Application of IEEE 802.15.4 Security Procedures in
OpenWSN Protocol Stack

Savio Sciancalepore, Student Member, IEEE,
Giuseppe Piro, Member, IEEE,
Gennaro Boggia, Senior Member, IEEE and
Luigi Alfredo Grieco, Senior Member, IEEE
Department of Electrical and Electronical Engineering (DEI), Politecnico di Bari,
v. Orabona 4, 70125 Bari, Italy; Email: {name.surname}@poliba.it

Abstract—With the diffusion of the Internet of Things
paradigm, even more researchers and industries worldwide are
focusing their attention on the definition of optimized protocol
architectures, able to offer a wide range of services in Low-
power and Lossy Networks. In this context, the OpenWSN project
emerges as one of the most promising open-source protocol stack
for IoT devices; it is based on the IEEE 802.15.4 radio and is
particularly suitable for constrained devices. Unfortunately, at the
time of this writing, it does not support security features defined
by IEEE 802.15.4 specifications for the MAC layer. To bridge
this gap, we present in this contribution a freeware and open-
source implementation of security procedures for the OpenWSN
protocol suite, which embraces security attributes stored into
the MAC entity, security functions operating at the MAC layer,
and cryptographic techniques used to execute encryption and
decryption functionalities. To provide a further insight, we also
evaluated, through real experiments conducted with the TelosB
hardware platform, the impact that the adoption of security
features has on both computational load and communication la-
tencies. Our findings demonstrate that computational capabilities
of constrained motes drastically influence the network operation,
thus requiring the design of optimized and enhanced security
services. We believe that the open source nature of the developed
module could widely support all people involved in this research
area.

I. INTRODUCTION

The emerging Internet of Things (IoT) paradigm introduces
the possibility to create a capillary networking infrastructure,
able to provide several ICT services, spanning several different
contexts like transportation, logistics, healthcare, smart envi-
ronment (home, office, plant), and personal/social domains [1].
This idea leads to the definition of a Low Power and Lossy
Network (LLN), which is mainly composed by a large number
of low-power nodes that can establish short-range wireless
connections among them and that can be connected to the
Internet through gateway servers [2]. Such devices have sev-
eral constraints in terms of computational capabilities, energy
consumptions, and storage resources. As a consequence, the
definition of suitable protocol stacks (that cover all aspects,
from the application layer to the physical interface) is a key
topic, which is currently attracting the attention of researchers,
industries, and standardization bodies worldwide [3], [4], [5].

In this context, the IEEE 802.15.4 standard emerges as the
leading enabling technology for short range low rate wireless

communications [6]. In fact, it defines (i) physical and the
Medium Access Control (MAC) layers for LLNs, (ii) two
types of network nodes, i.e., Fully Function Device (FFD) and
Reduced Function Device (RFD), that can build peer-to-peer or
star networks, and (iii) advanced security features at the MAC
layer. More recently, instead, the IEEE 802.15.4e specification
has been published for introducing some amendments to the
IEEE 802.15.4 standard [7]. Among its key features, the Time
Synchronized Channel Hopping (TSCH) emerges as a novel
MAC protocol, which better supports multi-hop communica-
tions in industrial applications.

To actualize the IoT vision and easy plug and play op-
erations of smart devices in IPv6 networks, the ZigBee al-
liance and the Internet Engineering Task Force (IETF) have
recently proposed and standardized novel solutions, based on
the aforementioned IEEE 802.15.4 radio, at different layers of
the protocol stack. At the same time, researchers and industries
are looking at designing and developing innovative algorithms
and approaches that optimize and/or extend what have been
conceived within standardization efforts. In this context, the
availability of sophisticated research instruments, which model
and implement in real devices LLN-related protocols, can be
very useful for better supporting research activities aiming at
evaluating pros and cons of existing and novel solutions.

At the time of this writing, one of the most promising
freeware and open-source implementation of IoT-compliant
protocol stack for constrained devices has been developed
within the OpenWSN project [8]. Nevertheless, despite it
already offers a large number of protocols, including PHY and
MAC layers defined in IEEE 802.15.4 and IEEE 802.15.4e
specifications, as well as other high level protocols devised
by the IETF, i.e., IPv6 over Low Power and Lossy Networks
(6LoWPAN), Routing Protocol for Low Power and Lossy Net-
work (RPL), and Constrained Application Protocol (CoAP),
some important features are still not fully available. Among
them, one of the most important lacks is the unavailability of
security procedures and services defined by the IEEE 802.15.4
standard for the MAC layer.

The present contribution intends to overcome this weakness
by proposing an open source implementation of IEEE 802.15.4
security features within the OpenWSN project. To this end, we
properly extended the OpenWSN protocol stack by developing:

(©2014, S.Sciancalepore, G.Piro, G.Boggia and L.A. Grieco

e MAC PIB attributes related to security aspects, i.e.,
tables and variables storing all the information needed
to provide security services (including keys, devices’
authorization, security levels, and so on);

e functions operating at the MAC-high layer, handling the
inserting and the retrieving of security-related parame-
ters and attributes introduced at the previous point;

e cryptographic techniques used to execute encryption
and decryption functionalities, based on the Advanced
Encryption Standard (AES) scheme.

We remark that the developed code is fully compliant
with IEEE 802.15.4 specifications and it is integrated
with the entire OpenWSN protocol stack (and, hence,
it could be used for managing security services at the
MAC layer independently from the set of configured up-
per layers). Moreover, the code is freely available at:
http://telematics.poliba.it/openwsn_ieee802154_security.

To provide a further insight, we also evaluated, through
real experiments, the impact that the provisioning of security
features has on communication latencies. In particular, we
set up a simple testbed composed by a couple of TelosB
motes [9], that exchange a number of packets, which are
protected at the MAC layer according to IEEE 802.15.4
specifications. Obtained results clearly show that the enabling
of security features in constrained nodes requires additional
computational efforts, which involves a not negligible growth
of communication latencies.

The rest of the paper is organized as follows: Sec. II
describes the IEEE 802.15.4 standard and focuses on security
mechanisms it proposes; the description of the implemented
security module within the OpenWSN project is provided in
Sec. III; Sec. IV shows experimental results; finally, Sec. V
draws conclusions and future works.

II. IEEE 802.15.4
A. General Description

The IEEE 802.15.4 standard is widely recognized as one
of the most successful low-power technologies for short range
and low-rate wireless communication, and defines both MAC
and Physical (PHY) layers of the protocol stack [3].

Two types of network nodes, i.e., the FFD and the RFD, can
be found in an IEEE 802.15.4 network. They could be arranged
in both peer-to-peer and star topologies. A FFD has the highest
computational capabilities and it works as the coordinator
of the network (also called PAN coordinator), thus being a
reference node for a group of others RFD devices. Instead,
a RFD has lower resource and communication capabilities
and it is able to communicate only with its reference FFD.
Whereas RFDs must be connected only to a single coordinator,
FFDs can connect among them forming more complex meshed
network architectures.

At the physical layer, the IEEE 802.15.4 network operates
in the 2.4 — 2.485 GHz frequency band, i.e., a worldwide and
unlicensed frequency range, and exploits the Offset-Quadrature
Phase Shift Keying (O-QPSK) modulation scheme and the
Driect Sequence Spread Spectrum (DSSS) transmission tech-
nique. The maximum physical data rate is equal to 2 Mbps.

However, due to the presence of enhanced coding algorithms,
which make the transmission robust against interferences, the
effective bit rate from the users’ perspective is equal to 250
kbps.

The channel access is regulated by a specific Super Frame
structure, as illustrated in Fig. 1, composed by 16 consecutive
slots (all with the same duration). In order to communicate
some details about the PAN and the medium utilization,
as well as enabling synchronization procedures for all the
attached devices, the coordinator periodically releases a control
message, namely Beacon, at the beginning of the Super Frame.
Moreover, as depicted in Fig. 1, the transmission of messages
is done during the active period (i.e., a first part of the Super
Frame). The remaining unused slots form the inactive period,
during which devices can turn in low-power mode for energy-
saving purposes.

Before the packet transmission, a physical preamble of
128us is exploited to execute synchronization operations.
Then, a Start of Frame Delimiter (SFD) is sent to indicate the
start of the physical payload, whose size is up to 128 bytes.
However, since the first byte of the physical payload is used to
indicate the packet length, the overall amount of useful bytes,
i.e., the Maximum Transmission Unit (MTU), is equal to 127
bytes.

- «—— BEACONS ___ -

ACTIVE PERIOD INACTIVE PERIOD

time

\4

Fig. 1. The SuperFrame Structure

B. Security in IEEES802.15.4

1) Security services: As highlighted by the general descrip-
tion of the standard, an IEEE 802.15.4 network is vulnerable
to a number of security threats/attack, which include active
tampering and eavesdropping. As a consequence, to make the
network robust against these kind of hazards, it is important
to provide security services as data confidentiality, message
integrity, and the protection to replay attacks.

The data confidentiality refers to the possibility to limit the
access to information stored within packets to only authorized
nodes. It is generally achieved by encrypting part of the mes-
sage (i.e., in our case the MAC payload) through the adoption
of key and algorithm common to both sender and receiver.
While not knowing secrets exploited by the encryption process,
a given attacker could modify the content of the message
while it transits over the network for reaching the destination
node. The message integrity protection must ensure that the
packet arrives at the receiver side without any tampers and
alterations. This is done thanks to the use of a one-way hash
function that, by combining all the bytes in the message with
a secret key, is able to verify the integrity of the packet itself.
Finally, an encrypted and authenticated message, which has

(©2014, S.Sciancalepore, G.Piro, G.Boggia and L.A. Grieco

been exchanged between two authorized node, may be stored
and sent again into the network by a fraudulent device (i.e.,
the so called replay attack). To prevent this kind of attack, the
sender typically assigns a monotonically increasing sequence
number to each packet and the receiver rejects packets with
smaller sequence numbers than it has already seen.

To offer these security services, the IEEE 802.15.4 speci-
fication introduces procedures and mechanisms for protecting
MAC frames, through symmetric-key cryptography techniques
based on the AES-CCM* algorithm. In the case security fea-
tures are supported by a given device, the macSecurityEnabled

attribute, stored at the MAC layer, is set to TRUE.
2) Securzty levels: Eight security levels are defined to pro-

tect the frame generated at the MAC layer in different manners.
As summarized in Tab. I, they include unsecured, only en-
crypted, only authenticated, and encryption with authentication
configurations. When the unsecured level is enabled, nor data
confidentiality neither message integrity are provided. In other
cases, instead, the data encryption and the authentication of
messages are provided by means of AES and AES-CBC tech-
niques, respectively. It is possible to offer a specific service to
each kind of packet. However, the selection of the security level
and the definition of other parameters required for performing
security procedures have to be handled by an upper layer
and then communicated to the MAC entity through dedicated
primitives.

TABLE 1. DIFFERENT SECURITY LEVELS PROVIDED BY THE
IEEE802.15.4 STANDARD
Security| Security Security Data Con- Data Au- Authentication
Level Level Field | At- fidentiality thenticity | tag length
b2, b1, b0 tributes (bytes)
0 000 none OFF NO 0
1 001 MIC-32 OFF YES 4
2 010 MIC-64 OFF YES 8
3 011 MIC-128 OFF YES 16
4 100 ENC ON NO 0
5 101 ENC- ON YES 4
MIC-32
6 110 ENC- ON YES 8
MIC-64
7 111 ENC- ON YES 16
MIC-128

3) IEEE 802.15.4 header structure: The IEEE 802.15.4
MAC frame, which has been pictured in Fig 2, is composed by
a MAC header, a payload and a Frame Check Sequence (FCS)
footer. Security parameters are included within the Frame
Control and the Auxiliary Security Control fields.

If the Security Enabled flag of the Frame Control field is
set to 1, it means that the current MAC frame is protected and
the node transmitting the packet supports at least one of the
security services discussed above. If the flag is set to 0, instead,
it means that the device sending the packet does not support
any security capabilities and, for this reason, it is not able to
send and receive encrypted and/or authenticated messages.

The Auxiliary Security Control field, which is present into
the MAC header only if the Security Enabled flag is equal to
1, stores some parameters adopted for protecting the frame.
They will be exploited by the destination node for performing
the reverse security procedure (i.e, decryption and/or integrity
check). This security header is composed by the Security

Octets: 2 0/2/8 0/2/8 |fromoto14 | variable

Frame Seq Dest Dest Source | Source gz)c(::try
Control | Number | PANID | Address | PAN ID Address ¥
Octets: 1 4
Security | Frame Key
Control | Counter | Identifier
- . \ N
Bit:0-2 3-4 5-7
. Key
Sy Identifier | Reserved
Level Mode

The Auxiliary Security Header Structure

2
Frame
Payload

from0Oto9

Fig. 2.

Control, the Frame Counter, and the Key Identifier fields. The
first one explains the security level and the key identification
mode chosen by the sender. The counter stored into the
second field is generated by the source in order to protect the
message from replay attacks. Finally, the last field, i.e., the
Key Identifier, is optional and it stores information (KeySource
and Keylndex) needed to determine the key exploited for the
encryption of the message.

4) Security procedures and MAC PIB attributes: At the
MAC layer, encryption and decryption functionalities are im-
plemented within the outgoing frame security and the incoming
frame security procedures, respectively. They exploit a number
of security attributes, which have been summarized in Tab II.

It is very important to remark that the standard allows the
possibility to use a dedicated key for each remote device and
for each type of MAC frame (i.e., beacon, command frame,
data packet, and ACK). Moreover, it is necessary to define
a specific security service to be guaranteed for each kind of
message. The related information is stored in the macSecu-
rityLevelTable. 1t is composed by a set of SecurityLevelDe-
scriptor elements, which provide information about the frame
type which it refers to, the minimal expected/required security
level, the set of allowed security levels, and a boolean flag
indicating if the minimal security service may be overridden
by a given device.

A node stores into the macDeviceTable the list of devices
with which it can setup a secure communication. For each of
them, a dedicated DeviceDescriptor is created. It contains the
PAN 1D, its short MAC address, its extended MAC addresses,
as well as the counter of the latest packet received from the
remote device and a boolean flag indicating if the considered
node may override the minimum security level settings.

Without any doubts, the most important attribute is the
macKeyTable where all the keys are organized in. A keyDe-
scriptor, i.e., the single element of the aforementioned table,
contains the key, the set of devices that can use it, a list of
KeyUsageDescriptor indicating which frame may be protected
with this key, and other parameters (e.g., KeySource, keylndex)
used for uniquely identifying the key.

A node that intends to secure a packet (i.e., by encrypting
and/or authenticating the MAC payload) has to execute the

(©2014, S.Sciancalepore, G.Piro, G.Boggia and L.A. Grieco

Attribute

TABLE II.
Type

SECURITY-RELATED ATTRIBUTES DEFINED IN IEEE 802.15.4

Description

macKeyTable

Set of KeyDescrip-
tors

It stores keys and other specific information, useful for protecting a MAC frame. A keyDescriptor
element is created for each key, and contains: the key, the set of devices that can use it, a list of
KeyUsageDescriptor indicating which frame may be protected with this key, and KeySource and
keylndex) parameters adopted to uniquely identify the key.

macDeviceTable Set of | It provides some information about remote devices which the node can establish a secure
DeviceDescriptors communication with. A dedicated DeviceDescriptor is associated to each remote device.

macSecurityLevelTable Set of | It provides information about the security level required for each MAC frame type and subtype. In
SecurityLevelDe- particular, each SecurityLevelDescriptors stores information about the frame type which it refers to,
scriptors the minimal expected/required security level, the set of allowed security levels, and a boolean flag

indicating if the minimal security service may be overridden by a given device.

macFrameCounter Integer The outgoing frame counter for the considered device.

macAutoRequestSecurityLevel Integer The security level used for automatic data requests.

macAutoRequestKeyldMode Integer The key identifier mode used for automatic data requests. It is invalid if the macAutoRequestSecu-

rityLevel attribute is set to 0x00.

macAutoRequestKeySource

Short or extended
1IEEE 802.15.4

The originator of the key used for automatic data requests. This attribute is invalid if the

MAC address

macAutoRequestKeyldMode element is invalid or set to 0x00.

macAutoRequestKeylndex Integer

The index of the key used for automatic data requests. It is invalid if the macAutoRequestKeyldMode
attribute is invalid or set to 0x00.

macDefaultKeySource Extended 1IEEE
802.15.4 MAC
address

The originator of the default key used for key identifier mode 0x01.

outgoing frame security procedure, i.e., the following steps:

1) identify the Security Level that has to applied to the
current MAC frame among those listed in Tab I;

2) make sure that the size of the frame does not exceed
the maximum allowed value (i.e., 127 bytes [6]);

3) identify the key to use during the encryption process.
It will be selected among those available into the
macKetTable by taking into account the Key Identify
Mode announced by the upper layer;

4) protect the MAC payload according to the selected
Security Level, by using the CCM* algorithm;

5) create the Auxiliary Security Control field and include
it within the protected frame;

6) generate the FCS;

7) reassemble the whole packet;

When a device receives a MAC frame, it should firstly
verify if it has been protected by the sender (i.e., if the
Security Enabled flag is set to 1). In affirmative case, it will
run the incoming frame security procedure, i.e., the following
operations:

1) verify the packet integrity through the check of the FCS;

2) identify the key to exploit during decryption process;

3) verify that the Security Level chosen by the sender is
allowed for the message the packet contains;

4) decrypt the payload;

5) verify that all security constraints (e.g., allowed Security
Level, allowed key, frame counter) do not generate any
security conflicts;

6) delivery the message to the upper layer;

To rightly complete both aforementioned procedures, each
device uses other subroutines for different purposes. They
include: (i) the KeyDescriptorLookup procedure, exploited to
find the key in the MacKeyTable; (ii) the DeviceDescriptor-
Lookup procedure, used to find the right entry in the MacDe-
vicelable; (iii) the SecurityLevelDescriptorLookup procedure,
used to detect the type of frame to be unsecured, (iv) the

IncomingSecurityLevel Checking procedure, exploited to check
if the security level of the incoming frame conforms to the
standard security levels for the receiving node; and (v) the
IncomingKeyUsagePolicyChecking, which identifies if the key
is properly used.

5) Cryptographic operations: The CCM#* cryptographic
process is based on the AES-128 block cipher, with the use of
a key with either 32, 64, or 128 bits (note that the generation
of this key is outside the scope of the standard).

The CCM* mode forward procedure, adopted to protect a
MAC message, involves the execution of three subroutines:

1) the Input Transformation, which is in charge of creating
two data strings, i.e., AuthData and PlainTextData, that
represent initialization vectors in next steps;

2) the Authentication Transformation procedure, which
generates the authentication tag. As shown in Fig. 3,
it is based on the CBC-MAC mode;

3) the Encryption Transformation, that generates the
encrypted message through a AES- Counter Mode
(AES-CTR) scheme (see Fig. 4).

M=(m;, my, m+Tag, my)
?
Ex Ex Ex Ex
, , . ¥
Gy Co Ca .
cq=Tag’
Fig. 3. CBC-MAC scheme. In that figure, M is the plaintext divided in a

number of m; strings; Ey is the encryption primitive (i.e., AES-128), and ¢;
is the encrypted version of the m; string.

(©2014, S.Sciancalepore, G.Piro, G.Boggia and L.A. Grieco

Nonce Counter Nonce Counter Nonce Counter
€59bcf35... 00000000 ©€59bcf35.. 00000001 €59bcf35... 00000002
[I ITT1 [T [T
1 v v
Key = | Block Cipher Key =| Block Cipher Key =| Block Cipher
Encryption Encryption Encryption
Plaintext - iy Plaintext - i Plaintext - 4
IO | T I [T]
T [TTTTTITITTTTT [TTTTTITTTTTTTT
Ciphertext Ciphertext Ciphertext

Counter (CTR) mode encryption

Fig. 4. AES-CTR scheme. The Nonce string is generated taking into account
the Source Address, the Frame Counter and the Security Level of the current
frame.

Finally the CCM* mode inverse transformation handles the
decryption and the message integrity checking through the
Decryption Transformation and the Authentication Checking
Transformation function, respectively. Without loss of gener-
ality, we note that these functions execute the same subroutines
described for the CCM* mode forward procedure.

III. IMPLEMENTATION: THE STANDARD APPLIED

In this contribution, we present an open-source and freely
available module implementing IEEE 802.15.4 security proce-
dures within the emerging OpenWSN protocol stack.

6) The OpenWSN project: The OpenWSN project provides
an open-source implementation of a standard-based protocol
stack for constrained devices. It integrates several IEEE and
IETF protocols, such as Time Synchronized Channel Hopping
(TSCH), CoAP, RPL and 6LoWPAN, and allows the creation
of ultra-low power and highly reliable mesh networks con-
nected among them through Internet [8].

At the time of this writing, OpenWSN is supported by a
large number of hardware platforms (they have been sum-
marized in Tab. III) and embraces debugging functionalities
and additional application tools. As a consequence, it is able
to sustain any extensive study and experimental evaluation of
novel solutions for LLN.

A comprehensive scheme of the OpenWSN protocol stack
has been reported in Fig. 5. It is important to underline
that despite the presence of a huge number of protocols
at different layers of the stack, the OpenWSN project does
not implement security features described within the IEEE
802.15.4 specification.

7) Implementation details: In order to overcome the afore-
mentioned lack, we properly extended the original version of
the OpenWSN protocol suite by developing (i) MAC PIB
attributes related to security aspects (ii) security functions
operating at the MAC-high layer, and (iii) cryptographic tech-
niques. A clear description of entities forming the developed
module, including their relationship with the existing Open-
WSN protocol stack, is depicted in Fig. 6.

First of all, in line with the IEEE 802.15.4 standard,
a number of data structures and variables, which refer to
MAC PIB security attributes, have been developed. The most
important implementation details can be found in Tab. IV.
In addition, to enable security aspects we also extended the

User Applications

TCP UDP CoAP
ID
forwarding RPL ICMPV6
6LOWPAN
schedule neighbors
IEEE802.15.4¢

pins leds radio timers
Fig. 5. The OpenWSN default protocol stack
SIXTOP
02b - MAC-high
CCM* Transformation
AES
IEEE802.15.4 IEEE802.15.4
Security PIB
Procedures Attributes

~. pad

Security Sub-layer

~ 7

IEEE802.15.4e

02a - MAC-low

Fig. 6. The OpenWSN modified portion of the stack

(©2014, S.Sciancalepore, G.Piro, G.Boggia and L.A. Grieco

TABLE IIL

PLATFORM RUNNING THE OPENWSN PROTOCOL STACK

Hardware Platform | Manufacturer Architecture | Maximum | Flash RAM Radio
Speed Module
TelosB Texas 16-bit 8 MHz 48 kB 10 kB CC2420
Instruments
GINA Texas 16-bit 16 MHz 116 kB 8 kB AT86RF231
Instruments
WSN430 SensLab 16-bit 8 MHz 48 kB 10 kB CC1101 or
CC2420
71 Zolertia 16-bit 16 MHz 92 kB 10 kB CC2420
OpenMote STM Texas 32 bit 72 MHz 256 or up to 64 AT86RF231
Instruments 512 kB kB
OpenMoteCC2538 Texas 16-bit 32 MHz up to 512 up to 32 CC2538
Instruments kB kB
STM32F103RE ST 32-bit 72 MHz 512 kB 64 kB AT86RF231
Microelectronics
K20 FreeScale 32-bit 72 MHz 256 kB 64 kB AT86RF231
MCI1321x FreeScale 8-bit 8 MHz up to 60 up to 4 689S08A
kB kB
EZ430-RF2500 Texas 16-bit 16 MHz up to 32 | 2kB CC2500
Instruments kB

OpenQueueEntry_t structure, which models the data packet,
by adding the following variables:

e [2_security, reporting if security features are enabled or
not for that packet (data type = boolean);

e [2_securityLevel, which specifies the security level of the
frame (data type = uint8_t);

o [2_keyldMode, indicating the KeyldMode value to store
into the MAC header (data type = uintS_t);

e [2_keyIndex, indicating the Keylndex value to store into
the MAC header (data type = uint8_t);

e [2_frameCounter, storing the frame counter (data type =
uint32_t);

e [2_keySource, indicating the KeySource value to store
into the MAC header (data type = open_addr_t);

e [2_authenticationLength, storing the length of the au-
thentication field to append to the packet (data type =
uint8_t);

To enable security features at the MAC layer, Outgoing
Frame Security, Incoming Frame Security, Key Descriptor
Lookup, Device Descriptor Lookup, Security Level Descriptor,
Incoming Security Level Checking, and Incoming Key Usage
Policy Checking procedures have been implemented as im-
posed by the IEEE 802.15.4 standard and described in sec.
II. They are handled at the MAC-high layer of the protocol
stack (in particular within the SIXTOP module, as depicted in
Fig. 6), and are also in charge to built the Auxiliary Security
Header and retrieve data from it (see Sec. II for more details).
Encryption and decryption operations have been implemented
in Input Transformation, Authentication Transformation, En-
cryption Transformation, Decryption Transformation, and Au-
thentication Checking Transformation functions.

Finally, with respect to cryptographic primitives, we in-
cluded in our module a free and open-source implementation
of the AES-128 algorithm!.

8) Usage of the developed module: The developed module
is perfectly integrated within the overall OpenWSN protocol
stack.

It is available at
csc/Code/Ciphers/AES_Encrypt.cpp

http://comp.ist.utl.pt/ec-

When the SIXTOP module of the MAC-high layer receives
from upper layers a packet with the I2_security flag set to
TRUE, it invokes, as described in [6], the implemented Outzgo-
ingFrameSecurity procedure by providing the [2_securityLevel,
the [2_keySource, the [2_keyIndex and the Next Hop address.

In the case the message is received from the physical
interface and the [2_security flag is set to TRUE, instead,
the taskSixtop_NotifReceive function (that is called during the
decapsulation process) delivers the message to the Incom-
ingFrameSecurity procedure.

Finally, the initialization of MAC PIB attributes reported in
Tab. IV should be statically handled by the user by setting
their values in the security_init function, which is executed
into the OpenWSN stack boot-up process (i.e., OpenWSN_init
function).

IV. EXPERIMENTAL TESTS

We evaluated, through real experiments, the impact that
the enabling of security features has on both computational
requirements and communication latencies. To this end, we
configured a real testbed made up of 2 motes, i.e., a coordinator
and a child node (see Fig. 7), that exchange messages with
variable size ranging from 117 Bytes (i.e., the minimum
allowed value) and 127 Bytes (i.e., the maximum allowed
value).

In our experiments, we used the TelosB hardware platform
[9]. Despite its very limited capabilities (16-bit microcontroller
working at a maximum speed of 8 MHz, 48 kB Flash Memory,
10 kB RAM, and CC2420 radio module), it is highly used in
todays’ research to evaluate protocols and algorithms in LLN
environments with extreme constraints.

We configured the security_ init function in order to:

e select the 5-th security level, which provides both en-
cryption and authentication services with a key of 32
bit;
store a Pre-Shared Key;
create a KeyDescriptor associated to the afore-
mentioned key. It will be composed by () a
m_keyldLookupDescriptor, in which keyldMode is set to

(©2014, S.Sciancalepore, G.Piro, G.Boggia and L.A. Grieco

Fig. 7.

TABLE IV.

DESCRIPTION OF IEEE 802.15.4 MAC SECURITY ATTRIBUTES IMPLEMENTED IN OPENWSN

Implemented Parameter

Description

Composition

m_deviceDescriptor

structure modeling the DeviceDescriptor at-
tribute

device address (data type = open_addr_t), Frame Counter (data type =
integer), Exempt (data type = boolean)

m_keyldLookupDescriptor

structure modeling the KeyldLookupDescrip-
tor attribute

Key Identifier Mode (data type = wuint8_t), Key Index (data type =
uint8_t), Key Source (data type = open_addr_t), PAN ID (data type
= open_addr_t) and device address (data type = open_addr_t)

m_securityLevelDescriptor

table modeling the SecurityLevelDescriptor
attribute

DeviceOverrideSecurityMinimum (data type = boolean), Frame Type
(data type = wuint8_t), Command Frame Identifier (data type = uint8_t),
Security Minimum (data type = uint8_t), and Allowed Security Levels
(data type = uint8_t)

m_keyUsageDescriptor

structure modeling the KeyUsageDescriptor
table

FrameType (data type = uint8_t) and CommandFrameldentifier (data
type = uint8_t)

m_macDeviceTable

table modeling the MacDeviceTable attribute

vector of m_deviceDescriptor elements

m_keyDescriptor

structure modeling the KeyDescriptor at-

tribute

m_keyldLookupDescriptor element, DeviceDescriptorHandleList (i.e.,
pointer to the m_macDeviceTable), m_keyUsageDescriptor element, and
key (data type = vector of uint8_t)

m_macKeyTable table modeling the MacKeyTable attribute

vector of m_keyDescriptor, elements

m_macSecurityLevelTable table modeling the MacSecurityLevelTable

vector of m_securityLevelDescriptor elements

m_macFrameCounter variable modeling the MacFrameCounter

single variable (data type = uint32_t)

m_macDefaultKeySource

variable modeling the MacDefaultKeySource

single variable (data type = open_addr_t)

Analyzed Testbed

0203, keylndex is set to 0z01, keySource is set to the 64-
bit address of the PAN Coordinator, PANId is set to the
value of the PAN ID of the network, and DeviceAddress
is set to NULL, (ii) a m_keyUsageDescriptor object,
which has the FrameType set to 0201, and the Com-
mandFrameldentifier set to NULL, and (iii) and the
pointer to the m_macDeviceTable. Such KeyDescriptor
will be stored within the MacKeyTable.

create a m_deviceDescriptor object storing information
about the remote node (i.e., its MAC address, a Frame-
Counter initialized to 0, and the Exempt flag set to
FALSE). It will be stored in the first entry of the
MacDeviceTable;

generate a m_securityLevelDescriptor object to append
to the MacSecurityLevelTable. That entry will have the
FrameType set to 0x01 (i.e., Data Frame), the Com-
mandFrameldentifier set to NULL, the SecurityMinimum
set to 5, the DeviceOverrideSecurityMinimum flag set to
FALSE, and the AllowedSecurityLevels attribute set to

5;

In order to understand the processing cost of the crypto-
graphic operations, we investigated the computational load
introduced by encryption and decryption operations. The tests
have been executed 100 times and average results are reported
in Fig. 8. As expected, the time required to encrypt/decrypt a
MAC packet increases with the packet size: when the MAC
payload length increases, the duration of the cryptographic
operations increases too, because of the higher amount of
information to process. Anyway, encryption procedures always
requires a time interval included in the range [320, 380] ms.

W
o<}
o

w

3

=)
7

(]

(o2}

o
T

(]

5

o
T

330

Time to realize Cryptographic Operations [ms]
w
a
o

]
=
=)

118 120 122 124 126 128
Payload Size [byte]

Fig. 8. Duration of cryptographic operations for different MAC payload size

In order to evaluate the impact that security services have
on communication latencies, we installed the UDPLatency
application (i.e., a well-known application layer of the Open-
WSN protocol suite) on the child node, which generate a fixed
number of 100 packets to send to the coordinator. The packet
generation time is set to 0.33 packets/s, i.e., a single packet
every 3 seconds. In line with previous tests, we varied the

payload size in the range [117-127] bytes.
We reported in Fig. 9 and Fig. 10 application end-to-

end packet delays and its average value, measured in both
secured and unsecured networks. As expected, communication

(©2014, S.Sciancalepore, G.Piro, G.Boggia and L.A. Grieco

latencies increase with the packet size when security features
are enabled. It is very important to remark that the highest
impact on the end-to-end delays is provided by encryption and
decryption operations (whose average value can be observed
in Fig. 8).

o fo23 ~ @
o o o o
o o o o

Application Delay [ms]
(&) 'S
o o
o o

n
(=3
o

100

00 10 20 30 40 50 60
Experimental number

(2)

~ @
o o
o o
T
I

D
o
o
T
I

Application Delay [msec]
5
2

0 10 20 30 40 50 60 70 80 90 100
Experimental number

(b)
1000

800
)
Q
(2]
£
E 600 R
[
a
& —~security not enabled
g 400- --security enabled
g
Q
<

200/\/\,\/\/\/\’\/\/\/\/‘/\/\/\1\/\/\]\/\/\1\/\/\1\/\/\N\/\A

0 5 0

40 0 60
Experimental number
©

Fig. 9. Communication latencies with MAC payload size of 117b(a), 122 b
(b) and 127b (c) respectively.

800 T T T T T T —

7004 /—-7 |

==-security enabled
~e-security not enabled|

[o2]

o

o
T

o
o
o
T
L

Application Delay [ms]
w »
o o
S

n
o
o
T
L

o
o
T
L

. . , . . . , , ,
‘P17 118 119 120 121 122 123 124 125 126 127 128
Payload Size [byte]

Fig. 10. Communication latencies for different payload size.

V. CONCLUSIONS

In this work we presented an open source and freeware
implementation of IEEE 802.15.4 security features within
the emerging OpenWSN protocols stack. Moreover, in or-
der to investigate the impact of the developed module on
normal operations, we also evaluated, through real experi-
ments, the computational load and communication latencies.
Our analysis demonstrated that computational capabilities of
motes drastically influence the network operation. Without
any doubts, these studies represent an important starting point
for all researchers and industries interested to design and
implement optimized solutions aimed at offering enhanced
security services in Low Power and Lossy Network based
on IEEE 802.15.4 radios. In this context, open source nature
of the developed module motivates its adoption in this kind
of research activities. In the future, we plan to evaluate the
performances of security services in more complex networks,
composed by a higher number of nodes arranged in various
topologies, as well as to implement cryptographic procedures
directly in hardware (thus leading to a strong reduction of
the cryptographic time). In addition, using the developed
module, we also plan the design of efficient Key Management
Protocols, able to initialize and configure security attributes
inside the network in a dynamic fashion.

REFERENCES

[1] G. Piro, G. Boggia, and L. A. Grieco, “A standard compliant security
framework for ieee 802.15.4 networks,” in Proc. of IEEE World Forum
on Internet of Things (WF-1oT), Seoul, South Korea, Mar. 2014.

[2] O. Hersent, D. Boswarthick, and O. Elloumi, The Internet of Things:
Key Applications and Protocols. Wiley, 2012.

[3] M. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. Grieco,
G. Boggia, and M. Dohler, “Standardized Protocol Stack for the Internet
of (Important) Things,” Communications Surveys & Tutorials, IEEE,
2012.

[4] D. Miorandi, S. Sicari, F. D. Pellegrini, and I. Chlamtac, “Internet of
Things: Vision, Applications & Research Challenges,” Ad Hoc Networks,
2012.

[5] L. Atzori, A. lera, and G. Morabito, “The Internet of Things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787-2805, October 2010.

(©2014, S.Sciancalepore, G.Piro, G.Boggia and L.A. Grieco

(6]

(7]

(8]

[9]

IEEE std. 802.15.4, Part 15.4: Low-Rate Wireless Personal Area Net-
works (LR-WPANs), Standard for Information Technology Std., 16 June
2011.

802.15.4¢-2012: IEEE Standard for Local and Metropolitan Area Net-
works — Part 15.4: Low-Rate Wireless Personal Area Networks (LR-
WPANs) Amendment 1: MAC Sublayer, IEEE Std., 16 April 2012.

T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim, K. Weekly, Q. Wang,
S. D. Glaser, and K. S. J. Pister, “OpenWSN: a Standards-Based Low-
Power Wireless Development Environment,” Transactions on Emerging
Telecommunications Technologies, vol. 23, no. 5, pp. 480-493, 2012.
Telosb datasheet. [Online]. Available:
http://www.willow.co.uk/TelosB_Datasheet.pdf

(©2014, S.Sciancalepore, G.Piro, G.Boggia and L.A. Grieco

