

1

Wireless Multi-Sensor Monitoring System Utilizing IEEE 802.15.4
Communication Standards for Water Leakage Detection

Neda Noorani

Department of Electrical and Computer Engineering
California State University of Northridge

neda.noorani.39@my.csun.edu

Abstract - This paper presents the design of a water leakage monitoring system which includes wireless networked sensors monitored
from a Windows based PC. The purpose of such system is to detect possible water leakage for residential water pipes. Utilizing three
small Printed Circuit Boards (PCB) s, data from remote sensors of different types (acoustic, pressure, temperature, flow rate, etc.) are
collected and monitored on a PC for further processing and analysis. ZigBee technology, which is built on top of the IEEE 802.15.4
standard, is used for wireless communication in the network.

1. INTRODUCTION

Increases in residential plumbing, treatment and operational
costs make the losses associated with underground water
system leakage prohibitive. To combat water loss, many
utilities are developing methods to detect, locate, and correct
leaks.

In fact, accurate and efficient residential leak detection
technology encompasses a wide range of benefits including
but not limited to: economic benefits, increased knowledge
about the distribution system, more efficient use of existing
supplies, delayed capacity expansion, improved environmental
quality, reduced property damage, reduced legal liability,
reduced insurance and reduced risk of contamination[1].

Hence, this paper strives to delineate design of a water
leakage monitoring system to detect possible water leakage for
residential water pipes. To that end, the system collects and
monitors data on a PC from remote sensors-located next to
pipes for further processing and analysis to detect water
leakage. Reliable communication within the network is
provided by ZigBee technology, which is built on top of IEEE
802.15.4 standard.

More specifically, to collect and monitor data on a PC, three
Printed Circuit Board (PCB) s, populated with the ZigBit 900
RF modules and a matched antenna are used. The ZigBit
module featuring ultra small size and superior RF performance
enables the board’s wireless connectivity and facilitates its
functionality a as a node in the ZigBee network. The PCBs
include temperature sensor. In addition, these PCBs support
standard extension connectors to connect to external sensors
such as acoustic sensor, pressure sensor and etc. The PCBs
are powered by one C-sized battery.

Importantly, this paper is organized as follows: Section 2
presents the basic concepts of Wireless Sensor Network
(WSN). Section 3 elaborates on WSN standards including
IEEE 802.15.4 and ZigBee standard. Section 4 elucidates the

hardware component of the water leakage system. Section 5
discusses software component of the design. Section 6
explains how sensor data displays on PC in GUI format. The
conclusion remarks are included in the end.

2. WIRELSS SENSOR NETWORKS

Wireless Sensor Network (WSN) typically consists of small
spatially distributed devices to cooperatively monitor physical
or environmental conditions, such as temperature, sound,
vibration and etc. With WSN connectivity, data from remote
sensors of different types are collected by central unit for
further processing and analysis.

WSNs are less expensive and more flexible than wired
monitoring systems. There are applications that become
feasible only with WSNs because using wires between devices
are too expensive or impossible at all. For instance, in many
industrial, agricultural, military or ecological problems
physical wiring is impossible or would create extreme
disturbance for other operations. WSN, compared to other
existing wireless technologies, is the only technology that
targets simple communication with low data rates and low
power consumption.

Each WSN node is typically equipped with:

• One or more sensors;
• A wireless transceiver including antenna or other

wireless communications device;
• A microcontroller and memory to process received

data and prepare data for transmission and execution
of required networking tasks;

• A networking and application software which
specifies networking protocols and application
functionality; and

• An energy source, usually a battery.

ZigBee is a suitable standards-based wireless protocol
technology that addresses the unique needs of remote
monitoring, control and sensor network applications. The

2

ZigBee wireless standard enables broad-based deployment of
wireless networks with low cost, low power solutions in a
typical monitoring application.

ZigBee takes full advantage of the IEEE 802.15.4 physical
radio specification and operates in unlicensed bands
worldwide at the following frequencies: 2.400-2.484GHz,
902-928MHz and 868.0-868.6MHz. The ZigBee protocol
carries all the benefits of the 802.15.4 protocol with added
networking functionality. The ZigBee protocol was engineered
by the ZigBee Alliance, a non-profit consortium of leading
semiconductor manufacturers, technology providers, Original
Equipment Manufacturers (OEMs), and end-users worldwide
[2].

3. WIRELESS SENSOR NETWORK STANDARDS

It is extremely common to have standardized technologies
in communication industry. Standard protocols make the
technology more attractive for end users by its independence
of a single vendor. Moreover, openness and large number of
participants involved in standard development process
increases technology reliability and safety. Furthermore,
organizations which are responsible for standard specification
are constantly improving their standards according to market
needs. The most popular standards for wireless sensor
networks are IEEE 802.15.4 and ZigBee, which are described
in details below.

3.1 IEEE 802.15.4

IEEE 802.15.4 specified by Institute of Electrical and
Electronics Engineers (IEEE), is a standard which specifies
the physical (PHY) layer and Media Access Control (MAC)
for Low-Rate Wireless Personal Area Network (LR-WPANs).
It is the basis for the ZigBee, WirelessHART and MiWi
specification, which attempts to offer a complete networking
solution by developing the upper layers which are not covered
by this standard.

The main features of IEEE 802.15.4 are network flexibility,
low cost, very low power consumption and low data rate. It is
developed for applications with relaxed throughput
requirements which cannot handle the power consumption of
heavy protocol stacks.

IEEE 802.15.4 defines two types of network node. The first
one is the Full-Function Device (FFD) which contains the full
set of IEEE 802.15.4 features. It can serve as the coordinator
and as an end-device of a personal area network. It
implements a general model of communication which allows
it to talk to any other device. On the other hand, there are
Reduced-Function Devices (RFD). These are meant to be
extremely simple devices with very modest resource and
communication requirements. Hence, RFDs can only
communicate with FFDs and can never act as coordinators.
Normally, FFD consumes more energy compared to RFD
because it requires extra memory and processing power.

In terms of possible interconnections, networks can be built
as either Peer-to-Peer or Star networks. Fig.1 illustrates IEEE
802.15.4 star and peer-to-peer topology. However, every
network needs at least one FFD to work as the coordinator of
the network.

In peer-to-peer, model an FFD can communicate to all other
devices within its transmission range while an RFD can talk
only to an FFD which is currently associated with. In Peer-to-
Peer model, large spatial areas can be covered by a single
network but complex packet routing algorithms are required.
A Peer-to-Peer network can be self-organizing and self-
healing. Advanced functionality of the Peer-to-Peer model is
available only if an efficient network management protocol is
realized on top of IEEE 802.15.4 stack.

In Star model, devices are interconnected in form of a star.
Star network necessarily has the central node and all the
network nodes (FFDs and RFDs) can directly communicate
only to the coordinator. Star network is simple in set up and
deployment. Moreover, in Star network, data forwarding is
possible only by coordinator (two-hop only) and coverage area
is limited by one-hop transmission range.

IEEE 802.15.4 standard specifies only the lowest part of
OSI communication model, PHY layer and MAC sub-layer.
PHY layer is the lowest level in communication model. The
PHY provides services such as activation and deactivation of
the radio transceiver, frequency channel tuning, carrier
sensing, received signal strength estimation Received Signal
Strength Indication (RSSI), Link Quality Indicator (LQI),
error correction, data coding and modulation. The MAC sub-
layer provides services such as data framing, validation of
received frames, device addressing, channel access
management, sending acknowledgement frames, device
association and disassociation.

3.2 ZIGBEE STANDARD

ZigBee technology is a low data rate, low power
consumption and low cost wireless networking protocol
targeted towards automation and remote control applications.
ZigBee Alliance and the IEEE decided to join forces and
ZigBee is the commercial name for this technology. ZigBee is
expected to provide low cost and low power connectivity for
equipment that needs battery life as long as several months to
several years but does not require data transfer in high rates.

ZigBee compliant wireless devices are expected to transmit
10-75 meters, depending on the RF environment and the
power output consumption required for a given application,
and will operate in the unlicensed RF worldwide (2.4GHz
global, 915MHz Americas or 868 MHz Europe). The data rate
is 250kbps at 2.4GHz, 40kbps at 915MHz and 20kbps at
868MHz.

3

Fig.1 - IEEE 802.15.4 Star and Peer-to-Peer Topology [9]

IEEE and ZigBee Alliance have been working closely to
specify the entire protocol stack. IEEE 802.15.4 focuses on the
specification of the lower two layers of the protocol (Physical
and Data Link layer). On the other hand, ZigBee Alliance
aims to provide the upper layers of the protocol stack (from
Network to the Application layer) for interoperable data
networking, security services and a range of wireless home
and building control solutions, providing interoperability
compliance testing, marketing of the standard and advanced
engineering for the evolution of the standard.

ZigBee standard specifies three different types of nodes that
might be present in a ZigBee network: Coordinator, Router
and End Device. Coordinator is the most capable device that
forms the root of the network. Coordinator is responsible for
configuring key networking parameters, network start,
admission of other nodes and network address assignment.
There is exactly one ZigBee Coordinator in each network.
Coordinator should be connected to a steady reliable power
supply source because of high processing power and inability
to sleep. Only FFD in IEEE 802.15.4 terminology can act as a
network Coordinator. Router passes messages from ZigBee
End Devices to other Router or to the ZigBee Coordinator.
Router is used to extend network coverage area and increase
network reliability. End Device can talk only to the
Coordinator or a Router. It cannot relay data from other
devices. This relationship allows the node to be asleep a
significant amount of the time, thereby; giving long battery
life. End Device requires the least amount of memory,
therefore, it can be less expensive to manufacture than a
Router and Coordinator. ZigBee End Devices correspond to
RFD in IEEE 802.15.4 standard [6].

Routers and End Devices enter the existing network by
associating themselves with a node already present in the
network. Only Coordinator and Routers can provide network
access. ZigBee network hierarchy can be visualized as a tree
with Coordinator being on top and End Devices being tree
leaves. Each node that joins ZigBee network receives
temporary 16-bit long network address. Communication on
network level is performed based on this address while direct
transmission between two neighboring devices is done based
on MAC address.

ZigBee networks can be configured to operate in a variety
of different ways to suit the application and environment.
Supported topologies in ZigBee Network include: Star
topology, Cluster Tree topology and Mesh topology.

In Star topology, using a single Personal Area Network
(PAN) Coordinator, each node connects directly to the central
Coordinator – all inter-node communications are passed
through the Coordinator. Moreover, in Star topology, the
network coverage area is limited by Coordinator transmission
range but network is simple in set up and deployment.

A Cluster Tree network consists of a number of Star
networks connected whose central nodes are also in direct
communications with the single PAN Coordinator. Using a set
of Routers and a single PAN Coordinator, the network is
formed into an interconnected mesh of Routers and End nodes
which pass information from node to node using the most cost
effective path. Should any individual router become
inaccessible, alternate routes can be discovered and used.
Hence, Cluster Tree Network provides a robust and reliable
network topography. Fig. 2 illustrates Cluster Tree topology.

A key component of the ZigBee protocol is the ability to
support Mesh networking. In a Mesh network, nodes are
interconnected with other nodes so that multiple pathways
connect each node. Connections between nodes are
dynamically updated and optimized through sophisticated,
built-in mesh routing table. Mesh networks are decentralized
in nature; each node is capable of self-discovery on the
network. Also, as nodes leave the network, the Mesh topology
allows the nodes to reconfigure routing paths based on the
new network structure. The characteristics of Mesh topology
and ad-hoc routing provide greater stability in changing
conditions or failure at single nodes. Fig. 3 illustrates Mesh
network topology.

Fig. 2 – Cluster Tree Topology [4]

4

Fig.3- Mesh Network Topology [4]

4. HARDWARE COMPONENTS

Hardware component of the designed system is comprised
of three Printed Circuit Boards (PCBs) which can be
configured to operate as a network Coordinator, Router or an
End Device by setting Dual In-Line Package (DIP) switches.
Each of the PCBs contains the following components:

• ZigBit 900 module (MNZB-900-B0)
• Sensor
• Universal Serial Bus (USB) to Universal

Asynchronous Receiver/Transmitter (UART)
Bridge

• 20-pin Expansion Slot
• Power Supply
• 3 Push Buttons
• DIP Switches
• Software-Controlled LEDs
• Sub Miniature version A (SMA) Connector
• Silicon Serial for Unique Identifier (UID) Storage

In the following, the functionalities of these components are
briefly described.

DIP Switches

DIP switches configure each node as a Coordinator, Router
and End Device by using the codes downloaded to the
microcontroller on PCB, according to the following table:

DIP switches Role
 1 2 3

ON OFF OFF Coordinator
OFF ON OFF Router
OFF OFF ON End device

ZigBit 900 Module

ZigBit 900 module (Part Number: MNZB-900-B0), as one
of the most important PCB parts, is a low-power and high-
sensitivity IEEE 802.15.4/ZigBee-compliant OEM module.
Zigbit 900 module occupies less than a square inch of space.
ZigBit 900 offers an unmatched combination of superior radio
performance, ultra-low power consumption and exceptional
ease of integration. ZigBit 900 contains Atmel’s
ATmega1281V Microcontroller and AT86RF212 RF
Transceiver [4]. Fig. 6 illustrates MNZB-900-B0 Block
Diagram. The module features 128K bytes flash memory and
8K bytes RAM. ZigBit 900 already contains a complete
RF/MCU design with all the necessary passive components
included. The module can be easily mounted on a simple 2-
layer PCB with a minimum of required external connection.

Fig.6 - MNZB-900-B0 Block Diagram[4]

Sensors

The PCBs include temperature sensor LM73CIMK
connected to the I2C bus. In addition to the built-in onboard
sensor, external sensors - to help detect water leakage in pipes
- can be connected through serial port and Analog to Digital
Converter (ACD) Input.

USB to UART Bridge

USB to UART Bridge provides seamless USB interface to
any RS-232 legacy device.

20-Pin Expansion Slot

20-Pin Expansion Slot contains external ZigBit’s interfaces
including Serial Port Interface (RS-232), Universal
Synchronous/Asynchronous Receiver/Transmitter (USART),
Buffered Inter-Integrated Circuit (I2C) interface with
Electrostatic Discharge (ESD) protection and voltage level
translation, ADC_ inputs and General Purpose Input Output
(GPIO).

Power Supply

The PCBs work with 3 volt C size batteries.

5

Push Buttons

There are three push buttons on PCBs. One of them is used
as a reset button and the other two push buttons are controlled
by software.

SMA Connector

PCBs are equipped with SMA Connector in order to attach
an external antenna. The external antenna (Part Number:
17010.10) has frequency range of 2.35-2.5 GHz. Antenna is
matched and tuned with taking into account all adjacent
components, including the ZigBit 900 module shield, battery
compartment and plastic legs. Any object approached or
placed closely next to antenna might affect its performance.

Silicon Serial for UID Storage

The PCBs also contain Silicon Serial Number for UID
storage (Part Number: DS2411R). UID is HEX value and 8
bytes. UID is used for setting unique MAC address of the
node. To be connected with WSN network, each node should
be identified with a unique MAC address. If MAC address is
not defined by a UID hardware chip, the address of the node
should be programmed manually. MAC address is utilized for
identification of the node within the network.

The PCB can be connected to host PC via USB port, using
USB 2.0 A/mini-B cable. No battery is required once a PCB is
powered via USB. USB power is not stable enough, which in
turn can affect transmission of power level or RF parameters.

End Device reads data from the onboard and external
sensors. End Device follows a duty cycle, waking up
occasionally to transmit the sensor data and sends the readings
to router. Router also sends the data to Coordinator in packets.
Coordinator sends the data to the PC's COM port. A special
GUI application named WSNMonitor running on the PC
displays the network topology and sensor data in an easy-to-
interpret graphical form.

5. SOFTWARE COMPONENTS

The software part of the project involves programming of
ATmega1281 microcontroller utilizing BitCloud Stack.
BitCloud is a full-featured, professional grade embedded
software stack from Atmel. BitCloud provides a software
development platform for reliable, scalable, and secure
wireless applications [3].

BitCloud internal architecture follows the suggested
separation of the network stack into logical layers as found in
IEEE 802.15.4 and ZigBee. Besides the core stack containing
protocol implementation, BitCloud contains additional layers
implementing shared services such as task manager, security
and power manager and hardware abstractions such as

Hardware Abstraction Layer (HAL) and Board Support
Package (BSP) [5].

Next, different layers of BitCloud, BitCloud programming
styles, BitCloud application structure, and the programming
environment - Atmel AVR Studio, will be presented.

5.1 DIFFERENT LAYERS OF BITCLOUD

The following explains different layers of BitCloud:

• Application Support Sublayer (APS): APS is the
topmost of the core stack layers. It provides the
highest level of networking-related Application
Programming Interfaces (APIs) visible to the
application. [3]

• ZigBee Device Object (ZDO): ZDO enables main
network management and functionality such as start,
reset, formation and join. [3]

• Multitasking Management Layer: This layer mediates
the use of Microcontroller (MCU) among internal
stack components and user application. It implements
a priority-based co-operative scheduler specifically
tuned for multi-layer stack environment and demands
of time-critical network protocols [3].

• Hardware Abstraction Layer (HAL): This layer
includes a complete set of APIs for using on-module
hardware resources (EEPROM, sleep, and watchdog
timers) as well as the reference drivers for rapid
design-in and smooth integration with a range of
external peripherals (IRQ, TWI, SPI, USART, 1-
wire) [2].

• Board Support Package (BSP): BSP includes a
complete set of drivers for managing standard
peripherals (sensors, UID chip, sliders, and buttons)
placed on a development board [3].

5 .2 BITCLOUD PROGRAMMING STYLES

All applications based on the BitCloud SDK are written in
an event-driven or event-based programming style. Event-
driven programming or event-based programming is a
programming paradigm in which the flow of the program is
determined by events such as sensor outputs , key presses or
messages from other programs. In fact, all internal stack
interfaces are defined in terms of forward calls and
corresponding callbacks. Each layer defines a number of
callbacks for the lower layers to invoke, and in turn, invokes
callback functions defined by higher levels. There is a generic
type of user-defined callback which is responsible for
executing application-level code called TaskHandler.
APL_TaskHandler is the reserved callback name known by
the stack as the application TaskHandler. The need to
decouple the request from the answer is especially important

mk:@MSITStore:C:\Program%20Files\MeshNetics\ZDK_900_Complete\Documentation\P-ZBN-452~02-(BitCloud%20Stack%20Documentation).chm::/globals_func.html#index_s
http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Program_flow
http://en.wikipedia.org/wiki/Event_%28computing%29
http://en.wikipedia.org/wiki/Sensor
http://en.wikipedia.org/wiki/Message_passing

6

when the request can take an unspecified amount of time. For
instance, when requesting the stack to start the network, the
underlying layers may perform an energy detecting scan
which takes significantly longer than we are willing to block
for [8].

Apart from request/confirm pairs, there are cases when the
application needs to be notified of an external event which is
not a reply to any specific request. For this, there are a number
of user-defined callbacks with fixed names which are invoked
by the stack asynchronously. These include events indicating
loss of network, readiness of the underlying stack to sleep, or
notifying that the system is now awake [7].

5.3 BITCLOUD APPLICATION STRUCTURE

A BitCloud application has the following typical structure.

• Every application defines a single TaskHandler which
contains-in its scope-the bulk of the application's
code.

• Every application defines a number of callback
functions contributing code executed when an
asynchronous request to the underlying layer is
serviced.

• Every application defines a number of callbacks with
known names executed when an event is processed
by the stack.

• Every application maintains global state which is a
shared state between the callbacks and the
TaskHandler.

The BitCloud stack provides an extensive set of
configuration parameters which determine different aspects of
network and node behavior. These parameters are accessible
for application via Configuration Server interface
(ConfigServer, CS for short).

In this project, the network and radio frequency
performance of the hardware components is demonstrated by
coding based on BitCloud API. The application code consists
of the embedded firmware which supports functions of
Coordinator, Router and End Device.

The application code is split up among the following C
files:

• #include Directives
Example: #include <taskManager.h>

• Function Prototypes
Example:
static void ZDO_StartNetworkConf
(ZDO_StartNetworkConf_t *confirmInfo);

• Global Variables

Example:
AppState_t appState = APP_INITING_STATE;

• Application TaskHandler
Eexample:
void APL_TaskHandler()
 {
 switch (appState)
 { case APP_IN_NETWORK_STATE:
 ...
 break;
 case APP_INITING_STATE: //node has
initial state
 ...
 break;
 case
APP_STARTING_NETWORK_STATE:
 ...
 break;
 }
}

• Implementation

The application code encompasses five major parts:

• Configuration Server Interface (ConfigServer, CS for
short) & CS Read/Write functions: In this project, in
order to perform parameter read/write procedure at
run-time, the API functions, CS_ReadParameter and
CS_WriteParameter are used. Both functions require
parameter ID and a pointer to parameter value as
arguments. Parameter ID identifies which CS
parameter the function is applied to and is
constructed by adding "_ID" at the end of CS
parameter name.

• Network Information and Join to Network: In this
project, network start procedure performs in 4 steps:
First, configuring node parameters; second,
specifying target network parameters; third, initiating
network start request; and finally, receiving network
start confirmation.

• Data Exchange: In order to perform data transmission
between End Device, Router and Coordinator, first a
data transmission request of APS_DataReq_t type is
created. That specifies Application-layer Service
Data Unit (ASDU) payload. Second, various trans-
mission parameters are set and callback function
(APS_DataConf) is defined. This callback function is
executed to inform the application about transmission
result. Also End Device is registered using
APS_ReqisterEndPoint() function with an argument
of APS_RegisterEndpointReq_t type. The argument
specifies Endpoint descriptor (simpleDescriptor field)
which includes parameters such as endpoint ID (a
number from 1 to 240), application profile ID,
number and list of supported input and output
clusters.

7

• Power Management: In this project like other ZigBee

networks, power consumption level is a major
concern because the End device is powered only by
battery. By using BitCloud API and switching
between awake and sleep modes as well as turning
off the radio chip, power consumption is reduced.

• Hardware Control: In this project the sensors are
connected to microcontroller through UART, ADC
and I2C port. The BitCloud API also provides an
extensive support of these common HW interfaces. In
order to enable communication over UART interface,
application first configures corresponding UART port
using static global variable of HAL_UartDescriptor_t
type. Second, data reception over UART is
configured for operation in callback mode. Moreover,
UART settings is applied using HAL_OpenUart()
function with argument pointing to global variable of
HAL_UartDescriptor_t type with desired port
configuration. Returned value indicates whether port
is opened successfully and can be used for data
exchange. When there is no more need in keeping
UART port active application closes it using
HAL_CloseUart() function. Reading data over the
ADC and I2C is mostly the same as UART port, only
the functions and Global variable type which is
corresponding to ADC and I2C should be used.

5.4 DEVELOPMENT ENVIRONMENT - ATMEL AVR STUDIO

In this project, Atmel AVR Studio is used to develop

custom applications based on BitCloud API. This
multiplatform Integrated Development Environment (IDE)
provides the options for editing source code, compilation,
linking object modules with libraries, debugging and making
executable file automatically. In AVR Studio, the
development of an application is organized under particular
project. All the necessary information about a project is kept
in project file. Such files assigned to the AVR Studio have an
*.aps extension, so they open in AVR Studio automatically
when double-clicked. The easiest way to configure an AVR
project is to use Makefile that is a plain text file which name
has no extension. Makefile specifies compilation and linking
flags. Makefile also specifies corresponding directories in
order to include header files and to link the system object
libraries. An illustration of the development environment is in
Fig. 5.

After the program code is completed and complied with
AVR Stuido, a Bootloader program is used to download the
code to the microcontroller on board. Bootloader.1.1.0 is
available on www.atmel.com website. To download the code
to the PCB, first, the board should be connected to the PC via
USB or serial port. Then Bootloader should be run. In
command line, the image file (.scre with extension) and the
COM port will be specified. Then reset button on the board
should be pressed and released within approximately 30
seconds. If this does not happen, the booting process would

stop. Then, Bootloader indicates the operation progress. Once
an upload is successfully completed, the board would restart
automatically. If an upload fails, Bootloader would indicate
the reasons. Fig. 6 displays a typical graphical window of
the Bootloader.

Fig. 5 - Atmel AVR Studio

Fig. 6 – Bootloader

6. WIRELESS SENSOR NETWORK MONITOR

In addition to the hardware and software components
presented above, a PC-based graphical user interface (GUI) is
necessary to display the map of the sensor nodes and the status
of each node in the network. In this project, we customize an
existing application by Atmel named Wireless Sensor
Network (WSN) Monitor.

WSNMonitor displays the network graph in real time and

updates it automatically as the nodes join or leave. The nodes
are represented by icons.

http://www.atmel.com/

8

In order to display sensor data on PC, the following

procedure should be followed sequentially:

1. Connect the Coordinator to the PC.
2. Run WSNMonitor program on the PC.
3. Click on the connect button on the Main Toolbar.
4. Set Connection Properties on Connection wizard.

Connection wizard allows user to set folder with
protocol configuration files, connection type and
properties.

5. Click the Finish button to connect to the specified port.

The working area of WSN Monitor consists of Network
View and Node Parameter Table. Network View displays the
entire network in a graphical form. Network View displays the
network topology in real time, which helps the user monitor
the formation and evolution of the network while the nodes
join and send data. Network View is updated automatically
while the nodes are discovered and while they join through the
coordinator. The network is drawn in its star form, with the
Coordinator node positioned in center of the view and its
descendants ordered around. The links between the nodes are
visualized by lines. Node Parameter table contains a table of
parameters names and their values. This interface is illustrated
in Fig. 7.

In addition, WSNMonitor can be customized with a

protocol file. The protocol file is an XML document used in
the Connection wizard when the Connection Properties are set
to display sensor’s data on PC, as delineated above. The
protocol file introduces the parameters displayed on the Node
Parameter table. For instance, the following protocol file code
can be used to display the UARTSensor on the Node
Parameter Table.

<value name="UARTSensor" type="int32" />

7. CONCLUSION

Wireless multi-sensor monitoring system utilizing IEEE
802.15.4 and ZigBee standards represents a low cost and low
power consumption method for water leakage detection in
residential pipes. In this system, three PCBs are utilized. Each
PCB can be configured to operate as a network Coordinator,
Router or an End Eevice. End Device collects data from pipe
line and sends it to Router and Coordinator to be displayed on
PC in GUI format. Moreover, application code based on
BitCloud Stack is used to program the microcontrollers on
PCBs.

Advantages of WSN system utilizing IEEE 802.15.4 and

ZigBee standards make it applicable for monitoring in many
industrial, agricultural, military or ecological projects. By
using IEEE 802.15.4 and ZigBee standards, if a node that was
retransmitting the data suddenly fails, wireless links between
devices allow simple data rerouting over the other best
suitable node and data is delivered to the destination via best
suitable path.

Fig.7- WSNMonitor WSNDemo

8. REFERENCES

[1] http://www.nesc.wvu.edu/
[2] http://www.ferret.com.au/
[3] http://www.atmel.com
[4] http://www.meshnetics.com/
[5] AVR2051: BitCloud Stack Documentation
[6] http://www.ember.com/zigbee_index.html
[7]BitCloud™ IEEE 802.15.4/ZigBee Software. Product
Datasheet. MeshNetics Doc. M-252~08
[8]BitCloud™ Software 1.0. BitCloud Stack Documentation.
MeshNetics Doc. P-ZBN-452~02
[9]http://en.wikipedia.org/wiki/File:IEEE_802.15.4_Star_
P2P.svg

http://www.nesc.wvu.edu/
http://www.ferret.com.au/
http://www.atmel.com/
http://www.meshnetics.com/
http://www.ember.com/zigbee_index.html
http://en.wikipedia.org/wiki/File:IEEE_802.15.4_Star_%20P2P.s
http://en.wikipedia.org/wiki/File:IEEE_802.15.4_Star_%20P2P.s

	1. Introduction
	2. WIRELSS SENSOR NETWORKS
	3. wireless sensor network standards
	3.1 IEEE 802.15.4
	3.2 Zigbee Standard
	4. Hardware Components
	5. Software Components
	5.1 Different Layers of BitCloud
	5 .2 BitCloud Programming Styles
	5.3 BitCloud Application Structure
	5.4 Development Environment - Atmel AVR Studio
	6. Wireless Sensor Network Monitor
	7. Conclusion
	8. References

