example, he not only shows respect for the work
of Jan Eukasiewicz and Emil Post in developing many-valued logics, but also gives
proper attention to Hugh MacColl and C. S. Peirce as “the first forerunners of many-
valued logics.”

The author suggests that it would be more correct historically to refer to such logics
as “non-Chrysippian” rather than “non-Aristotelian.” In support of this latter view,
reference is made to both ancient and mediaeval logic. However, most attention is
given to work produced in the field of many-valued logic from the time of MacColl and
Peirce to very recent years. In fact, the chief criticism which the reviewer would
make of this part of Salomaa’s paper is that it pays too little attention to ancient and
mediaeval logic. Furthermore, when this period of history is considered, too much
use is made of secondary sources and very little attention given to such primary
sources as Aristotle’s De interpretatione.

In the section concerned with the extension of 2-valued connectives to the many-
valued case, the basic problem is that of determining what constitutes a proper analogy
between an M-valued connective (M > 2) and a 2-valued connective. For example,
it is not clear just how such familiar connectives of the 2-valued propositional calculus
as implication, negation, equivalence, conjunction, and disjunction should be charac-
terized in an M-valued propositional calculus (M > 2). A brief account is given of some
historical solutions to this problem, including the well-known and different extensions
of Lukasiewicz, Post, Lewis and Langford, and Webb. A non-exhaustive list of twelve
conditions is then presented by the author which he feels should be considered in
attempting to extend implication to the many-valued case. This master list is used to
define sets of conditicns which are ordered in terms of relative strength and tested for
consistency and independence in both a weak and strong sense. The same general
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plan is used in dealing with conditions which might be imposed on negation, equi-
valence, conjunction, and disjunction in extending them to the many-valued case.

Some important 2-valued tautologies are then selected, mostly from 1941, and a
study is made of the truth-value properties of the expressions which result from
replacing the connectives of the 2-valued tautologies by ‘“‘analogous” many-valued
connectives satisfying the various sets of conditions which have been investigated.
A useful table is constructed which summarizes the results obtained by using systems
of truth-tables and inductive procedures. In addition to these main results, certain
minor problems are considered such as calculating the number of functions satisfying
various sets of conditions and deciding whether certain generalized connectives are
Sheffer functions.

This is sufficient to indicate that Salomaa’s approach to the present problem of
determining a ‘‘proper analogy” is more general and adequate than usual treatments
of the subject. However, to this reviewer it still seems inadequate in at least two re-
spects. Although the author criticises Lukasiewicz for inadequate motivation in the
choice of max(1, 1 — » + ) for implication, his entire account of sets of conditions
for many-valued connectives is given with very little motivation. More serious is the
fact that a “‘proper analogy” is often dependent on the role played by a generalized
connective in formulating a set of axioms for many-valued logic, and the present
treatment gives no attention at all to the axiomatic method.

The second paper is concerned exclusively with one of the minor problems of the
first paper; namely, that of constructing and establishing criteria for the existence of
Sheffer functions. A Sheffer function is defined essentially as a k-place function
which generates all M-valued functions, but consideration is restricted for the most
part to the case where # = 2and M > 2. Attention is called to the rather large amount
of literature on the subject, but no reference is made to Post’s VI 114, which seems
especially relevant even though it is restricted to the 2-valued case. In fact, the present
paper might be thought of as a generalization of some of Post’s results. However,
more specifically, the paper probably should be thought of as offering an improvement
on the results relevant to Sheffer functions obtained in such works as Rose's review
of Martin’s XVI 275(3) and Shupecki's XI 128, both of which are mentioned by the
author. Shupecki’s criterion for a full system of many-valued logic, involving the
definability of all functions with a single argument, is especially relevant. This becomes
apparent from Salomaa’s major theorem which is formulated as follows, where ‘“‘the
symmetric group S,'’ consists of all permutations of 1, 2, ..., n:

“THEOREM 11.1. A function f(x,y) which generates the symmetric group Sn is a
Sheffer function, provided n = 3.”

This theorem immediately gives rise to the following ‘“‘criterion C" for Sheffer
functions: If n = 3, f(x,¥) is a Sheffer function if and only if it genevates two per-
mutations s1(x) and sa(x) which form a basis of the symmetric group S, . Criterion C
is said to be “‘optimal” in the following sense: Let B denote a criterion of the form
“f(#, ¥) is a Sheffer function if and only if it generates every function belonging to the
set S.” B is optimal if no proper subset of S can replace S in B. It is claimed that B
is “trivial’’ if S contains a Sheffer function, so this case is excluded. To this reviewer,
such an exclusion does not seem justified since it would appear desirable in many cases
to use a B with an S consisting of a single function which is already known to be a
Sheffer function. However, such an approach would probably depart from the present
emphasis on the symmetric group Sy .

There are many special results in the paper, but most are preliminary to the deri-
vation of theorem 11.1. Once this theorem is obtained with consequence C, attention
is focused on the calculation of lower bounds for the number of Sheffer functions
when # = 3. The author indicates that his results could be improved if the following
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interesting conjectures could be established:

“CoNJECTURE 1. A function f(#, ) which generates the alternating group A,
is a Sheffer function, provided n = 4.”

“CoNJECTURE 2. A function f(#, ) which is not self-conjugate and generates
a circular permutation is a Sheffer function, provided = is a prime number.”

‘We are thus still left without an elegant general method for effectively constructing
and calculating Sheffer functions for any choice of # and M. In the reviewer's mind,
it is not unreasonable to believe that such a method exists, and to him it seems that
some of the past difficulties might be overcome if less attention were paid to the matrix
structures associated with the case # = 2 and more attention given to truth-table
structures associated with the case & > 2. AtweLL R. TURQUETTE

TAKEO SUGIHARA. A three-valued logic with meaning-opevator. The Memoirs
of Fukui University, Librael Arts Department, . Humanities and social sciences,
no. 8 (1958), pp. 59-60.

A formal system is described in which the formulas are formed from (propositional)
variables by means of ~ (“not”), D (“implies”) and “meaning operators” of the
form (Mp1, ..., Pa) where the p’s are variables. In a formula (Mpy, ..., pa)F,
any of the p’s occurring free in F become bound, and if F has no other free variables,
(Mpy, ..., pn)F is called a “meaning-closure” of F. It seems necessary also to regard
a formula with no free variable as its own meaning-closure, although the author’s
intention is not clear.

Provability is defined in terms of axioms, a rule of detachment, and presumably
substitution, in such a way that the provable formulas are the meaning-closures of
the classically provable formulas. Truth-tables are defined with three values interpreted
as true, false, and meaningless. Although the author states no results relating truth-
value to provability, it can be shown that the provable formulas form a proper subset
of the identically true formulas. GeNE F. Rose

Jan Lukasiewicz. A system of modal logic. Actes du XIéme Congrés Inter-
national de Philosophie, Volume XIV, Volume complémentaire et communi-
cations du Collogue de Logique, North-Holland Publishing Company, Amsterdam
1953, and Editions E. Nauwelaerts, Louvain 1953, pp. 82-87.

Jan Luxasiewicz. A system of modal logic. The journal of computing
systems, vol. 1 no. 3 (1953), pp. 111-149.

Ivo THomas. Note on a modal system of Lukasiewicz. Dominican studies,
vol. 6 (1953), pp. 167-170.

A. N. Prior. The interpretation of two systems of modal logic. The journal of
computing systems, vol. 1 no. 4 (1954), pp. 201-208.

Aran Ross ANDERSON. On the interpretation of a modal system of Lukasiewicz.
Ibid., pp. 209-210.

Jan Lukasiewicz. Avithmetic and modal logic. Ibid., pp. 213-219.

Jan LukasiEwicz. On a controversial problem of Avistotle’s modal syllogistic
Dominican studies, vol. 7 (1954), pp. 114-128.

For the purpose of this review, the above papers are referred to as £1, £2, T, P, A,
13, and P4 respectively. In £2, £1, £4, 13, and T, a formal system of modal logic
is developed and discussed. It is criticised in A and compared with other modal logics
in P. The papers are reviewed in the latter order.

In E2, Eukasiewicz defines a basic modal logic (BML) which is to be considered
as an essential constituent of any modal logic. Using F, 1 for assertion and rejection
(see XVII 209), and A for possibility, BML consists of a classical propositional calculus
supplemented by F CpAp, 4 CApp, 4 Ap, and F EAPANNp. Necessity (I') is introduced
through the definitional equivalence F ETpNANp. There are the usual rules of sub-
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”Some completeness criteria for sets of functions over
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The Journal of Symbolic Logic, Vol. 27, No. 2, June 1962, 247.
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products. Similar tables for disjunctive or mixed functions may be produced by
converting according to the duality laws.

The second note demonstrates how this table may be generalised for the analysis
of Boolean functions constructed from the operations of product, sum, and comple-
ment. All the usual steps for the conventional truth-tables can be isomorphically
transformed into Boolean equivalents. The columns of T’s and F's under the reference
formula for the classes #, y, z are represented by alternating vertical bars and empty
spaces; # is represented by a single bar and an empty space, ¥ by two bars and two
spaces, z by four bars and four spaces.

For example, the analysis of the function

F={xAny) vzl vz ny}

is graphically set out as follows. The reference formula for #, y, 2, is put on the left
side of the table and the functlion is written widely spaced on the top. Bars are then
entered below each compartment (1) for membership of the sets denoted by the
variables, (2) for the complements (if any) of the (1) entries, (3) for the binary operations
conjoining the preceding entries, and (4) for the complements of the formulas designated
under (3). The function is represented as a whole in the final column.

This table may easily be adapted to the propositional calculus. In a propositional
argument we first replace the implications etc. contained therein by their definition
in terms of conjunctions and negations. We then proceed as above, except that we
now deal with operations on propositions rather than classes. The validity of the
argument may be tested by reference to the table, and is indicated by a continuous
line down the final column.

The generalised Boole table resembles Martin Gardner’s network diagram (cf. pp. 60—
79 of his XXIV 78). In the latter, however, continuous bars represent variables and hori-
zontal lines ‘shuttling’ across these bars indicate operations on them. In Stuermann’s
table both variables and operations are indicated by bars of varying lengths. W. Mavs

ARTO SALOMAA. On the number of simple bases of the set of functions over
a finite domain. Annales Universitatis Turkuensis, Series A, no. 52, Turun Ylio-
pisto, Turku 1962, 4 pp.

ArTO SALoMAA. Some completeness criteria for sets of functions over a
Sfinite domain. Ibid., no. 53, Turku 1962, 10 pp.

These papers are closely related to the author's XXV 291. They are concerned with
problems associated with sets of functionally complete or Post-complete functions
of & arguments in n-valued logic.

The first paper calls a function obtained from a given function F by identifying
some of its variables a diagonalization of F. A diagonalization of F is proper if it differs
from F. A functionally complete set of functions in n-valued logic is called “‘a basis
of E,” if none of its proper subsets is functionally complete. Following Shestopal,
the author calls a basis B of E, simple if “'no set By, obtained by replacing some
function in B by one of its proper diagonalizations, is complete.” The following
generalization of a result of Shestopal for two-valued logic is proved: The number
of all simple bases of En, m = 3, is finile.

The second paper is concerned with establishing Conjecture 1 in XXV 291, To this
end the following theorem is proved: A function F with k arguments which generales

the allernating group Ay is a Sheffer function, provided n = 4. Conjecture 1 follows
at once for k2 = 2. AtweLL R. TURQUETTE

0. 1. Avov and A. A, MudNik., O sultéstvovanii k-znainyh zamknutyh klassov,
né iméiitih konéénogo bazisa (On the existence of k-valued closed classes not having
a finite basis). Doklady Akademii Nauk SSSR, vol. 127 (1959), pp. 44—46.
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Letm = I, a?'. For n = 2, the anthor exhibits a complete self m-al set of inde-
pendent primitives consisting of one two-place function and X ; a¥ one-place
functions. For m = 3, he also constructs a complete self m-al set of independent
primitives consisting of one two-place function and the constants 1, ... , m.

In view of the many results obtained by the author, it is natural to ask whether
analogous more general results could be obtained for the notion of conjugacy. So far
only two particular permutations ¢(r) of degree m (namely, g@(r) =m 4+ 1 — »
and ¢(x) = ¥ 4+ 1 (mod m)) in the equation (1) have been considered. It is possible
that results analogous to those of the author can be obtained for other permutations ¢,
perhaps even without specifying the permutation. The following problem is of some
interest: given an integer s = 2 and a permutation ¢ of degree m, to determine the
smallest number # such that there is a complete self-conjugate (under @) set of inde-
pendent m-valued primitives consisting of one two-place function and » one-place
functions. It seems obvious that the number » depends on the order of the permu-
tation ¢. ARTO SALOMAA

ArTO Saromaa. On sequences of functions over an arbitrary domain.
Annales Universitatis Turkuensis, Series Al, no. 62, Turun Yliopisto, Turku 1963,
5 pp.

This article may be regarded as a generalization into the denumerable domain of
results on Sheffer functions. Assume F 4 is the set of functions of finite Cartesian power
(so-called “finite place functions’) of a denumerable set A into A. The author proves
that for every denumerable subset D4 of F, , there exists a two-place function fp(x, ¥)
in F4 (but not necessarily in D4) which generates all functions of D4 . The method
employed is reminiscent of XVII 204, using a result of Sierpinski concerning gener-
ation of arbitrary infinite sequences of integers instead of the analagous result for
finite sequences of Picard. NorMaAN M. MARTIN

BruNO ScARPELLINI. Die Nichiaxiomatisierbavkeit des unendlichwertigen Pridi-
katenkalkiils von Eukasiewicz. The journal of symbolic logic, vol. 27 no. 2 (for
1962, pub. 1963), pp. 159-170.

Scarpellini shows that the infinite-valued predicate calculus of first order, corre-
sponding to the infinite-valued propositional calculus of Lukasiewicz, cannot be for-
malised by means of a finite number of axioms and rules of procedure. He shows
that to each formula of the two-valued predicate calculus there corresponds a formula
of the infinite-valued predicate calculus such that the former formula is satisfiable
in a finite universe if and only if the latter is satisfiable in the set of truth-values »
such that 0 < » = 1. Since the set of formulas of the two-valued calculus which are
not satisfiable in any finite universe is not recursively enumerable it then follows, by
means of an argument involving Gédel numbers, that the set of formulas of the infinite-
valued calculus which always take the value 0 is not recursively enumerable. The
required result then follows at once. ALAN Rose

Kurt ScrUTTE. Der Inlerpolaiionssatz der imluitionistischen Prddikatenlogik.
Mathematische Annalen, vol. 148 (1962), pp. 192-200.

The author obtains an extension of Craig's interpolation theorem (XXIV 243)
by showing that the result also holds for intuitionistic predicate calculus. His proof
gives rise to a new proof for the original (classical) case. He uses the cut-free formulation
of intuitionistic predicate calculus which he developed in XVI 155 (the calculus ob-
tained from K3 by the omission of the redundant Schnitt rule).

The interpolation theorem is considered in a form which can be briefly summarized
as follows. We suppose that if I" is a sequence C; , ..., C, of formulas and C is any
formula then I' — C shall denote C; -+ (C2 - ... = (Cp = C) ...). Suppose F is a
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Atwell R. Turquette
”On infinitely generated sets of operations in finite algebras”

by Arto Salomaa
The Journal of Symbolic Logic, Vol. 31, No. 1, March 1966, 119-120.
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Excerpt

ARTO SaLoMaa. On mﬂnitefy generated sets of operations in finite algebras.
Annales Universitatis Turkuensis, series A, I, Astronomica-chemica-physica-mathe-
matica, no. 74. Turun Yliopisto, Turku 1964, 13 pp.

Let Fy denote the set of all finitary operations on and to elements of n. Restrict
attention to the subclass L(n) of F, consisting of all linear operations in F,. Let
L(n), n = 2, be the set of all finite sequences (a1, ..., a',} of the elements O, 1, ...,
n — 1. Consider four rules for generating new elements from given elements of L(n)
which allow in effect for the introduction and elimination of unessential variables,
renaming of variables, identification of variables, and composition. A set L = L(n)
is said to be closed if it is closed under these four rules. The closure of L is defined
to be the least closed extension of L. If L < L(n) generates L(n), it is said to be
complete. A closed set is called precomplete if it is not complete but every proper
extension of it is complete. A closed set L = L(n) is said to be finitely generated (or
to possess a finite basis) if there is a finite set L; < L which generates L. If L does not
possess a finite basis, L is said to be infinitely generated. If L is infinitely generated,
but every closed proper extension of L is finitely generated, then L is said to be
mazximal.

The author calls attention to a result of Post’s VI 114 which shows that every closed
set of finitary operations in a two-element algebra possesses a finite basis. He then
indicates that the result cannot be extended to n-element algebras where n = 3.
In support of this claim, some recent work of Muchnik and Janov is cited which shows
that such algebras contain infinitely generated sets of finitary operations that are
closed under composition. In this connection, it is of interest to note that Mrs. Butler
reports that A. Ehrenfeucht communicated a similar result to her and indicates further
that he succeeded in exhibiting a very simple closed subset of F , n = 3, which has
no finite basis (see XXX 246(2), p. 1179).

Salomaa points out that very little is known about infinitely generated subsets
of Fp . He asserts that the results of Muchnik and Janov point to the existence of
closed subsets Fj of F, which are maximal, but that no example of such a maximal
set F'; has been found. The principal results of the paper are then directed to answering
the following questions:

Excerpt
120 REVIEWS

A, For a fixed number #, what is the number of maximal subsets of Fy ?

B. Can a subset precomplete in Fj, be infinitely generated?

C. Given an infinitely generated set F = F,, let a maximal set F’ be constructed.
Is the extension F’ always unique?

It is shown that maximal subsets of L(n) can be constructed such that for L(n)
tlie answer to question C is negative while the answer to question B is positive. An
interesting conjecture is given also regarding an answer to question A. The paper
contains several theorems which shed additional light on the little known properties
of infinitely generated sets and the author frames some suggestive conjectures which
will serve to stimulate further research on such sets. AtweLL R. TURQUETTE
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”On essential variables of functions, especially in the Algebra of logic”

by Arto Salomaa
The Journal of Symbolic Logic, Vol. 32, No. 4, December 1967, 539.
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Let m = l',[;‘,_1 ag'. For n = 2, the author exhibits a complete self m-al set of inde-
pendent primitives consisting of one two-place function and X? ; a% one-place
functions. For m = 3, he also constructs a complete self m-al set of independent
primitives consisting of one two-place function and the constants 1, ..., m.

In view of the many results obtained by the author, it is natural to ask whether
analogous more general results could be obtained for the notion of conjugacy. So far
only two particular permutations @(¥) of degree m (namely, @(¥) =m + 1 — »
and ¢(¥) = # + 1 (mod m)) in the equation (1) have been considered. It is possible
that results analogous to those of the author can be obtained for other permutations ¢,
perhaps even without specifying the permutation. The following problem is of some
interest: given an integer m = 2 and a permutation ¢ of degree m, to determine the
smallest number » such that there is a complete self-conjugate (under ¢) set of inde-
pendent sm-valued primitives consisting of one two-place function and » one-place
functions. It seems obvious that the number » depends on the order of the permu-
tation ¢. ARrTO SALOMAA

ArTO SALOMAA. On sequences of functions over an arbitrary domain.
Annales Universitatis Turkuensis, Series Al, no. 62, Turun Yliopisto, Turku 1963,
5 pp.

This article may be regarded as a generalization into the denumerable domain of
results on Sheffer functions. Assume F4 is the set of functions of finite Cartesian power
(so-called “finite place functions”) of a denumerable set 4 into 4. The anthor proves
that for every denumerable subset D4 of F, , there exists a two-place function fp(¥, ¥)
in F4 (but not necessarily in D,4) which generates all functions of D, . The method
employed is reminiscent of XVII 204, using a result of Sierpinski concerning gener-
ation of arbitrary infinite sequences of integers instead of the analagous result for
finite sequences of Picard. NormMAN M. MARTIN

Bruno ScarRPELLINI. Die Nichiaxiomatisierbarkeit des unendlichwertigen Pridi-
katenkalkiils von Lukasiewicz. The journal of symbolic logic, vol. 27 no. 2 (for
1962, pub. 1963}, pp. 159-170.

Scarpellini shows that the infinite-valued predicate calculus of first order, corre-
sponding to the infinite-valued propositional calculus of Y.ukasiewicz, cannot be for-
malised by means of a finite number of axioms and rules of procedure. He shows
that to each formula of the two-valued predicate calculus there corresponds a formula
of the infinite-valued predicate calculus such that the former formula is satisfiable
in a finite universe if and only if the latter is satisfiable in the set of truth-values x
such that 0 < # = 1. Since the set of formulas of the two-valued calculus which are
not satisfiable in any finite universe is not recursively enumerable it then follows, by
means of an argument involving Godel numbers, that the set of formulas of the infinite-
valued calculus which always take the value O is not recursively enumerable. The
required result then follows at once. ArLaN Rose

Kurt ScHUTTE. Der Interpolati tz der intwitionistischen Pradikatenlogik.
Mathematische Annalen, vol. 148 (1962), pp. 192-200.

The author obtains an extension of Craig's interpolation theorem (XXIV 243)
by showing that the result also holds for intuitionistic predicate calculus. His proof
gives rise to a new proof for the original (classical) case. He uses the cut-free formulation
of intuitionistic predicate calculus which he developed in XVI 155 (the calculus ob-
tained from K3 by the omission of the redundant Schniff rule).

The interpolation theorem is considered in a form which can be briefly summarized
as follows. We suppose that if I' is a sequence Cy, ..., C, of formulas and C is any
formula then I" - C shall denote C; - (C2 - ... = (Cp = C) ...). Suppose F is a
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” A theorem concerning the composition of functions of

several variables ranging over a finite set”

by Arto Salomaa

”On basic groups for the set of functions over a finite domain”
by Arto Salomaa

The Journal of Symbolic Logic, Vol. 33, No. 2, June 1968, 307.
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thereof,p »g—.5 st >t (Go>r)=>.p—r s> (U—u—.pr—=l)—>.q—r—.
p—+q—.5—t, or the last with the consequent permuted.

In the proofs for thesc implicational fragments, Meredith makes use of an interesting analogy
between implicational calculi and combinatory logic developed by Curry in XXXII 267,
pp. 313ff. To each thesis in the theory of implication there corresponds a combinator, and
deducibility from axioms corresponds to definability in terms of primitive combinators. How-
ever, as Curry points out, the analogy is not complete. One set of combinators may be definable
by means of another, and yet the respective implicational theorems fail to follow from the
corresponding axioms. Meredith gives this case in point: p2g2.52p23(g2r)2.p>oris
not (he claims) a sufficient axiom for positive implication, but the corresponding combinator
suffices to define combinators corresponding to known axioms (augmentation and permuted
distribution) for positive implication, Likewise sufficient are the combinators corresponding to
syllogism and augmentation along with Wy(Ax.xx), which however has no implicational
analogue.

Lukasiewicz has shown that syllogism, Peirce’s law, and any tautologous p 2. A > B yield
the full calculus of material implication. Meredith gives matrices which show that this ceases
to be so if Peirce's law isreplaced by p>go>ro>.poro>r, p32go2p>.p2>ror, po2g>.
pP2g2p>dr,0orpodro.p>2g>r>r, all of which are proved deductively equivalent in the
presence of syllogism.

Authors’ corrections. Page 180, line 23, for D5, read D5DS5; page 184, §11, last line, delete
“, although 1 is organic.” Further corrections. Page 175, step 20, for 1, read r; page 179, line 11,
after the fourth C, insert another one. JoHN BacoN

ARTO SALOMAA. A theorem concerning the composition of functions of several variables rang-
ing over a finite set. The journal of symbolic logic, vol, 25 no. 3 (for 1960, pub. 1962), pp. 203-
208.

ARTO SALOMAA. On basic groups for the set of functions over a finite domain. Annales
Academiae Scientiarum Fennicae, Series A.I, Mathematica, no. 338, Helsinki 1963, 15 pp.

Let €, be the set of the functions whose variables, finite in number, range over a fixed finite
set N ={1,2,---,n) (n = 2) and whose values are elements of N. If F < &, we denote by F
the closure of F under composition, i.e., the set of all finite compositions of functions of F
(whose variables may be not different from each other). F is termed a Sheffer set or complete
set if F = &, . Sheffer sets are very important in many-valued logics. The purpose of the first
paper is the following generalization of a basic Stlupecki theorem.

THeoreM. Let F be a set consisting of all the n! permutations of the numbers 1,2,---, n
and of an arbitrary two-place function f(x, ¥) which is non-degenerately binary and assumes
all of the numbers 1, 2, - - -, n as values. Then, provided n = 5, Fis a Sheffer set.

The proof of the theorem consists of six lemmas. Another modification of the Stupecki
theorem was given by Ablonskij.

A group P of permutations of the numbers 1, 2.- -+, n is termed a basic group for &, if the
addition to P of any function of &, depending essentially on at least two variables and assuming
all n values vields a complete set, The author has shown in previous papers that the symmetric
and even the alternating group are basic groups. In the second paper the following generaliza-
tion is given.

THeoreM. Every quadruply transitive group of degree n is a basic group for &, , provided
n = 5. 1f, in addition, n # 27, then every triply transitive group of degree n is a basic group for
€,.

A counterexample is given for the exceptional case n = 2" and is studied in detail for n = 8.

Ivo ROSENBERG

RoBerTO CiGNOLL.  Boolean elements in Lukasiewicz algebras. I  Proceedings of the
Japan Academy, t. 41 (1965), p. 670-675.

L'auteur étudie I'algébre lukasiewiczienne trivalente, fondée par Gr. C. Moisil, ol I'opérateur
M (possibilité) joue un role important. Cignoli représente cet opérateur par V, défini sur un
réticulé distributif A4, étant determiné uniquement par I'ensemble K des éléments k € A4 tels que
Vk = k.
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especially that done by Soviet mathematicians. The bibliography of some 650
entries is 75 percent composed of items published since 1960.

R. D. DRIVER

University of Rhode Island

Formal Languages. By ARTO SaLOMAA. Academic Press, New York 1973. xiii
+ 322 pp. $19.00.
It should be said at the very beginning that this is a very well written book which
gives an elegant and well balanced exposition of the mathematical theory of
formal languages and should be a valuable addition to the maturing set of text-
books in theoretical computer science. The author has not tried in this book to
cover all aspects of formal languages and their relation to automata, but has
limited himself to treat formal languages from the generative devices point of view.
Recognition devices are mentioned and even defined, but then only in terms of
rewriting systems, and they definitely play a subordinated role in this development
of language theory. Furthermore, the author does not stress the applications of
formpal languages, but concentrates on the development of their mathematical
properties. The style of writing is clean and economical, with limited but sufficient
motivation. The strength of the book comes from a good selection of topics, the
well balanced treatment of these topics and the nice flow of ideas as the topics
are developed and compared. The book is divided in three parts as follows.
Part One: Language and grammar, Regular and context-free languages,
Context-sensitive and type-0 languages

Part Two: Abstract families of languages, Regulated rewriting, Context-
free languages revisited, Some further classes of generative
devices ;

Part Three: Solvability and unsolvability, Complexity.

The reviewer was originally quite surprised that the author has chosen to
demote the recognition devices in this book to a very minor role and is still some-
what concerned that this book may deprive the reader of the intuitive help which
automata provide in thinking about languages. On the other hand, the approach
taken by the author is consistent and well presented and, maybe those who will
use this book will not miss very much those nice gadgets “ chugging along, chang-
ing states and popping and pushing things”. In a few places, though, the author
has probably gone a bit too far in deemphasizing the recognition devices; for
example, it is stated in a proposition that “‘a language is accepted by a pushdown
automaton if and only if it is context-free”, but no proof is given. Similarly, there
is no proof of the characterization of context-sensitive languages by means of
linearly bounded automata. There is a proof that if a language is accepted by a
Turing machine, then it is of type 0, but no proof that every type-0 language is
accepted by a Turing machine.

At the same time, in the very nice chapter Abstract families of languages, one
finds with great relief that one is mercifully saved from the detailed definitions of
abstract families of acceptors. They are just mentioned in a few lines at the end of
the chapter, and here one certainly does not miss these somewhat artificial accept-
ing devices.
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The author shows very good taste in selecting topics from the “newer areas”
of language research and the chapters Regulated rewriting and some further classes
of generating devices are a real pleasure to read. These chapters contain a lot of
material (including Lindenmayer systems) which is well organized and fits to-
gether naturally.

If one looks for the least successful chapter, one has to go to the very end of
the book. The last chapter, Complexity, adds little to the overall quality of this
book and, in particular, the part dealing with abstract complexity, defined for
functions and not language recognition, does not appear to be in the same spirit
as the rest of the book. Here the reader will also notice that the speedup theorem
of the last chapter is not the well-known Blum speedup theorem; on the other
hand, the gap theorem is the right Trachtenbrot-Borodin gap theorem.

Maybe in some future revision of this book—and I believe that this book will
be around for quite a while—the author could round out the last chapter by
including the very recent and exciting results about the complexity of decision
problem in languages theory.

The book is well suited for a year’s course on formal languages at the senior-
graduate level and could also be used, with a judicious omission of some topics,
for a fast paced one-term course.

In conclusion, it should be said that this is a well written major book dealing
in a unique way with an important topic in theoretical computer science and that
it should and will be used extensively.

J. HARTMANIS
Cornell University

Foundations of Modern Potential Theory. By N. S. LANDKOF. Springer-Verlag,

New York, 1972. x + 424 pp. $27.90.

This is a fine translation in the Yellow Peril series of a scholarly, readable
book. The contents are, after an introduction on spaces of measures, signed
measures, distributions, operations on these objects, and Fourier transforms of
distributions (the Roman numerals refer to chapters): (I) Potentials and their
basic properties; (1) Capacity and equilibrium measure; (111) Sets of capacity zero;
Sequences and bounds for potentials; (IV) Balayage, Green’s functions, and the
Dirichlet problem; (V) Irregular points; (VI) Generalizations. The thrust and meat
of the book is the Dirichlet problem. The author presents the “analytic part of the
theory related to concrete kernels,” mainly the kernels of M. Riesz and Green,
and hence that part of the theory related to Laplace’s operator. Thus the book
contains the classical theory presented from a modern viewpoint,

The original Russian edition was thoroughly reviewed by J. Kral in Mathe-
matical Reviews, vol. 35, #5644, 1968. Little new has been added. (The index is
inadequate.) But to have this important work available in good mathematical
English, even though occasional overtones of Russian syntax are present, is a
valuable resource for the analyst and possibly for an applied mathematician.

NicHOLAS D. KAZARINOFF
State University of
New York at Buffalo.
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The Journal of Symbolic Logic, Vol. 42, No. 4, December 1977, 583-584.
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Excerpt

ARTO SALOMAA. Formal languages. ACM monograph series. Academic Press,
New York, San Francisco, and London, 1973, xiii + 322 pp.

The subject of this book is the mathematical theory of formal languages and related
topics. The book provides quite broad—and consequently not very deep—insight into
the area and presents the main trends and results. It consists of three parts which will be
described in order.

Part One (120 pp.) is devoted to the most classical subject: the theory of Chomsky's
grammars and related automata. Both grammars and automata are defined as particular
cases of rewriting systems. This allows an elegant and uniform exposition. The Chomsky
hierarchy of languages is presented together with the main properties of regular,
context-free, and context-sensitive grammars and languages. The exposition of the
related automata (fsa, gsm, pda, Iba, and Turing machines) is essentially restricted to
their definitions and the theorems (often without proofs) on the equivalence between
grammars and automata.

Part Two (144 pp.) introduces the reader to four general topics arising from the study
of generating grammars. First, abstract families of languages are briefly discussed. Next,
the author describes five types of rewriting grammars where the use of productions can
be controlled by additional restrictions: matrix grammars, time-varying grammars,
programmed grammars, grammars with control languages, and ordered grammars. The
third group of problems is related (more or less) to the problem of parsing context-free
languages: formal power series, ambiguity, restrictions on derivations, regular-like
expressions, and LR(k) and LL(k) grammars. Part Two ends with a brief introduction
to Lindenmayer systems and the following five types of grammars: transformational,
categorial, indexed, scattered context, and probabilistic.

Excerpt
584 REVIEWS

Part Three (49 pp.) is devoted to the main decidability and undecidability results
concerning Chomsky’s grammars and to a short exposition of complexity of decidable
properties.

The book is mathematically very clear and elegant. Many exercises (mainly of a
theoretical character) allow the reader to verify his comprehension of the material. The
book can be recommended to readers with an abstract mathematical orientation. It can
be an excellent basic reference for courses in mathematics departments and a good
supplementary reference for courses in computer science departments. Reading this
book will be a pleasure for everybody who can appreciate good mathematics.

ANDRZEJ BLIKLE
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7 Reviews by Arto Salomaa

This section presents reviews written by Arto Salomaa about the work by
various researchers in the area of multiple-valued logic.

1. Review for K. Jaakko, J. Hintikka, The Journal of Symbolic Logic, Vol.
28, No. 2, June 1963, 165.

2. Review for S.V. Yablonskij, The Journal of Symbolic Logic, Vol. 29,
No. 4, December 1964, 214-216.

3. Review for A. Rose, The Journal of Symbolic Logic, Vol. 29, No. 3,
September 1964, 144-145.

4. Review for A.R. Turquette, The Journal of Symbolic Logic, Vol. 29,
No. 3, September 1964, 143.

5. Review for R.E. Clay, The Journal of Symbolic Logic, Vol. 30, No. 1,
March 1965, 105.

6. Review for R.E., Clay, The Journal of Symbolic Logic, Vol. 30, No. 1,
March 1965, 105-106.

7. Review for A. Nakamura, The Journal of Symbolic Logic, Vol. 30, No.
3, September 1965, 374-375.

8. Review for A. Nakamura, The Journal of Symbolic Logic, Vol. 31, No.
4, December 1966, 665.

9. Review for V.M., Glushkov, The Journal of Symbolic Logic, Vol. 33,
No. 4, December 1968, 629.

10. Review for O.P. Kuznecov, The Journal of Symbolic Logic, Vol. 33,
No. 4, December 1968, 629.

11. Review for A.V. Gladkij, The Journal of Symbolic Logic, Vol. 35, No.
2, June 1970, 340.

12. Review for S. Ginsburg, The Journal of Symbolic Logic, Vol. 41, No.
4, December 1976, 788-789.
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”On the logical study of language” by K. Jaakko, J. Hintikka
The Journal of Symbolic Logic, Vol. 28, No. 2, June 1963, 165.
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(1" () (®x - ~¥x D Qx),
(2) (#)(~®x - ¥x D ~Q2);
and the synthetic component has the form

(3) (#)~(Dx - ¥x).

It should be noted that the conjunction of (1) and (2) is logically equivalent to the
conjunction of (1), (2'), and (3).

The undesirable consequences of adding to a theory even ‘“idle’” definitions of
theoretical terms (i.e., definitions made by using observable terms) consist in making
any theory of the kind investigated by the author equivalent (on the basis of these
definitions) with the set of its observable theorems, as well as in making a consistent
further development of such theories impossible in many cases. The addition of new
criteria of applicability for a theoretical term to a theory can in fact lead to in-
consistency in consequence of the definitions adopted, since a definitional formula
which is "idle” in a theory T; may not be ‘‘idle”’ in a richer theory Ta.

The chief shortcoming of the paper seems to consist in the use of the terms “‘analytic”
and “synthetic’’ without their having been defined; and its chief merit, in stressing
what I should like to call incomplete semantical characterization of theoretical terms
by elementary ones in empirical theories — a feature which allows for the enrichment
of such theories by new criteria of applicability for theoretical terms without changing
the denotations of these terms.

It is a matter of regret that at the time of writing the author apparently was not
acquainted with Carnap’s XXV 71(2) where the problem of breaking down the postu-
lates of an empirical theory into analytic and synthetic components is treated in a
more general way. Maria KokoszyXska

K. Jaakko J. HINTIKKA. Loogisen kielentuthimuksen ndkéaloja (On the logical
study of language). Ajatus, vol. 19 (1956), pp. 81-96.

After some preliminary remarks on philosophical analysis in general, the author
discusses Quine’s criticism of the notion of analyticity. This leads him to an exposition
of Wittgenstein’s “language-game.” Finally, some related ideas from the theory of
recursive functions, as well as from the author’s own reduction theory are mentioned.

ARTO SALOMAA

Francis C. OcLESBY. An examination of a decision procedure. Memoirs of
the American Mathematical Society, no. 44, American Mathematical Society, Pro-
vidence 1962, 148 pp.

F. C. OcLEsBY. Report: An examination of a decision procedure. Bulletin of the
American Mathematical Society, vol. 67 (1961), pp. 300-304.

In 1953, R. Stanley (XXI 197) gave a reduction procedure for the sentences of the
lower predicate calculus. In certain cases, this procedure leads to the conclusion that
the sentence in question is universally valid (a theorem). In the review referred to
above, Ackermann gave an example of a theorem whose validity cannot be established
by Stanley’s procedure. Also in 1953, J. Hintikka (XX 75) developed a theory of
distributive normal forms for the lower predicate calculus. In certain cases, Hintikka's
method establishes the refutability of a given sentence.

The first paper under review here is, according to a footnote, largely identical with
a doctoral dissertation presented to Lehigh University in 1961. In it, the author
carries out an extremely detailed and painstaking investigation of Stanley’s procedure,
taking particular account of the work of Hintikka which was mentioned above. He
goes beyond the formal results stated previously by Stanley and Hintikka in several
respects. In particular, he shows that Stanley’s method can be used as a decision
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”Functional constructions in k-valued logic” by S. V. Ablonskij
The Journal of Symbolic Logic, Vol. 29, No. 4, December 1964, 214-216.
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symbolic logic in Russia has been done by mathematicians. This unique background
of the author is reflected throughout the present work and is, no doubt, a major
reason why his conception of the philosophical problems of many-valued logic is so
closely connected with the technical and mathematical side of the subject. English
readers with very little knowledge of recent logical developments in Russia should find
it a rewarding experience to follow Zinov‘ev’s philosophical approach, even if only a
few really new concepts are found. In this connection, the reader will discover a more
extensive and better than usual treatment of the interesting work of such logicians
as Boévar, Sestakov, and Jablonskij. It should not be inferred, however, that Zinov’ev
focuses attention on Russian logic alone. On the contrary, many-valued logic is sur-
veyed within a broad context of modern logical developments both in and out of
Russia.

Fukasiewicz and Post are acknowledged to be the chief originators of many-valued
logic. Emphasis is placed on the philosophical motivation of Lukasiewicz and the
complete absence of such motivation in Post. It is claimed that analysis of the modal
functor “'possible” led Lukasiewicz to his three-valued logic, while Post was interested
merely in a formal generalization of two-valued logic. “The current of ideas of
intuitionistic logic,” with its rejection of the law of excluded middle, is interpreted
as further stimulating the development of many-valued logic. Brouwer, Heyting,
Kolmogorov, Glivenko, and Jaskowski are taken as important representatives of
this current. Other recognized sources of stimulation were such systems as Bo&var's
three-valued logic for solving the classical paradoxes, the quantum logics (Birkhoff,
von Neumann, Destouches-Février, Reichenbach), the circuit logics of Sestakov,
and various systems of strict implication (Lewis, Ackermann, von Wright, Rosser,
and this reviewer). No attention is given in this connection to such early forerunners
of many-valued logic as Peirce and MacColl, but there is agreement with Lukasiewicz
that Aristotle was a many-valued logician and that many-valued logics should be
called non-Chrysippean rather than non-Aristotelian.

On the formal side, emphasis is placed on the truth-table development of many-
valued logic, although a chapter is devoted to an exposition of the quantification
theory of Rosser and the present reviewer. Zinov’ev feels that it is the more-than-two-
valuedness which is the essence of many-valued logic. On the side of interpretation,
this leads to the problem of defining many-valued truth-values and it is pointed out
that this should not be confused with the problem of finding applications for many-
valued logical systems. This emphasis on more-than-two-valuedness makes it a bit
surprising to find that Zinov’ev leans over backwards to show that there is no conflict
between many-valued logic and traditional two-valued logic, especially the “laws
of thought” of the latter. Of course, there is a sense in which this is true, but a deep
desire for unification should not blind one to significant differences.

The reader should be alert to some rather obvious typographical errors.

Arwerr R. TURQUETTE

S. V. Asronsk1). Funkcional'nyé posiroénid v k-znaénoj logiké (Functional con-
structions in k-valued logic). Sbornik statéj po matématiééskoj logiké i éé
priloZénidm k nékotorym voprosam kibérnétiki, Trudy Matématitéskogo Insti-
tuta iméni V. A. Stéklova, vol. 51, Izdatél’stvo Akadémii Nauk SSSR, Moscow 1958,
PpP. 5-142.

The paper under review contains an impressive collection of results on the composi-
tion theory of k-valued truth-functions, # = 2. Many of the results are credited to
A. V. Kuznécov. The author has given a clear and concise account of the topic. His
presentation is self-contained and all proofs are carried out in detail. We shall first
give the most important definitions. Let Py, & = 2, be the set of functions whose
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variables, finite in number, range over the set E¥ = {0, 1, ... , k¥ — 1} and whose
values are elements of E¥. A subset P’ of Py is complete (with respect to Py) if every
member of P equals a (finite) composition of members of P’'. (Here, as usual, renaming
and identification of variables is allowed.) A subset P’ of P; is closed if every com-
position of elements of P’ is included in P’. Finally, a closed subset P’ of Py is pre-
complete (with respect to Py) if it is not complete but the addition to P’ of any member
of the set Py — P’ yields a complete set. The notions of completeness and precom-
pleteness are defined similarly with respect to closed subsets of Py . The paper is
divided into three chapters. In chapters | and 3, the sets P; and Py, respectively,
are discussed. Chapter 1 contains also an extensive survey of switching circuit theory.
The chief purpose of this survey is apparently to indicate some of the applications of
the composition theory.

The general theory concerning Py is given in chapter 2. It is shown that, for each P; ,
one may construct a finite family {M; |1 = ¢ = s} of closed subsets of P such that
an arbitrary subset of Py is complete if and only if it is not contained in any of the
sets M; . This general criterion is of no practical value because of the enormous number
of steps needed in the construction of the sets M. For & = 3, one has to check
through 219683 sets. The author gives various other more practical completeness
criteria. Of these we mention the following: For 2 = 3, a subset of Py is complete if it
contains all one-place functions and, in addition, a function which depends essentially
on at least two variables and assumes all & values. The long but clear proof of this
result is based on an induction on the number %, a method surprisingly seldom
successful in the study of k-valued truth-functions. It is an open problem in which
smaller sets can be used to replace the set of all one-place functions in this criterion.
The author shows that every closed proper subset of P can be extended to a pre-
complete set and that the number of precomplete subsets of Pj is finite. He also
considers the problem of whether there are subsets P, of Py which are not finitely
generated, i.e., there is no finite subset P of P, such that every function in P, equals
a composition of functions in P. Several examples of such subsets P, of Py, k = 3,
have been given since 1958 when the paper under review was published. It remains
an open problem whether or not there is a precomplete subset of P; which is not
finitely generated. In the last six sections of chapter 2, the author shows the pre-
completeness of some subsets of Py . Every ordering relation <, for the elements of
the basic set E* induces a lattice ordering for the arguments of functions in Py . The
set M¥ of functions monotonous with respect to this lattice ordering is precomplete.
A function f(#1, ..., #a) belongs to the set T*(E, 5), E < EF¥, if and only if for every
family {D; | | =¢ = #n, Dy < EF¥, card(Dy) = s} there is a subset D of E¥, card(D) = s,
such that the conditions #; ¢ E v Dy, 1 =i = n, imply the condition f{x1, ..., #5) €
E u D. The set T¥(E, s) is precomplete if and only if either E = &, 1 <s =%k — 1,
or E+# @, 0 =s <k — card(E). A function belongs to the set UK¥E;, ..., E,)
if and only if the partition of E¥ into disjoint sets Ey, ..., E, is invariant under
this function. Each of the sets U is precomplete, provided | < s < k. The set L¥
consisting of all functions which can be expressed as linear polynomials modulo % is
precomplete if and only if % is prime. The set S’,‘w consisting of all functions self-
conjugate under the permutation s(x) on the elements of E¥ is precomplete if and only
if in the cyclic representation of s(¥) every factor is of equal prime order.

Of the contents of chapter 1 which is mainly of expository character, we want to
mention the various methods developed for obtaining minimal disjunctive normal forms
and the very short and elegant proof of the completeness criterion due to Post. In
chapter 3, the author gives a general solution for the completeness problem of Ps.
A subset of Pg is complete if and only if it is not contained in any of the following
eighteen precomplete sets: M? (1 =i = 3 where the values of i correspond to the
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three different orderings of the set E3), T3(@,2), T3{i,/)) 0 =i =20=j7=1),
T3({o, ;}, 0), T({0, 2}, 0), T#({1, 2}, 0), U3({o, 1}, {2}), U3({0, 2}, {1}), U3({1, 2}, {O)),
L8, S v

In a.géiltion to the list given at the end of the volume, the reviewer points out the
following corrections: page 24, line 20, for "y, read *‘yz""; page 72, line 26, for
“pMe) read ‘A" page 88, line 3, replace the first “)” by “("'; page 88, last line,
for “a"’, read “al"”’; page 89, line 22, for “¢;"”, read “p;""; page 91, line 13, for g
read "3""; page 97, line 12, for ““§"”, read ““§"’; several statements in section 19 are valid
only if the cyclic representation of the permutation s(x) consists of factors of equal
prime order; page 137, last line, ‘4" should be in columns 6, 16, and 20.

ARTO SALOMAA

ALAN Rose. A formalisation of an Ro-valued propositional calculus. Proceedings
of the Cambridge Philosophical Society, vol. 49 (1953), pp. 367-376.

FreDERIC B. FiTcH. An extensional variety of extended basic logic. The journal
of symbolic logic, vol. 23 (1958), pp. 13-21.

R. J. SoLomoNoOFF. Comments on Dr. S. Watanabe's paper. Synthese, vol. 14
(1962), pp. 97-100. [Cf. XXIX 197(3).]

M. GoopaLL. Comments on Dr. S. Watanabe's paper. 1bid., pp. 101-102. [Cf.
XXIX 197(3).]

Eric H. LENNEBERG. The relationship of language to the formation of concepts.
Ibid., pp. 103-109.

W. A. VERLOREN VAN THEMAAT. Formalized and artificial languages. Ibid.,
pp- 320-326.

BfLa Junos. Wahrscheinlichkeitsschliisse als syntaktische Schlufiformen. Actes
du XIéme Congrés International de Philosophie, Volume XIV, Volume com-
plémentaire et communications du Colloque de Logique, North-Holland
Publishing Company, Amsterdam 1953, and Editions E. Nauwelaerts, Louvain 1953,
pp. 105-108.

BfLa v. JuHos. Wahrscheinlichkeitsschliisse als syntaktische SchlufBformen. Stu-
dium generale, vol. 6 (1953), pp. 206-214.

Bevra v. JuHos. Die neue Logik als Vorausselzung dey wi haftlichen Evk
Ibid., pp. 593-599.

RupoLr CARNAP. Meaning and synonymy in natural languages. A reprint of
XX 296. American philosophers at work, The philosophic scene in the
United States, edited by Sidney Hook, Criterion Books, New York 1956, pp. 58-74.

Mary B. Hesse. Review of Jeffreys's Scientific inference (XXIX 194).
Philosophy, vol. 34 (1959), pp. 66-68.

JErroOLD J. KaTz. Review of Ziff's Semnantic analysis (XXIX 193). Language,
vol. 38 (1962), pp. 52-69.

WirLiam P. Arston. Ziff's Semantic analysis. The journal of philosophy
vol, 59 (1962), pp. 5-20.

A review of the same.

L. JonaTHAN CoHEN. Review of the same. Ratio (Oxford), vol. 4 no. 2 (1962),
pp- 162-164.

faade
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pressed in terms of the primitive one-place truth-functions of L, and, hence, (1)
represents a disjunctive normal form. In the three-valued case, both functional and
canonical completeness are preserved if the two transpositions given by the author
are replaced by two permutations such that neither one of them is a power of the other.
ARTO SALOMAA

Aran Rose. Self-dual binary and lernary co tives for m-valued propositional
calculi. Mathematische Annalen, vol. 143 (1961), pp. 448-462.

ALAN Rosg. Sur certains calculs propositionnels & m valeurs ayant un seul foncteur
primitif lequel constitue son propre dual. Comptes rendus hebdomadaires des
séances de I’Académie des Sciences (Paris), vol. 252 (1961), pp. 3176-3178.

ArLaN Rose. Sur certains calculs propositionnels & m valewrs ayant deux foncteurs
primitifs dont chacun est le dual de I'autre. Ibid., pp. 3375-3376.

ALAN RosE. Sur un ensemble de foncteurs primitifs pour le caleul propositionnel a
m valeurs lequel constitue son propre m-al. Ibid., vol. 254 (1962), pp. 1897-1899.

AranN RoseE. Sur un bl plet de foncteurs primitifs indépendants pour le
calcul propositionnel trivalent lequel constitue son propre irial. Ibid., p. 2111,

ALAN RosE. A simplified self m-al set of primitive functors for the m-valued prop-
ositional calculus. Zeitschrift fiir mathematische Logik und Grundlagen der
Mathematik, vol. 8 (1962), pp. 257-266.

The author considers complete self-dual (and self m-al) sets of independent primitive
connectives for the m-valued propositional calculus. All results obtained can be ex-
pressed in terms of m-valued truth-functions (i.e., functions of several variables

ranging over the set {1, ... , m} and with values in this set).
Assume that, for two given functions f(x;, ..., xx) and g(¥1, ..., ;) and for a
permutation g(#) on the elements 1, ..., m, the equation
(1) @lfxr, ..., %)) = glp(), - - -, P(xx)
holds, for all assignments of values for the variables #1, ..., #;. Then f is said to

be the conjugate of g under the permutation @(x). A set of functions is self-conjugate
under ¢ if the conjugate of any function in the set belongs to the set.

In particular, if p(¥) = m + 1 — x (i.e., p is the Eukasiewicz negation function)
then the author calls f a dual of g. If g(x) = x + 1 (mod ) (i.e., ¢ is the Post negation
function) then he calls f an m-al of type 1 of g (or, shortly, an m-al of g). Furthermore,
m-als of type i are obtained by letting @(¥) = # + i (mod m). Self-dual and self m-al
sets are defined in the same way as self-conjugate sets above.

In the first paper, a self-dual set of independent generators for m-valued truth-
functions, m = 2, is constructed, the members of this set being one three-place function
and two one-place functions. For this set, the dual of a formula is obtained by writing
it backwards and interchanging the two connectives corresponding to the one-place
functions. Another self-dual set of independent generators consisting of one two-place
function and two one-place functions is constructed for all values of m = 3. Some
special considerations for the cases m = 3 and m = 2 are added.

A complete self-dual set of primitives consisting of one three-place function is given,
for even values of m = 4, in the second paper. It is also shown that no such set con-
sisting of one function exists for odd values of m. In the third paper, a complete self-
dual set consisting of two independent two-place functions is given, for odd values of
m=3.

In the fourth paper, the author constructs, for values of m = 4, a complete self
m-al set of independent primitives consisting of one two-place and m one-place func-
tions. As shown in the fifth paper, such a construction may be carried out also in the
case m = 3. These results are improved in the sixth paper as follows.
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Letm = [17_, a&". For » = 2, the author exhibits a complete self m-al set of inde-
pendent primitives consisting of one two-place function and XP_, a¥ one-place
functions. For m = 3, he also constructs a complete self m-al set of independent
primitives consisting of one two-place function and the constants 1, ..., m.

In view of the many results obtained by the author, it is natural to ask whether
analogous more general results could be obtained for the notion of conjugacy. So far
only two particular permutations @(¥) of degree m (namely, @(¥) =m + 1 — x
and ¢(¥) = » + 1 (mod m)) in the equation (1) have been considered. It is possible
that results analogous to those of the author can be obtained for other permutations ¢,
perhaps even without specifying the permutation. The following problem is of some
interest: given an integer m = 2 and a permutation ¢ of degree m, to determine the
smallest number » such that there is a complete self-conjugate (under ¢) set of inde-
pendent m-valued primitives consisting of one two-place function and » one-place
functions. It seems obvious that the number » depends on the order of the permu-
tation ¢. ARTO SALOMAA

ArTO SaLOMAA. On sequences of functions over an arbitrary domain.
Annales Universitatis Turkuensis, Series AlI, no. 62, Turun Yliopisto, Turku 1963,
5 pp.

This article may be regarded as a generalization into the denumerable domain of
results on Sheffer functions. Assume F4 is the set of functions of finite Cartesian power
(so-called ““finite place functions”) of a denumerable set A into 4. The author proves
that for every denumerable subset D4 of F4, there exists a two-place function fp(x, ¥)
in F4 (but not necessarily in D4) which generates all functions of D, . The method
employed is reminiscent of XVII 204, using a result of Sierpinski concerning gener-
ation of arbitrary infinite sequences of integers instead of the analagous result for
finite sequences of Picard. NorMan M. MARTIN

Bruno ScCARPELLINI. Die Nichtaxiomatisierbarkeit des unendlichwertigen Pridi-
katenkalkiils von Lukasiewicz. The journal of symbolic logic, vol. 27 no. 2 (for
1962, pub. 1963), pp. 159-170.

Scarpellini shows that the infinite-valued predicate calculus of first order, corre-
sponding to the infinite-valued propositional calculus of f.ukasiewicz, cannot be for-
malised by means of a finite number of axioms and rules of procedure. He shows
that to each formula of the two-valued predicate calculus there corresponds a formula
of the infinite-valued predicate calculus such that the former formula is satisfiable
in a finite universe if and only if the latter is satisfiable in the set of truth-values x
such that 0 < x = 1. Since the set of formulas of the two-valued calculus which are
not satisfiable in any finite universe is not recursively enumerable it then follows, by
means of an argument involving Gédel numbers, that the set of formulas of the infinite-
valued calculus which always take the value O is not recursively enumerable. The
required result then follows at once. ALAN Rose

Kurt ScrUTTE. Der Interpolationssatz der intuitionistischen Prddikatenlogik.
Mathematische Annalen, vol. 148 (1962), pp. 192-200.

The author obtains an extension of Craig’s interpolation theorem (XXIV 243)
by showing that the result also holds for intuitionistic predicate calculus. His proof
gives rise to a new proof for the original (classical) case. He uses the cut-free formulation
of intuitionistic predicate calculus which he developed in XVI 155 (the calculus ob-
tained from K3 by the omission of the redundant Schwnitt rule).

The interpolation theorem is considered in a form which can be briefly summarized
as follows. We suppose that if I" is a sequence C;, ..., C, of formulas and C is any
formula then I' - C shall denote C; - (C2 - ... = (Cp = C) ...). Suppose F is a
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A. R. TurRQUETTE. A general theory of k-place stroke functions in z-valued logic.
Proceedings of the American Mathematical Society, vol. 13 (1962), pp. 822-824.

Using the results of Post (VI 114), the author presents a general method of con-
structing all two-valued k-place stroke functions. They are 22*-2 — 22*”'~1 in number.
The number of &-place self-dual Post §-functions equals 22*'-1.

The same results can be obtained also by applying the theory of precomplete sets
developed by Kuznécov and Ablonskij (e.g., cf. Ablonskij, Trudy Matématiééskogo
Instituta Akadémii Nauk SSSR iméni V. A. Stéklova, vol. 51 (1958), pp. 5-142).

A function f(#1, ..., #) is a stroke function if and only if each of the following con-
ditions is satisfied: f(1,...,1)=2,f(2,...,2) = 1, and, for some x;, ..., x,
fl~xr, oon, ~ak) 3 ~flx1, ..., %)

It seems to the reviewer that an analogous simple method of enumerating all &-place
stroke functions could be given for the three-valued case because, in this case, all
precomplete sets have been constructed. (Three-valued two-place stroke functions
are well known.) On the other hand, very little is known of the precomplete sets in the
general M-valued case. The existence of a simple device to calculate the number of
M-valued k-place stroke functions does not seem likely. ARTO SALOMAA

WiLLiam H. JoBE. Functional completeness and canonical forms in many-valued
logics. The journal of symbolic logic, vol. 27 no. 4 (for 1962, pub. 1963), pp. 409—
422,

The author calls an M-valued logic L with the truth-values 1, ..., M canonically
suitable if min(x, ¥) and max(v, y) are generated by the truth-functions correspond-
ing to the primitive connectives of L. A canonically suitable logic is canonically
complete if every function Ji(x) (where ]}c(i] =k, and Ji(¥) =1 for x #i) can
be expressed as a disjunctive normal form in terms of min(, ), max(», ¥), and the
truth-functions corresponding to the primitive unary connectives of L. The FLu-
kasiewicz-Stupecki system with the primitives C, N, and T is canonically incomplete
because the truth-functions corresponding to N and T map the intermediate truth-
value 2 into itself. The author shows that a three-valued system E with min(#, y)
and the two transpositions (12) and (13) as primitive truth-functions is both functional-
ly and canonically complete. He also presents a method of determining whether a
formula is a tautology in E (i.e., assumes always the value 3) and a method of deciding
whether two formulas of E are equivalent. Finally, he claims to have shown that in
E there exists a procedure other than the truth-table method for recognizing tautologies
and demonstrating the equivalence of formulas.

However, it seems to the reviewer that the method given by the author is essentially
the same as the truth-table technique. The method consists of expanding the conjunc-
tion of the given formula F and the disjunction of each J3and of finding out whether
the expansion contains each J3. This happens if and only if I assumes always the
value 3.

Many of the proofs of the paper can be shortened if more advanced results concerning
functional completeness (e.g., cf. Ablonskij, Trudy Matémati¢éskogo Instituta
Akadémii Nauk SSSR iméni V. A. Stéklova, vol. 51 (1958), pp. 5-142) are used.
Then also the results proved by the author for a particular three-valued system E
can be extended to M-valued systems L satisfying certain general conditions. For
instance, if a doubly transitive group of permutations on the elements 1, ..., M is
generated by the primitive one-place truth-functions of L then

(1) Ji(x) = min(s1(2), ..., si(x), ..., su(x)

where s5(7) = 1 and s;(i) = M, for each j % 4, and s4(i) = &. All functions s are ex-
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” A simple proof of functional completeness in many-valued logics
based on Lukasiewicz’s C' and N”, by Robert E. Clay

”Note on Slupecki T-functions” by Robert E. Clay
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philosophical views, and may be recommended to philosophical readers on grounds
quite other than its relevance to the field of this JourNaL. It is listed here because
of scattered passages which contain some informal discussion of the law of excluded
middle and of the present situation in and various possibilities for modal logic (pp.
112-113, 116-117, 166-169).

The figure 7 which occurs on pages 168 and 169 is evidently a misprint or an editor’s
mistake for a negation sign. Aronzo CHURCH

Roeert BrancuE. Axfomatics. English translation of XXIII 438, by G. B.
Keene. Monographs in modern logic. The Free Press of Glencoe, New York 1962,
v + 65 pp.

To be more exact, a translation — checked by Prof. Blanché himself — of the first
three chapters of his 1955 monograph, to wit: The defects of Euclid's formalism,
Early axiomatics, and Formalized axiomatics. The reader may miss Chapter Four,
which touched on the limitations of the axiomatic method (Gédel, Skolem, etc.).
There is a bad mistranslation on page 5 where “Il n'y a plus, pour les théorémes, de
vérité séparée et pour ainsi dire atomTque...” is rendered by “There remains, for
the theorems, simply truth, separated and so to speak atomic.” HUGUES LEBLANC

Lavman E. ALLEN. Wff 'n proof. The game of modern logic. Wif 'n proof,
New Haven, Conn., 1962, viii + 224 pp.

Lavman E. ALLEN. Wff. The beginner’'s game of modern logic. Wif 'n
proof, New Haven, Conn., 1963, 78 pp.

The “game of modern logic” is actually a series of games concerning the propositional
calculus. According to the introduction, “‘the first few games are quite simple and
have been mastered by children as young as six, while the final games are sufficiently
complex to be challenging and interesting to university teachers of mathematical
logic.” An earlier 1961 version of Wff 'n proof consisted of twenty-four games.
The present revised version contains twenty-one games, the first two of which are
concerned with constructing well-formed formulas in the Polish notation of Lukasie-
wicz, while the final nineteen involve the construction of proofs using Fitch's method
of subordinate proofs. Wff is a shortened beginner’s manual containing only the first
two games. F. C. OGLESBY

RoBERT E. CLay. A simple proof of functional completeness in many-valued logics
based on Eukasiewicz’s C and N. Notre Dame journal of formal logic, vol. 3
(1962), pp. 114-117.

RoBerT E. CLay. Nofe on Shupecki T-functions. The journal of symbolic
logic, vol. 27 no. 1 (for 1962, pub. 1963), pp. 53-54.

The first paper contains a detailed proof, based upon successive functional con-
structions, of the following fact: If the constants iy, ..., im are added to the
FLukasiewicz (n+ 1)-valued propositional calculus with the truth-values 0,1, ..., n
and the primitives C and N, then the resulting system is functionally complete
exactly in case the greatest common divisor (n, 41, ..., im) = 1. The second paper
gives another formulation of this result, the truth-values being denoted by
L...,n+ 1. ARTO SALOMAA

RoserT E. CLay. A standard form for Eukasiewicz many-valued logics. Notre
Dame journal of formal logic, vol. 4 (1963), pp. 59-66.

Consider functions of several variables ranging over the set of integers. For a given
natural number n, let M, be the smallest set of functions which is closed with respect
to composition and contains the constant function # and the two binary functions
% — v and max(#, ¥). The truncation fT(%) of a function f(%x) belonging to the set
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philosophical views, and may be recommended to philosophical readers on grounds
quite other than its relevance to the field of this Jourwar. It is listed here because
of scattered passages which contain some informal discussion of the law of excluded
middle and of the present situation in and various possibilities for modal logic (pp.
112-113, 116-117, 166-169).

The figure 7 which occurs on pages 168 and 169 is evidently a misprint or an editor’s
mistake for a negation sign. Aronzo CHURCH

RoBERT BLANCHE. Axiomatics. English translation of XXIII 438, by G. B.
Keene. Monographs in modern logic. The Free Press of Glencoe, New York 1962,
v + 65 pp.

To be more exact, a translation — checked by Prof. Blanché himself — of the first
three chapters of his 1955 monograph, to wit: The defects of Euclid’s formalism,
Early axiomatics, and Formalized axiomatics. The reader may miss Chapter Four,
which touched on the limitations of the axiomatic method (Godel, Skolem, etc.).
There is a bad mistranslation on page 5 where "Il n'y a plus, pour les théorémes, de
vérité séparée et pour ainsi dire atonifque...” is rendered by '“There remains, for
the theorems, simply truth, separated and so to speak atomic.”  HUGUEs LEBLANC

Layman E. ALLEN. Wff 'n proof. The game of modern logic. Wif 'n proof,
New Haven, Conn., 1962, viii + 224 pp.

LavMmaNy E. ALLEN. Wff. The beginner’s game of modern logic. Wif 'n
proof, New Haven, Conn., 1963, 78 pp.

The “game of modern logic" is actually a series of games concerning the propositional
calculus. According to the introduction, “the first few games are quite simple and
have been mastered by children as young as six, while the final games are sufficiently
complex to be challenging and interesting to university teachers of mathematical
logic.” An earlier 1961 version of Wff 'n proof consisted of twenty-four games.
The present revised version contains twenty-one games, the first two of which are
concerned with constructing well-formed formulas in the Polish notation of Lukasie-
wicz, while the final nineteen involve the construction of proofs using Fitch’s method
of subordinate proofs. Wff is a shortened beginner’s manual containing only the first
two games. F. C. OGLESBY

RoBerT E. CLay. A simple proof of functional completeness in many-valued logics
based on Eukasiewicz’'s C and N. Notre Dame journal of formal logic, vol. 3
(1962), pp. 114-117.

RoBeRT E. CLAY. Nofe on Slupecki T-functions. The journal of symbolic
logic, vol. 27 no. 1 (for 1962, pub. 1963), pp. 53-54.

The first paper contains a detailed proof, based upon successive functional con-
structions, of the following fact: If the comstants 4;, ..., im are added to the
Lukasiewicz (n-+1)-valued propositional calculus with the truth-values 0, 1, ..., n
and the primitives C and N, then the resulting system is functionally complete
exactly in case the greatest common divisor (n, 4y, ..., im) = 1. The second paper
gives another formulation of this result, the truth-values being denoted by
1, ...,n+ L ARTO SALOMAA

Roeert E. CLay. A standard form for Eukasiewicz many-valued logics. Notre
Dame journal of formal logic, vol. 4 (1963), pp. 59-66.

Consider functions of several variables ranging over the set of integers. For a given
natural number »n, let M, be the smallest set of functions which is closed with respect
to composition and contains the constant function # and the two binary functions
% — y and max(z, ). The truncation fT() of a function f(%) belonging to the set
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My is defined by the, following equation

fP(&e) = min(f(2x) + |/(Zx)], 1) min(/(2e), n)

where (%) = (*1, ..., ¥&), # =0, and the variables x; , ..., x4 range over the set
{0, 1, ..., n}. The author shows that the set of truth-functions generated by C and N
in the Lukasiewicz (n+1)-valued propositional calculus with the truth-values
0,1, ..., nis the same as the set of the truncations of the functions in M, . The
proof is based upon simple arithmetical facts. ARTO SALOMAA

ArTO SaLomAaA. Some completeness criteria for sets of functions over a
finite domain. II. Annales Universitatis Turkuensis, Series AI, no. 63. Turun
Yliopisto, Turku 1963, 19 pp.

This is a continuation of XXVII 247(2). The latter contains sections 1 and 2 of the
investigation and sections 3 and 4 constitute the present paper.

The author uses E, to denote the set of all k-place n-valued functions (n finite
and # = 2). He calls a subset of E, complete (or a Sheffer set) if its members can
generate, by finite composition, all the members of E, . Further, a k-place n-valued
function is said to satisfy Slupecki conditions if it depends essentially on at least
two variables and assumes all # values.”’ In section 1, the following theorem is proved:

TrEOREM 1. Assume that # = 5 and F is a subset of E, containing the alternating
group A, and an arbitrary function f(xy, ..., x¢) satisfying Slupecki conditions.
Then F is complete.

The present paper investigates sets E,; where »n is prime and Ej is used to denote
such sets. In particular, stronger completeness criteria are obtained for E, than
for E, . A function f(x1, ..., #x) is now said to satisfy strong Slupecki conditions if
““it depends essentially on at least two variables and, furthermore, there are numbers

tand wy, f=1,...,i— 1,44 1,...,k such that fi(x) = fleer, ..., -1, ¥,
i41, ... , #g) is a permutation of the numbers 1, 2, ... , #.”" The following theorem
is proved:

Tueorem 3. Let F be a subset of E, containing (1) a circular permutation ¢(x),
(2) a one-place function g(¥) which is not linear with respect to ¢(x), (3) a function
flx1, ..., xx) satisfying strong Shupecki conditions. Then F is complete.

This theorem is next applied to the theory of Sheffer functions of Ep . The following
two alternative formulations give the chief results obtained:

TueoreEM 4. A function f(x1, ..., #) belonging to E, is a Sheffer function if
(and only if) it generates a circular permutation ¢(¥) and a function g(¥) which is
not a power of ¢(¥).

TueoreEM 4°. A function f(¥1, ..., 2;) belonging to E, is a Sheffer function if
(and only if) it generates a circular permutation ¢(¥) and is not self-conjugate under ¢(x).

Given a function flxr, ..., xx), the function f(x, ..., x) is called the main
diagonal of f. Theorems 4 and 4’ enable the author to write a formula for the huge
number of k-place Sheffer functions in £, whose main diagonal is a circular permu-
tation. With this number determined, the paper is concluded by formulating the
following interesting problem:

“The question arises: what is the minimum number a of values of a k-place function
/ which have to be fixed in order to be sure that f always is a Sheffer function, no
matter how the remaining #*¥ — a values of f are defined?"

ATweLL R, TURQUETTE

M. J. GuAzaLa (Gazalé)., Irredundant disjunctive and conjunctive forms of a Boolean
function. IBM journal of research and development, vol. 1 (1957), pp. 171-176.

T. Rapo. Comments on the pr function of Gazalé. Ibid., vol. 6 (1962),
pp. 268-269.

In XVIII 280 and XXI 328 Quine showed that any irredundant disjunctive normal
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”On the infinitely many-valued threshold logics and von Wright’s system M””

” A note on truth-value functions in the infinitely many-valued logics”

”On a simple axiomatic system of the infinitely many-valued logic based on A, —”
”On an axiomatic system of the infinitely many-valued threshold predicate calculi”
”Truth-value stipulations for the von Wright’s system M’ and the Heyting system”
by Akira Nakamura

The Journal of Symbolic Logic, Vol. 30, No. 3, September 1965, 374-375.
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sense, but not adequate. As a result of Henkin's theorem (XXIIT 362(2), §54), this
calculus is adequate in the weaker sense called quasi-adequate.

In the first paper, Bayart shows that both calculi (S5, 2) and (S5, 1) are correct.
The paper proceeds as follows: first the second-order pure modal functional calculus
L is formulated, then for a proposition (sentence) of L, the notions true, false, valid,
realizable, etc. are defined semantically.

A symbol Z (which operates as an abstraction symbol in place of the more usual 4)
is introduced and some syntactical terms such as abstractor, abstraction, primary
and secondary parapropositions are defined.

Following the method of sequents (Segquenzen) of Gentzen, the author defines
(S5, 2), giving one axiom scheme and twenty-five deduction rules upon L.

The correctness of (S5, 2) and (S5, 1) is then established, by showing first that each
axiom is valid and then for each rule that validity of premiss or premisses implies
validity of the conclusion.

In the second paper, the author defines the notions quasi-correct and guasi-adequate
as weakened notions of correctness and adequacy respectively.

And for (S5, 2) he establishes the quasi-correctness and quasi-adequacy. The method
of the proof is quite analogous to that of the first paper. Furthermore he shows the
non-adequacy of (S5, 2) as a direct result of the incompleteness theorem of Gédel.

The adequacy of (S5, 1) is also proved, by the standard method.

Kazuo MaTsumoTo

AKIRA NAKAMURA. On an axiomatic system of the infinitely many-valued threshold
logics. Zeitschrift fiir mathematische Logik und Grundlagen der Mathe-
matik, vol. 8 (1962), pp. 71-76.

AKIRA NAKAMURA. On the infinitely many-valued thrveshold logics and von Wright's
system M". Ibid., pp. 147-164.

AKIRA NAKAMURA. A note on truth-value functions in the infinitely many-valued
logics. Ibid., vol. 9 (1963), pp. 141-144.

AKIRA NAKAMURA. On a simple axiomatic system of the infinitely many-valued
logic based on a, —. 1Ibid., pp. 251-263.

AKIRA NAKAMURA. On an axiomatic system of the infinitely many-valued thveshold
predicate caleuli. Ibid., pp. 321-239.

AKIRA NAKAMURA. Truth-value stipulations for the von Wright system M’ and the
Heyting system. Ibid., vol. 10 (1964), pp. 173-183.

The papers under review deal with infinitely many-valued propositional calculi
except the fifth paper where an infinitely many-valued predicate calculus is considered.
There are essential differences among the various systems presented, especially with
respect to the truth-functions corresponding to implication. The first and the fifth
papers are closely interrelated, and so are the third and the fourth as well as the second
and the sixth papers. Some of the basic notions and ideas are credited to M. Itoh.

The operations characteristic for the system A, considered in the first paper are
called ‘‘threshold operations” by the author. The set of truth-values equals the set R
of all real numbers in the interval [0, 1], the value 1 being the only designated value.
The primitive connectives of 4; are disjunction with the truth-function max(s, y),
conjunction with the truth-function min(x, 9), and a set {Ta|a e R} of threshold
operations with truth-functions f.(¥) where fa(¥) = 1 for ¥ < o and #.(#) = 0 for
% = a. The author gives a complete axiomatization for the system A;. The axio-
matization consists of two parts: the former is identical with the axiomatization for the
ordinary two-valued propositional calculus and the latter takes care of the threshold
operations. The latter part consists of an infinite number (in fact, a continuum)
of axiom schemata. The completeness proof is very simple: a reduction to the two-
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valued case and conjunctive normal forms are used. This reduction is possible because
of the definition of the threshold operations and the definition of the implication:
P - = (T\P)vQ. (Thus, the implication P — Q always assumes the value |
when the value for P is less than 1.) The independence of the axiom schemata is not
discussed.

It is easy to see that the same axiomatization is complete for any system 4,(R’)
obtained from 4, by replacing the set of truth-values R by some subset R’ which
contains the numbers 0 and 1. If R’ is finite then the threshold operations can be
expressed as disjunctions of the J-functions of Rosser and Turquette.

The system A4, (where R’ is denumerably infinite) is extended to an infinitely many-
valued predicate calculus in the fifth paper. An axiomatization which follows the line
of Rosser and Turquette is given. A completeness proof which uses Skolem normal
forms is sketched.

The system A3z presented in the third paper does not contain threshold operations.
The set of truth-values is ® where 1 is the only designated value and the primitive
connectives are conjunction with the truth-function min(x, ¥) and implication with
the truth-function f(x, ), where f{x,y) = | for ¥ = y and f(x,y) = y for r > 9.
(Note that the implication of 4; always assumes a designated value when the impli-
cation of 4» does, but not conversely.) The decision problem of A4g is solved in the
third paper. For this purpose, a normal form for the well-formed formulas is intro-
duced such that the validity of a formula can be decided by considering the consti-
tuents of the normal form. A complete axiomatization for 4g is given in the fourth
paper.

The threshold operations characteristic for the system A3 considered in the second
paper are different from those of 4;. The set of truth-values in 43 is the Boolean
lattice consisting of infinite sequences of 0's and 1's where the lattice operations are
defined pointwise in the natural way. The sequence (1, 1, 1, ...) is the only designated
value. The primitive connectives are disjunction v and negation — whose truth-
functions are the join and the complement of the lattice and, in addition, an infinite
sequence of threshold operations Ty, ¢ = 1, 2, ..., with truth-functions #/(x) where
ti{x) = (0,0, 0, ...) if the number of 1's in x is less than ¢ and #(x) = (1, 1, 1, ...)
otherwise. (Note that threshold operations thus defined resemble those considered
in automata theory.) A complete axiomatization for 43 is given. As in connection
with A4y , the axiomatization consists of a two-valued part and a part for the threshold
operations. Implication is defined as in the two-valued case: P -+ Q = —wPv (. (Note
that, in A3, (T(P) - (T;P) isassertableifi 2. In Ay, (T{P) —(T;P) is assertableif i <7.)
It would be an interesting problem to establish an interconnection between 4, and A3 .
Let A3 be the system with the primitive connectives v, =, and T . The axiomati-
zation of A4 results from that of 43 by omitting superfluous axioms. The author
shows that Aj is equivalent to von Wright's system M in the sense that both
systems contain the same provable formulas.

The approach of the sixth paper is converse to that of the other papers: the author
begins with an axiomatic stipulation, namely, von Wright's system M’ and constructs
an equivalent truth-value stipulation. The latter is too complicated to be restated here.
Using well-known interconnections between M’ and the Heyting system, the author
finally gives a truth-value stipulation for the latter.

The reader should be alert to some inaccuracies in the definitions as well as to some
typographical errors. ARTO SaroMaa

Burton DreBeN. Relation of m-valued quantificational logic to 2-valued quantifi-
cational logic. Summaries of talks presented at the Summer Institute for
Symbolic Logic, Cornell University, 1957, 2nd edn., Communications Research
Division, Institute for Defense Analyses, Princeton, N.J., 1960, pp. 303-304.

320




Arto Salomaa
7On the infinitely many-valued double-threshold logic” by Akira Nakamura
The Journal of Symbolic Logic, Vol. 31, No. 4, December 1966, 665.
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(T) CCQPCQR = CCPQCPQ provable from Lukasiewicz's first three axioms (A1-A3)
with modus ponens (R1)? This is done by assigning a four-valued truth-function
to C, under which all theorems deducible from A1-A3, R1, always take value 1, while
Fukasiewicz's axiom A4 does not. Since Meredith has shown that A4 is deducible
from A1-A3, T, R1, it follows that T is not deducible from A1-A3, R1. The author
indicates that the four truth-values used in the proof cannot be replaced by a smaller
number. Louise Hay

ArwerLL R. TurQuETTE. Independent axioms for infinite-valued logic. The
journal of symbolic logic, vol. 28 no. 3 (for 1963, pub. 1964), pp. 217-221.

In this paper, the author refers to Lukasiewicz’s Ly , with the (dependent) fourth
axiom deleted, as A?: A;‘ is thus the negation axiom. He establishes minimality
(i.e., independence of axioms and rules) by truth-table methods using three-valued
logic and shows two-valued logic to be insufficient for this purpose. The author then
considers the possibility of “simplifying” A% by a change of syntax, as follows: Let O
be a statement constant with associated truth-value 0. Let A* = A% with NP replaced
by CPO, A? = A% with A} replaced by CCCPOOP, and A” = A* with A} replaced
by CPO. Using results of Rose and Rosser (XXIV 248), the author proves that A%,
Af and A’ define the same class of theorems, and that all theorems of A* are ex-
pressible and provable in A% Af, and A (though not conversely; this fact is merely
stated in a footnote, and could perhaps have been expanded upon). Of the four
systems, A* thus appears to be the “simplest” axiomatization of Ly, - The author
also shows that four- and three-valued logic respectively. are needed to establish
the minimality of A? and A?Y, in spite of the equivalence of the systems.

Louise Hay

AKIRA NAKAMURA. On the infinitely many-valued double-thveshold logic. Zeit-
schrift fiir mathematische Logik und Grundlagen der Mathematik, vol. 11
(1965), pp. 93-101.

AXIRA NAKAMURA. On a certain system of modal logic. 1bid., pp. 203-207.

In the first paper, the author gives a modification of one of his earlier systems of
infinitely many-valued logic. The modification is obtained by regarding infinite
matrices of 0's and 1’s (instead of infinite sequences of 0's and 1's) as truth-values.
The truth-functions are defined analogously. In particular, there are two types of
threshold operations, namely, those operating on rows and those operating on columns
of the matrices. A decision method, which uses reduction to normal forms, is given
for the validity of well-formed formulas. An interesting interconnection between the
author’s system and a certain dyadic predicate logic is established.

A formal system for a binary operation T, called the temporal valuation, is presented
in the second paper. It is shown that this system, which is similar to a system considered
by Prior, is an intermediate system between the von Wright systems M’ and M”.

ARTO SALOMAA

A. N. Prior. The theory of implication. Ibid., vol. 9 (1963), pp. 1-6.

A. N. Prior. The theory of implication: two covvections. Ibid., vol. 11 (1965),
pp. 381-382.

Borestaw SosociNskl. A note on Prior's systems in “The theory of deduction.”
Notre Dame journal of formal logic, vol. 5 no. 2 (1964), pp. 139-140.

This group of papers has to do with delicate questions concerning syntactical
formulations of the Lewis systems S4 and S5, together with quantificational extensions
thereof. In the first, Prior offers a formulation of S4 and S5 in terms of the primitives
=3, D, and a constant impossible proposition 0. Necessity and negation are defined:
04 =(434) 34, ~4 =420, and other connectives are defined in the
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”Some problems of synthesis of digital automata” by V. M. Gluskov
”On an algorithm of synthesis of abstract automata” by V. M. Gluskov
The Journal of Symbolic Logic, Vol. 33, No. 4, December 1968, 629.
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jedem Automaten 2 « M ein Programm Py fiir M(A, 9) gibt, so daB fiir alle w € ©(A) (= Menge
aller Warter iiber A) gilt Pu(w) = u, , falls w « T(2), oder us , falls w ¢ T(2), wobei u, , up zwei
verschiedene Worter aus ©(A) sind und T(2) das durch U reprisentierte regulire Ereignis
bezeichnet.

In der ersten Arbeit wird zunichst gezeigt, daB sich die Klasse 9 aller endlichen Automaten
mit dem Eingabealphabet A in einer Einregister-Maschine M(A, T,) simulieren 14Bt, deren
Befehlsliste 3, aus zwei sehr einfachen Typen von Befehlen besteht, die allerdings wesentlich
von dem verwendeten Alphabet A abhéngen. Daher wird in einem zweiten Theorem eine
Simulierbarkeit aller endlichen Automaten iiber A in einer “‘arithmetischen™ Einregister-
Maschine M({1}, T.) bei passender Kodierung der Worter aus ©(A) in ©({1}) gezeigt.

In der zweiten Arbeit wird bewiesen, daB auch die Klasse aller real-time Turing-Maschinen
von Rabin (XXXI 657) in einer geeigneten Art von (unbeschrinkten) Register-Maschinen
simulierbar ist. GUNTER ASSER

0. P. KuznEcov. Ob odnom klassé réguldrnyh sobytij (On a class of regular events). Struk-
turnda téorid réléinyh ustrojstv, Izdatél’stvo Akadémii Nauk, SSSR, Moscow, 1963, pp. 100-109.

The following synthesis problem of definite languages is considered: given finitely many
definite languages L, ,- -+, L, , to construct a finite automaton A (without any specified final
state set) such that, for any L, , there is a set of states S; in A which represents the language L, in
A (i.e., A with the final state set S; accepts L,;). This problem is solved and an upper bound for
the number of states in A is obtained by a simple indexing technique through the finite languages
determining the languages L;. The upper bound is much sharper than the bound obtained in
case the languages L, are regular. The result is illustrated by two examples. Erratum. Page 101,
line 7 from the bottom: for *ba(2),” read “‘aba[2]."” ARTO SALOMAA

V. M. GrLuskov. Nékotoryé problémy sintéza cifrovyh avtomator (Some problems of syn-
thesis of digital automata). Zurnal vycislitél’noj matématiki i matématiéskoj fiziki, vol. 1
(1961), pp. 371411.

V. M. GLudkov. Ob odnom algoritmé sintéza abstraktnyh avtomatov (On an algorithm of
synthesis of abstract automata). Ukrainskij matématiééskij Zurnal, vol. 12 (1960), pp. 147-156.

Since the essential contents of the second paper are covered by §4 of the first paper, the review
is restricted to the first paper.

In §1 and §2, the author gives an introduction to the basic notions of automata and sequential
machines, including infinite-state machines. Special emphasis is laid on the formalism of regular
expressions. The author then proceeds to the analysis and synthesis problems of finite automata.
The algorithms presented are similar in spirit (although somewhat different in form) to those
given by McNaughton and Yamada in XXXII 390. The synthesis is also carried further than by
McNaughton and Yamada in the sense that the result is in general better as regards the number
of states and that it is applicable to the simultaneous synthesis of several languages.

The analysis procedure described in §3 is based on an inductive characterization of paths
through £ states in terms of paths through k& — 1 states. An immediate consequence is that the
star-height of a language representable in an n-state automaton (or sequential machine of Mealy
or Moore type) cannot exceed n. In §4, the synthesis problem is considered in the following
form: given finitely many regular expressions R; ,- -+, R,, to construct a finite automaton A4
(without any specified final state set) such that, for any R;, there is a set of states S, in A such
that 4 with the final state set S; accepts the language denoted by R, . The synthesis algorithm
is based on an indexing through the regular expressions R, , which procedure gives the correct
transitions of the automaton. An upper bound (which is an exponential function of the number
of letters appearing in R;) for the number of states in A is obtained. Finally, in §5 and §6, the
author discusses the minimization technique based on experiments and a variant of the state
assignment problem.

The reviewer would like to point out that the first paper (in somewhat shortened form)
appears also in German translation as Appendices 1-4 of W. M. Gluschkow's XXXXIII 634(2).

ARTO SALOMAA
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jedem Automaten U « Mein Programm Py fiir M (A, D) gibt, so daB fiir alle w e O(A) (=Menge
aller Wirter iiber A) gilt Pu(w) = uy , falls w « T(2), oder w, , falls w ¢ T(), wobei u, , up zwei
verschiedene Worter aus ©(4) sind und T(2) das durch U reprisentierte regulire Ereignis
bezeichnet.

In der ersten Arbeit wird zunichst gezeigt, dabB sich die Klasse 9 aller endlichen Automaten
mit dem Eingabealphabet A in einer Einregister-Maschine M(A, ;) simulieren 148t, deren
Befehlsliste J, aus zwei sehr einfachen Typen von Befehlen besteht, die allerdings wesentlich
von dem verwendeten Alphabet A abhingen. Daher wird in einem zweiten Theorem eine
Simulierbarkeit aller endlichen Automaten iiber A in einer “‘arithmetischen™ Einregister-
Maschine M ({1}, J;) bei passender Kodierung der Wérter aus @(A) in ©({1)) gezeigt.

In der zweiten Arbeit wird bewiesen, daB auch die Klasse aller real-time Turing-Maschinen
von Rabin (XXXI 657) in einer geeigneten Art von (unbeschriinkten) Register-Maschinen
simulierbar ist. GUNTER ASSER

0. P. KuznEcov. Ob odnom klassé réguldrnyh sobytij (On a class of regular events). Struk-
turnda téorid réléjnyh ustrojstv, Izdatél'stvo Akadémii Nauk, SSSR, Moscow, 1963, pp. 100-109.

The following synthesis problem of definite languages is considered: given finitely many
definite languages L, ,- -+, L, , to construct a finite autornaton A (without any specified final
state set) such that, for any L, , there is a set of states S, in A which represents the language L, in
A (i.e., A with the final state set S, accepts L,). This problem is solved and an upper bound for
the number of states in A is obtained by a simple indexing technique through the finite languages
determining the languages L;. The upper bound is much sharper than the bound obtained in
case the languages L, are regular. The result is illustrated by two examples. Erratum. Page 101,
line 7 from the bottom: for “ba[2],” read “aba[2].” ARTO SALOMAA

V. M. GLuskov, Nékotoryé problémy sintéza cifrovyh avtomatov (Some problems of syn-
thesis of digital automata). Zurmal vycislitél'noj matématiki i matématiééskoj fiziki, vol. 1
(1961), pp. 371-411.

V. M. GLudkov. Ob odnom algoritmé sintéza abstraktnyh avtomatov (On an algorithm of
synthesis of abstract automata). Ukrainskij matématitéskij ¥urnal, vol. 12 (1960), pp. 147-156.

Since the essential contents of the second paper are covered by §4 of the first paper, the review
is restricted to the first paper.

In §1 and §2, the author gives an introduction to the basic notions of automata and sequential
machines, including infinite-state machines. Special emphasis is laid on the formalism of regular
expressions. The author then proceeds to the analysis and synthesis problems of finite automata.
The algorithms presented are similar in spirit (although somewhat different in form) to those
given by McNaughton and Yamada in XXXII 390. The synthesis is also carried further than by
McNaughton and Yamada in the sense that the result is in general better as regards the number
of states and that it is applicable to the simultaneous synthesis of several languages.

The analysis procedure described in §3 is based on an inductive characterization of paths
through k states in terms of paths through & — 1 states. An immediate consequence is that the
star-height of a language representable in an n-state automaton (or sequential machine of Mealy
or Moore type) cannot exceed n. In §4, the synthesis problem is considered in the following
form: given finitely many regular expressions R, ,- -+, R,, to construct a finite automaton A
(without any specified final state set) such that, for any R, , there is a set of states S; in A4 such
that 4 with the final state set S; accepts the language denoted by R;. The synthesis algorithm
is based on an indexing through the regular expressions R;, which procedure gives the correct
transitions of the automaton. An upper bound (which is an exponential function of the number
of letters appearing in R,) for the number of states in A is obtained. Finally, in §5 and §6, the
author discusses the minimization technique based on experiments and a variant of the state
assignment problem.

The reviewer would like to point out that the first paper (in somewhat shortened form)
appears also in German translation as Appendices 1-4 of W. M. Gluschkow’s XXXIII 634(2).

ARTO SALOMAA
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”On the recognition of replaceability in recursive languages” by A. V. Gladkij,
(English translation of the paper by Gladkij by M. Greendlinger in

Amer. Math. Soc. translations, Ser. 2, Vol. 64, 1967, 81-96.)

The Journal of Symbolic Logic, Vol. 35, No. 2, June 1970, 340.
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as follows. The language ¢.(L) consists of all words y such that, for all words z; and z,,
21x25 € L implies zy yz, € L. The language ¢.(L) is defined similarly, with “implies” replaced by
“if and only if." (According to customary terminology, (L) consists of all words congruent
to x with respect to the congruence induced by L.) For each recursive language L, the languages
¢.(L) and (L) are complements of recursively enumerable languages. Gladkij shows that
there is a context-free language L such that among the sets ¢.(L) there is the complement of a
recursively enumerable language with an arbitrary degree of unsolvability. This leads also to
several other unsolvability results.

In his auxiliary constructions, Gladkij considers Turing machines whose external alphabet
consists of the blank symbol a, , one letter a, , and a boundary marker a, . The instructions of
the ‘machine include operations with the boundary marker. For instance, the instantaneous
description ag a3 g, a; may yield directly the instantaneous description a; g; aq a; . Computations
are defined in the usual fashion, with these additional instructions allowed. If the instantaneous
descriptions are written one after the other, then a terminating computation may be considered
as a word over the alphabet {ay, a; , a5}. Thus, all terminating computations of a Turing-
machine T constitute a language C(T) over the alphabet mentioned. Gladkij shows that the
complement of C(T) (with respect to the set of non-empty words) is a linear context-free
language and, furthermore, the generating grammar may be effectively constructed.

This machine construction is used also in the proof of the undecidability of inherent ambiguity.
Moreover, the following auxiliary notion is introduced. A context-free grammar G determines a
“unique decomposition™ of the language L(G) if the following condition is satisfied. Consider
a word x in L(G) and two subwords x; and x5 of x such that both x; and x, are derived from a
non-terminal in a derivation of x. Then either the words x; and x; do not intersect, or one of
them is a subword of the other. An unambiguous grammar determines a unique decomposition.
(The reader is referred to the aforementioned book by Ginsburg for a very clear treatment of
the undecidability of inherent ambiguity, as well as related problems.)

The discussion above deals with the first two papers. The remaining three papers under review
investigate the notion of a *‘configuration.” A configuration of degree 1 with respect to a
language L is a word X of length greater than 1 such that there is a letter x in the language
Px(L). Assume that configurations of degree i < r have been defined. Then a configuration of
degree r with respect to L is a word X of length greater than 1 such that there is a letter x with
the property that, for any words x; and x5 , (i) if x;xx3 € L then x; Xx; e L, and (ii) if x; Xxg e L
and contains no occurrences of configurations of degree < r which intersect with but are not
contained in the indicated occurrence of X, then x;xx; ¢ L. Properties of configurations perti-
nent to characterization of language families and several questions of undecidability, as well as
upper bounds for the degrees, are studied. ARTO SALOMAA

A. V. GLADKD. O raspoznavanii zaméséaémosti v rékursivnyh dzykah. 1bid., vol. 2 no. 3
(1963), pp. 5-22.

A.V. GLADKIL On the recognition of replaceability in recursive languages. English transla-
tion of the above by M. Greendlinger. American Mathematical Society translations, ser. 2
vol. 64 (1967), pp. 81-96.

Given a language L and a word x, the languages ¢.(L) and y.(L) are defined as in the pre-
ceding review. Furthermore, $(L) is the set of ordered pairs (x, y) such that x e ¢,(L). ¥(L) is
defined similarly. The author shows by an example that L may be recursive, with neither ¢(L)
nor (L) being recursively enumerable. Also the opposite situation is possible: (L) and (L)
are recursive but L is not recursive. The examples are over an alphabet with at least two letters,
but similar considerations hold for one-letter alphabets. There is no algorithm for constructing
$(L) or ¢(L), given L. Finally, the author considers context-sensitive grammars. He shows that,
for any given degree of unsolvability, there is a context-sensitive grammar G such that the
language g(4.L(G)) possesses the given degree of unsolvability. Here x is a fixed given word
and g(L) denotes the set of Gtdel words of the words in L. ARTO SALOMAA

C. R. J. CLAPHAM. An embedding theorem for finitely generated groups. Proceedings of the
London Mathematical Society, ser. 3 vol. 17 (1967), pp. 419-430.
The author’s introduction is an admirable summary: *“Qur aim is to show that any finitely
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788 REVIEWS

the theory of word transformations constructed in the 1968 paper and some of the ideas used in the
proofs of the sequels.

This, then, is a book which, at first sight, consists of miscellaneous papers thrown together, but
turns out in the end to give a fair indication of both the unity and diversity of work done under the
over-all heading “word problems.” C.R.J. CLAPHAM

SEYMOUR GINSBURG. Algebraic and automata-theoretic properties of formal languages. Funda-
mental studies in computer science, vol. 2. North-Holland Publishing Company, Amsterdam and
Oxford, and American Elsevier Publishing Company, Inc., New York, 1975, xii + 313 pp.

A formal language is a set of strings of letters from a finite alphabet. Finite specifications of
languages either by generative devices (grammars) or accepting devices (automata) have been the
object of an intensive study during the past twenty years. A device of some specific type, such as a
finite automaton or a context-free grammar, determines a family of languages, consisting of all
languages definable by devices of this type. Quite a few such language families have been
introduced and investigated from various points of view. One important aspect in this has been the
study of closure properties. It has turned out that many of the most important language families are
closed under regular operations (union, catenation, and Kleene star or Kleene plus) and
transductions (corresponding to the operations of homomorphism, inverse homomorphism, and
intersection with regular languages).

In the late sixties, the author originated the theory of “‘abstract families of languages™ (AFL's) as
an attempt to unify the treatment of different language families. The work under review is the first
comprehensive treatment of AFL theory in book form. By definition, a full AFL is a family of
languages (with some trivial cases excluded) closed under regular operations and transductions. An
AFL differs from a full AFL in that, as regards homomorphism, closure only under non-erasing
homomorphisms is required. (Kleene star is used for full AFL’s, Kleene plus for AFL’s.) The book
studies AFL'’s and related structures, the most important of which is a “trio.” By definition, a full
trio is a family of languages closed under transductions. The notion of a trio is obtained by the same
maodification as before.

Some terminological differences between the Ginsburg school and some other, notably French,
authors should be pointed out. According to the latter authors, full AFL, AFL, full trio, trio, are
called (in that order) FAL, faithful FAL, cone, faithful cone.

A brief description of the contents of the book follows. After two chapters with introduction and
preliminaries, all basic results concerning trios and AFL's are established in Chapter 3. They
include the characterization of transductions in terms of the three operations listed above,
substitution, dependencies among the AFL operations, and taking the AFL and trio closure of an
arbitrary family. This part also contains a proof of the (perhaps most interesting general AFL
theory) theorem to the effect that the AFL closure of a family of languages is obtained by closing
the family first with transductions and then the resulting family with regular operations. The next
chapter deals with *“‘abstract families of acceptors” (AFA’s). Basically, an AFA is a family of
automata with a fixed mode of reading and writing information on the storage. Various ways of
“squeezing out” language families from AFA’s are introduced, and one-to-one correspondences
between these language families and (full) AFL’s are obtained. Since AFL’s may include languages
not recursively enumerable, AFA’s may also contain devices not effective in any sense. To this
reviewer, the main reason for introducing, acceptors in formal language theory is to provide
intuition to understand certain phenomena. It is not clear that AFA’s satisfy this requirement, as in
fact they lead into very complicated considerations.

Chapter 5 deals with principal AFL's and trios, i.e,, those generated with respect to the
operations involved by a family consisting of one language only. (It turns out that a principal trio is
always closed under union, i.e., is a semi-AFL in the terminology of the author.)) Results
concerning the representation of principal families in different ways, including several AFA
characterizations, are given. The technique of proper ascending chains for showing non-principality
is also discussed. Chapter 6 returns to the discussion of substitution: AFA representation,
substitution closure, and the problem of how principality is preserved under substitution. The final
chapter deals with trios and AFL’s generated by families of bounded languages.

The whole book has a feature which certainly the readers of this JournaL will find important:
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the definitions and proofs are reliable, written in the thorough “Ginsburgian" style. This reviewer
has given a course based on the book and could find very few errors of any kind, including printing
errors. The motivation and background mateiial is scarce but to the point. It is always more
pleasant to give more of the latter material during the lectures and rely on the proofs in a book,
than the other way round. Unfortunately, most of the books in the area of automata and formal
languages have very bad proofs.

On the other hand, the book is by no means easy to read and requires also previous knowledge
concerning automata and languages. Some of the proofs are impossible to understand if one has
not seen analogous proofs before. For instance, in the proof of the crucial Lemma 3.2.2, page 26,
the notation used makes it very difficult to see that R, keeps track of the right sequence of states.

On the critical side, the following points should be mentioned. Although the proofs are correct,
in many cases simpler and more polished arguments can be given. The author has not made full use
of the decomposition theorem for the operator M, Theorem 3.2.1. For instance, the very long proof
concerning closure under inverse homomorphism in the important Lemma 3.6.1 can be entirely
avoided. The only thing needed is reference to Theorem 3.2.1 and the short sentence *‘For note
that ..." in brackets in the middle of page 63. A use of the associativity law would simplify some
arguments in the chapter dealing with substitution. It also seems to this reviewer that at least half of
the arguments deal with difficulties caused only by the empty word. Sometimes it is very difficult to
find out what is the main line of reasoning and what is only a side issue caused by the empty word.
Sometimes a convention to the effect that languages differing by the empty word only are
considered equal would have been very helpful.

The book covers a lot of ground, and additional material and references are given in the
exercises. There is just one topic that I would have liked to see given more coverage: generators
of language families, especially important families like context-free languages. Principality is
discussed in detail but not the question of what are the requirements for a generator. How does a
language family have to look if every AFL generator for it is also a trio generator for it? Contrary
to his usual practice, the author states without proof some things regarding this topic that are basic
even for context-free languages; e.g. the equation h~'(W,) = U in Example 5.1.1 on page 139.

It should be apparent from what has been already said that, in spite of a few critical remarks, my
over-all impression of the book is positive. The book is recommended for mathematicians,
computer scientists, and linguists as a useful source and reference book about this special area of
language theory. ARTO SALOMAA

Freperic B. FitrcH.  El ts of bi y logic. Yale University Press, New Haven and
London 1974, viii + 162 pp.

What is combinatory logic about? Fifty years after Schénfinkel proposed the combinators as the
“building blocks’ of mathematical logic, there is still no really convincing answer. Yet, like a
natural phenomenon, the combinators keep reappearing, to be used and to be explained.

In the past few years, combinatory logic seems to have broken out of its age of exploration in
which the main activity was to test the strength and consistency of various ways of adding logical or
mathematical notions to the combinators. This type of research should and will continue, but the
face of combinatory logic has been changed by Scott’s discovery of models of combinatory logic in
which the combinators are interpreted as genuine mathematical functions. There have also been
some striking recent results not dependent on Scott’s models, such as Béhm’s theorem on the
separability of combinators in normal form, Plotkin’s proof of w-incompleteness, and the proof by
Sanchis and by Tait independently that in the combinatory theory of the primitive recursive
functions of finite types, every term has a normal form.

The reader looking for a survey of the current status of combinatory logic, an introduction that
also provides an indication of the main results and lines of research, will not, however, find it in
Fitch’s new book. Instead, and appropriately enough for one of the grand old men of combinatory
logic (the 1975 Rome symposium on lambda-calculus and computer science theory was dedicated
to Church, Curry, and Fitch), the present book is an exposition of some of Fitch’s own thinking —
the development of a particular system of combinatory logic.

From the preface: ““The system of combinatory logic presented in this book is called the system
Q. It contains not only the usual combinatory operators and sentential connectives, but also
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8 Salosauna

Salomaa, A., ”What computer scientists should know about sauna?”,
European Association for Theoretical Computer Science Bulletin,
Vol. 15, 1981, 8-21.
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over free manoidﬂ} to regular sets over arbj
result about regular set® {‘ mathematical or otherwise, for ﬂoin:r m“”"
here (for instance, see [19]), so I :
t saund . ’ do
mal;:ﬂd as what is a saund and what is a goPd SAUNA. not
here M3t riends and colleagues speak. During his visits, H o
some poems that I could edit a book of sauna poetry

about sauna in general.

Then some lines of Hermann describing difficult problems:

Als Arbeitsaufenthalt ersonnen
: hat es mit Sauna gleich begonnen.
Wir schwitzten, dachten, tranken viel
aber nicht das Ziel:
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Two thousand matches,
One thousand newspapers,
One dlaﬂ.l.“nd birch twigs,
One radio, and

I conclude with the lines of Andy Szilard:
In the heat

when friends meet

it’s a real treat

even though they burn their meat

as well as with those of Andy’s former teacher of English
(“kiuas™ is the Finnish word for sauna stove): » the late Ron Bates

The kiuas is there,

The marriage of water and stone,
And fire, this is where

We come to be one.
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Technology in Prague in 1972, and then in 1974 became a member of the
Czechoslovakian Academy of Sci ; in the Institute of Information
Theory and Automation. He has served on the program committees of
several international scientific conferences, he has worked in diverse
areas and published numerous technical papers.

Ivan's brother, Vaclav Havel, an internationally known playwright, was
imprisoned in 1979 for four and a half years for his activities in
connection with the Charter 77 movement.

In 1980, possibly related to his refusal to denounce his brother, Ivan
Havel was removed from his position in the Academy of Sciences and was
unemployed for several months. Last May, he and his sister-in-law
(Vaclav's wife) were among forty people arr d in c tion with an
incident in which two French lawyers were accused of trying to smuggle
materials and money into Czechoslovakia. At the time of the arrest,
Havel's and Olga Havelova's homes were searched and the authorities
confiscated a number of typewritten copies of various non-political
books. Both were among those charged with "subversion" under
Paragraph 98 of the Czechoslovakian Criminal Code (the same that
resulted in Vaclav Havel's imprisonment), for allegedly "collecting
and distributing written material oriented against the socialist state
and social establishment, with hostile intentions." These charges
carry a maximum sentence of ten years in prison. After four days
detention, Ivan Havel and Olga Havelova were among those released. No
trial date has been announced.

Awaiting that trial, Ivan and his family are in good spirits and
generally doing well. He is employed as a programmer-analyst by META,
a home-worker program for the handicapped.

Since Dr. Havel is unlikely to travel abroad, it is difficult for him
to maintain scientific contacts; computer scientists visiting Prague
may wish to visit him., His address is: Engelsovo nb. 78, Frague 2,
Czechoslovakia.

James W. Thatcher

IBM Research Center

P.O. Box 218

Yorktown Heights, New York 10598

SPECIAL FEATURES

WHAT COMPUTER SCIENTISTS SHOULD
KNOW ABOUT SAUNA

By
Arto Salomaa

1. Introduction. During my travels to different uni-

versities and conferences, I have been asked more and more
questions about sauna. Especially interested in sauna know-
ledge have been the many computer scientists who have built

or are building a sauna of their own. The purpose of this
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technical report is to present the basics of sauna knowledge.
The report has been compiled from my notes for a book about
sauna. (The book itself might never appear.)

True, there are many books about sauna in English,
German and other languages. While these books contain some
correct information, they also contain much nonsense which
has nothing to do with sauna. It is not too informative to
read them: you would not like to read a paper where 50 %
of the results are wrong but you don't know which ones!
There are some reasonable sauna books in English written by
some American Finns but even they do something unacceptable
such as advertise very bad products.

On the other hand, there are good sauna books written
in Finnish but, as far as I know, none of them is available
in English. Also the Finnish literature, including the
national epos Kalevala, abounds with stories and poems about
sauna. And no wonder: in Finland the number of saunas has
always exceeded even that of cars, today's estimated figures
being 1.2 million and a million, respectively, for a popu-
lation of 4.5 million. One of the best sauna stories is by
the Finnish writer Urho Karhumdki, the grandfather of Juhani
Karhumdki.

2. Definitions and basic notions. By definition,

a sauna is a closed space heated by a sufficiently big

(with respect to the volume of the space) stove (called
kiuas) containing stones (usually on the top of the stove).
To take a sauna bath, it is also necessary that the stove

is properly heated and that you have the facility of throwing
water on the stones.

In the sequel we shall consider individually the differ-
ent hardware requirements H, (the space being closed), H,
(the stove being sufficiently big to heat the space) and H,
(the stove containing stones), as well as the two software
requirements S, (the stove actually being properly heated)
and S, (the bather having the facility of throwing water on
the stones).
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H1 is usually satisfied by letting the sauna be a room
in a building. However, the oldest saunas were just covered
holes in the ground. This model, as well as a tent sauna,
have been used by the Finnish army.

It goes without saying that a sign "SAUNA" outside a
building does not guarantee that there actually is a sauna
inside. You should investigate the matter according to the
definition above! Indeed, in some countries the word "sauna"
has specific other connotations.

As in all real-life situations, the definition is not
quite satisfactory mathematically. This is the case espe-
cially as regards H2 and 81. I myself have never met any
borderline cases but Section 7 below contains examples where
some of the requirements are clearly not satisfied. If you
ever meet a borderline case, it just indicates that the
difference between a very good non-sauna and a very bad
sauna is not so big!

"Sauna" is a very old Finnish word, so I am speaking
all the time of "a sauna" rather than of "a Finnish sauna".
On the other hand, I object to the usage of the word "sauna"
in connection with other types of baths.

"L8yly" is the Finnish word for "sauna heat". More
specifically, "18yly" means the heat emanating from the
stones when water is thrown on them. The most important
accessory to a sauna bath is "vihta": a bunch of soft leafy
birch twigs. Also other trees can be used to make vihtas.
For instance, in California eucalyptus is used. The reader
should remember the words "kiuas", "1l8yly" and "vihta".

3. Classifications of saunas. Having defined what
a sauna is, we now discuss briefly what makes a sauna good
or bad. The decisive factor is the quality of 18yly. My usual
rule of thumb here is that 1l8yly is really good if the only
reason to get out of the sauna is that you feel that your
ears are burning, rather than that you cannot breathe well
or the place looks filthy or smells bad, etc. In other words,
the only reason to get out should be that it is too hot for
you! The most important factors contributing towards this
are good ventilation and a sufficiently big stove (kiuas).
This will be further discussed in Section 6.
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It cannot be emphasized too much that, in judging the
quality of a particular sauna, there is no substitute for
good 18yly. My usual analogy here is that in a steak dinner
no fancy vegetables, drinks etc. can compensate for the steak
itself being the sole of a shoe! Even in Finland many
"executive saunas" have lavish swimming pools and bars,
whereas the 18yly room itself is rather mediocre. A rich
American Finn whose sauna I visited had the most fancy
dressing room I ever saw with cold beer, whisky, cognac,
etc., on tap. All this is OK but still the quality of a
sauna should be judged on the basis of the l&éyly room alone.
Otherwise, you are not any more judging saunas but something
else.

A classification independent of quality is obtained
by considering the type of the stove. The stove is either
preheated (meaning that it is not heated any more during
the actual bathing) or continuously heated. The most common
energy sources for heating are wood and electricity; gas and
0il are also used. All preheated stoves I have seen have
been heated by wood. A smoke sauna is a special type of

preheated sauna: there is no chimney but the smoke goes out
through some holes in the walls and roof. The 1l8yly in a
smoke sauna has an especially soft velvety touch. Every
sauna lover knows that saunas heated by wood give better
18yly than others. This has been also tested scientifically.
For instance, it has been shown that electrically heated
saunas produce too many harmful positive ions in the air.

In general, continuously heated saunas are more practical
than preheated ones: it might take the whole day to heat

a smoke sauna.

4, Taking a sauna bath. Every German "Eine kleine
Einleitung in die Sauna", 600 pages, contains very detailed
instructions for taking a sauna bath. You first set the
temperature at 82.5°C and sit for 6 minutes on the lower
platform. Then you go out and keep your feet for 2.5 minutes
in cold water. (I don't know where this "feet in cold water"
comes from but it is in every German sauna book. It would
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seem better to jump entirely into cold water.) Then you go
in again for 4.5 minutes but this time on the higher plat-
form, after first lowering the temperature to 78.5°C. And
so on.

I am very much against such detailed instructions. You
should never take your watch with you: time should stop in
sauna. You should never do anything that feels unpleasant.
Stay in the 18yly room as long as it feels pleasant. Then
go out to cool yourself by whatever means available: shower,
lake, snow or just going outside. (In Finland the last
alternative is sufficient for most of the year!) When you
feel like going into the 18yly room again, do so. Repeat
the procedure as many times as you like. I would say that
in "normal conditions", i.e., when I am living in Finland
I usually have 2-3 sittings in 18yly room, whereas if I
have lived for a longer period in "barbaric conditions"
without sauna and then go to sauna, I might have 6-8 sittings.

You should also experience both dry and humid heat in
sauna. I usually sit first for a longer period without
throwing water on the stones: this is the dry heat. When you
throw water on the stones, the air becomes more humid and
feels hotter, although the temperature does not go up.

Incidentally, sauna heat, i.e., how hot you feel cannot

be defined in terms of degrees alone, even if you agree on

some reasonable place where to put the thermometer. In an
electrically heated city sauna you might feel freezing at
120 ° ¢, whereas full 18yly at 60°C in a smoke sauna with
a huge kiuas might be too much for you! On the other hand,
knowing the behavior of a particular sauna, a thermometer
can be of some help for the person heating the sauna.

The effect of 18yly can be increased by hitting your-
self with a vihta. Some people claim that this is also the
best way of taking vitamins. Anyway, the usage of vihta
brings about what to me is a typical sauna smell. In Finland
the best time for making vihtas is the end of June (mid-
summer). I usually make 52 pairs of them and let them dry.
They can be revived in hot water before using them. If you
make them earlier, the leaves are too small, and if you make
them later, the leaves fall off when revived. (There must
be a natural explanation in terms of L systems for this!)
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Modern techniques, such as keeping vihtas in a freezer,
seem not to work.

Although I am against universal rules, some rules still
seem to apply for everybody. You should not eat before sauna,
say, within 15-2 hours before going in. Your sweating
continues quite long after sauna, so you should not dress
too soon. You feel still better in sauna if you have done
some jogging or other physical exercise before it. However,
you should not do any gymnastics etec. in sauna itself. For
example the Saunameister waving his wet towel around is to
be frowned upon, not applauded. ("One should behave in sauna
as one behaves in church" is a very old Finnish proverb.)
After sauna you can have a nice meal and should drink a lot
of long drinks, to restore your bodily fluids. Observe that
sauna is no good way of loosing weight: the loss of liquid
is only temporary. In a cold climate you should try to keep
warm after the whole sauna ceremony, i.e., after the last
sitting in the 18yly room.

5. Effects of sauna. We consider health effects first.
Every now and then there is a big news item about some bad
health effects of sauna. There has been a doctor, usually
a Swede, who has taken 20 rats into sauna and left 20 others

outside. (The whole idea sounds rather strange: rats in
sauna!) The ones inside have developed high blood pressure
or some kidney or liver condition, or even died of heart
attack, whereas the ones left outside sauna live happily

for ever. (Incidentally, Sweden is one of the worst countries
in the world for a visitor to find saunas and, as a matter
of fact, also one of the worst countries as far as EATCS
membership is concerned!)

Medicine is largely an experimental science. There are
very few, if any, instances of mechanisms understood in a
detailed L systems way. Therefore, I would like to contrast
the above "20 rats inside, 20 rats outside" experiments
with the biggest mass experiment in the history of medicine:
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for several thousand years, practically every Finn has been
to sauna at least once a week. No bad health effects have
been observed. On the contrary: Finland has more olympic
medals per capita than any other country, it has survived

"impossible"” wars and has also produced its share of good
artists and scientists.

Rather than rat experiments, I myself prefer the numerous
old Finnish proverbs about the health effects of sauna, such
as "If sauna, alcohol and tar do not cure your disease, it
must be fatal" or "If your feet carry you to sauna, they
surely carry you back home".

In addition to the health effects, we now discuss
briefly some other effects of sauna. Sauna is a means of
cleaning oneself. Indeed, for a person like myself it is
difficult to feel really clean after any other type of bath.
"Both the body and soul become clean in sauna" is an old
proverb. "I was never so clean after the day I was born!"
one of my visitors, W, commented after three satunas.

Many people claim that the aftereffect is really the
best in the whole sauna experience: you feel so easy and
relaxed. "A woman is never so beautiful than one hour after
sauna" is an old saying. I have seen many times how sauna
"opens the veins in your brain". This happened frequently
in the MSW group. For instance, once I was working with M.
We could not get anywhere. Not only were all the alleys we
tried blind ones but we also realized that some of our
previous basic lemmas were wrong. "Time for a saunal!" After
sauna, M started to talk like an oracle, solving (at least
almost) all of our problems. I had a really hard time,
trying to make notes about what he said! Sherlock Holmes
speaks of "three pipe problems". In the MSW group, we speak
of "three sauna problems" instead!

6. Building and up-keep of sauna. While the particular
local conditions must always be taken into account when

building a sauna, there are also some generally valid rules
I would like to mention here. In a nutshell, the most common
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mistakes are: (i) Kiuas is too small, (ii) Ventilation is
bad, (iii) There are too few stones on the kiuas.

Indeed, (i) is very common even in Finland but can be
easily corrected. I always get mad when seeing an "executive
sauna" with a luxurious swimming pool and a lavishly
decorated sitting room but where the heart of the sauna,
kiuas, is a miserable tiny metal box with a couple of stones
on top. It is very strange that people become stingy when
the heart of the sauna is concerned (perhaps 1 % of the
expenses of an executive sauna), whereas there seems to be
no financial problem otherwise! I have never been to a sauna
which has too big a stove. You cannot go wrong if you put
in a somewhat bigger stove you originally intended!

Ventilation is trickier. It is better to have your
sauna above the ground than in a basement. It is good to
have a window that can be opened within the 18yly room.
Modern ventilation systems are usually not as efficient as
the ads claim. Good ventilation is important not only for
good 18yly but also for the sauna's up-keep: the léyly room
should dry properly between two sauna evenings, and the
platforms should be washed every now and then.

If the stove is full of stones in different layers,
the water thrown on them reaches the hottest ones last.
This results in a smooth and rich 18yly that you feel is
coming from somewhere very deep. The feeling is quite
different if there are just a few stones. Just as some
people can tell a lot about a car by only hearing the engine
running, I can tell a lot about a stove by only hearing the
sound of water being thrown on the stones!

The platforms can be L-shaped, C-shaped or of some other
shape according to your interests and wishes. The shape of
course also depends on the size of the 18yly room. The height
of the room determines how many different levels of platforms
there can be. A tall man should still be able to sit straight
on the highest platform.

I have not experienced any big differences between the
various types of wood used in paneling the 18yly room and
in making the platforms.(I know that some people make a big
fuss about this, though.) The platforms should never be
painted. Otherwise, they are too hot to sit or. When Finland

347




16

had to make ships for Russia as war reparation payments after
the last war, the design of the saunas aboard was by a Russian
architect who wanted the platforms covered by copper plates!
After one sauna had been completed and heated, the architect
was ready to change his mind.

Changing of sauna stones is undoubtedly the most practical
NP-hard problem. When l&yly starts to feel sandy, the stones
are worn out (especially the lower ones) and should be
changed. I myself do this twice a year. One first removes
the old stones. This can be done in real time. Furthermore,
no storage is needed: you just throw the stones away. One
then has to fill up the stove using stones from a given
supply (which you either collected yourself as I do or else
bought). Apparently, the 1-dimensional version of this problem
is the wellknown knap-sack problem, so the whole problem is
certainly NP-hard! Strangely enough, I have always found
the removal problem (real time, no storage) more difficult.
This makes me sometimes wonder what theory is all about.

7. Some sauna experiences. The subsequent experiences
of my own are meant to further illustrate the definition in
Section 2, as well as some other points made above.

a. Otto's stiff leg. One of my boyhood saunas was a
huge smoke sauna - there was room for 30-40 people - on a
farm. Boys like myself would sit on the lower platform,
the local doctor, dentist, preacher, several farmers and
working men on the upper. (Observe that there are no class
distinctions in sauna.) One of the working men, Otto, had a
stiff leg. Always, sooner or later, Otto stated that he would

stapt taking 18yly for his stiff leg. All of us boys left
immediately because we knew it would be too hot even on the
lower platform! As far as I know, Otto's leg remained stiff,
though.

b. Salosauna. My sauna for the past six years is
called "Salosauna" (meaning "sauna in the wilderness" or,
more abstractly, "place of peace"). It is a wooden building
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Eboﬁt 50 kilometers from Turku, made of thick logs around
1850. I have remodeled the interior which now has a washing
room and a sitting room in addition to the 18yly room. The
stove is continuously heated by wood.

Every true sauna lover thinks his own sauna is the best
in the world. I can say quite honestly that I have nowhere
experienced better 18yly than in Salosauna (although there
might have been a few saunas in the same equivalence class).
I have also had the pleasure of having many distinguished
computer scientists as my guests in Salosauna. Last February
The Great Bolgani came to Finland to celebrate my 500th
heating of Salosauna. It was a fabulous sauna evening. The
outside air at -25°C (and/or the snow) was a perfect way
to cool off yourself between the sittings in léyly.

c. Hot saunas and saunas in a hot climate. Some of the
hottest sauna rooms I have visited were in Tallinn. In faet,
Estonia is the only country where the sauna tradition was
preserved (at least almost) like in Finland. However, in
today's electrically heated city saunas the software require-

ment 82 is not satisfied, maybe because the electric wires
have not been properly covered. On the other hand, the rooms
are heated to close to 200° C, and so I am sure very few
people actually could take 1l8yly in them!

Finns have taken sauna with them to all places they
have gone: Thunder Bay, Ontario, Hancock, Michigan, Nornalup,
Australia, etc. (On the other hand, Finns are rather poor
salesmen and, strangely enough, Swedes have most of the
market for sauna products!) Surely, the cold climate of
Finland contributes to the popularity of sauna: it feels like
paradise after working the whole day outdoors. It is cer-
tainly not the same in a hot climate. There are, however,
nowadays amazingly many saunas and "saunas" in hot climate
countries, too.

The first ICALP conference having a sauna on the
conference grounds was the one in Akko last summer. The
hardware requirements H1--H3 were marvellously satisfied.
As regards 81, there was something funny, though. I could
pick up one of the top stones with my bare fingers and
investigate it! The lower stones were quite hot.
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One of the strangest "saunas" I have seen was in
Singapore. The room was divided into small compartments
heated by electric wires on the wall. Thus, H2 and H3 were
not satisfied. (Still, the text outside was SAUNA in huge
letters.) The place resembled more a bread toaster than
a sauna.

d. "Zum Aufguss" and "Altes Fassl". Sauna is becoming
very popular in Germany and Austria. It is estimated that
very soon the number of saunas in Germany exceeds that in
Finland. (The population is also somewhat bigger, though.)
My usual observation about public saunas in Germany is the

same what I said about executive saunas in Section 6: every-
thing else is lavish and luxurious but people became ex-
tremely stingy when choosing the heart of sauna, kiuas:
again that tiny miserable metal box! Moreover, S, is not
satisfied: water is thrown either automatically every hour
or there is a fellow ringing a bell and shouting "Zum Aufguss!"
As a result, everybody goes into the l&yly room at the same
time. This is too much for the tiny metal box: lukewarm is
the best you can get. It does not help much that the "Aufguss
fellow" rotates a wet towel (sometimes even hitting your
face). It is very much against sauna tradition to cause some
kind of a wind in sauna. "Only snakes blow in sauna" is a
very old proverb.

A very refreshing exception is the public sauna in
"Altes Fassl" near Graz. It is the best sauna I know that
was built by a non-Finn. Everything, including the size of
the stove, is there quite reasonable.

e. Reindeer-Eric - a living legend. Some of my most
memorable sauna experiences are with the Great Reindeer-Eric
(Poro-Eero in Finnish). This tough man has lived most of
his 65 years north of the Arctic Circle. He is very good
in reindeer skiing, that is, skiing while being pulled
ahead by a reindeer. He is also very skillful in reindeep-
biting, that is, castration of the animal by biting.

Eric takes extremely hot 18yly in sauna. He is a small
skinny fellow. Exactly the type described by the Finnish
writers as a tough 1l8yly taker. Apparently, biological
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knowledge has not yet reached the detailed level of L systems.
This became obvious to me when Aristid Lindenmayer seriously
argued, on biological grounds, that it is easier for fat
people to take hot 18yly than for thin ones! Every sauna
expert knows that exactly the opposite is the case. And the
real masters are small skinny fellows. Like Marathon runners.
Like Reindeer-Eric.

But last spring when I again met Eric I had decided to
stay in sauna as long as he. At least I would try. Of course,
nothing of a competition was ever mentioned. Most probably
such a thought never even occurred to Eric.

The sauna was extremely hot when we entered. "We don't
want anything lukewarm, do we?", Eric had pointed out when
we were heating the sauna.

When seated, Eric started to talk about a recent program
in our radio where all concerti grossi by Corelli were broad-
cast. Eric's expertise in music, especially baroque music,
seems to be completely out of place and something you would
not expect from a reindeer man. We had a lively discussion
about the differences between Corelli and Vivaldi in writing
concerto grosso. Every now and then I was throwing water on
the red stones.

Eric moved on to talk about his home town. I was now
only listening. I had started to feel the heat. The sauna
was excellent, so I had no difficulties in breathing. Some
parts of my skin, especially ears, felt like burning. But I
remembered the old saying "Whatever dry wood can take, your
skin can take also". I did not see the sauna burning yet,
so I threw more water on the stones.

I also used the excellent vihta we had brought with us.
"Maybe later", was Eric's reply when I offered it to him.
I still desperately threw water on the stones when Eric told
about his recent visit to a famous doctor in Helsinki. At 84,
this doctor is still working very hard. When Eric asked the
secret of the doctor's excellent health, the doctor said:
"It is a gift you get at birth. Everything else they say
is nonsense!"
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But now I really felt I had had it. "I think I have to go
out for a while." Eric did not answer, although it would have
been very appropriate for him to utter the classical words
"It is good that small boys get out, so that grown-up men
can start taking the sauna bath!"

Instead, he threw the whole bucketful of water on the
stones. I just escaped from the 1l8yly room in time. Outside
I heard Eric furiously beating himself with the vihta.

8. Questions and answers.

Question. At what age do children go to sauna in
Finland?

Answer. They are born in sauna. (In fact, this is not
literally true any more. Still, the infant mortality is the
lowest in the world in Finland.)

Question. Is sauna good for your health?

Answer. If sauna, alecohol and tar do not cure your

disease, it is fatal.

Question. How do you use tar?

Answer. I have heard you rub it on your breast.
(In fact, this is tar obtained by burning pines and spruces.)
On the other hand, I have never been so sick that the first
two did not help.

Question. To what temperature should I heat my sauna?

Answer. It depends very much on the sauna. For the
saunas I have seen, the optimal temperature varies between
50°¢C and 120°C. The very low temperatures are for smoke
saunas alone.

Question. Could I use pieces of metal instead of sauna
stones? They would last much longer and, consequently,

I would not have to solve the NP-hard problem of changing
the stones so often?

Answer. Sauna stones must be stones. If you use metal
pieces, a very visible difference is that you see the léyly,
which never happens if you use stones. You surely also feel
the difference (and this is even much more important!).

352




2]

Question. What kinds of stones should I use? Where do
I get them from?

Answer. The stones must be hard and should not produce
any smell or fumes when heated. They are commercially
available but you can also collect them yourself, testing
the hardness by hitting two stones together. I always collect
them myself. In some countries, like Israel, I did not see
any suitable sauna stones.

Question. What kind of leaves can I use for vihta?

Answer. Birch is by far the most common in Finland.
Oakleaves and juniper are also used. The latter must be
softened in boiling water. To find the "vihta properties"
of a particular tree, you really have to test it yourself,

Question. Can sauna help you to lose weight?

Answer. No. You can lose a few kilos (Finnish wrestlers
and boxers often go to sauna before the weighing takes place
in a competition!) but the loss is temporary only. Look how
fat I am!

Question. Can I have alcohol in sauna?

Answer. This is recommended only for health effects
(as discussed above) and only after the last sitting in the
l8yly room. If you want to prove some theorems, alcohol is
likely to close the veins opened by the sauna.
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